aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp
blob: aaccac8b57a9eebdd6298f3787d8374b35b0c1fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the Hexagon target.
//
//===----------------------------------------------------------------------===//

#include "Hexagon.h"
#include "HexagonISelLowering.h"
#include "HexagonTargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

#define DEBUG_TYPE "hexagon-isel"

static
cl::opt<unsigned>
MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
  cl::Hidden, cl::init(2),
  cl::desc("Maximum number of uses of a global address such that we still us a"
           "constant extended instruction"));

//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//

namespace llvm {
  void initializeHexagonDAGToDAGISelPass(PassRegistry&);
}

//===--------------------------------------------------------------------===//
/// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
/// instructions for SelectionDAG operations.
///
namespace {
class HexagonDAGToDAGISel : public SelectionDAGISel {
  const HexagonTargetMachine& HTM;
  const HexagonSubtarget *HST;
public:
  explicit HexagonDAGToDAGISel(HexagonTargetMachine &tm,
                               CodeGenOpt::Level OptLevel)
      : SelectionDAGISel(tm, OptLevel), HTM(tm) {
    initializeHexagonDAGToDAGISelPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override {
    // Reset the subtarget each time through.
    HST = &MF.getSubtarget<HexagonSubtarget>();
    SelectionDAGISel::runOnMachineFunction(MF);
    return true;
  }

  virtual void PreprocessISelDAG() override;

  SDNode *Select(SDNode *N) override;

  // Complex Pattern Selectors.
  inline bool SelectAddrGA(SDValue &N, SDValue &R);
  inline bool SelectAddrGP(SDValue &N, SDValue &R);
  bool SelectGlobalAddress(SDValue &N, SDValue &R, bool UseGP);
  bool SelectAddrFI(SDValue &N, SDValue &R);

  const char *getPassName() const override {
    return "Hexagon DAG->DAG Pattern Instruction Selection";
  }

  SDNode *SelectFrameIndex(SDNode *N);
  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
  /// inline asm expressions.
  bool SelectInlineAsmMemoryOperand(const SDValue &Op,
                                    unsigned ConstraintID,
                                    std::vector<SDValue> &OutOps) override;
  SDNode *SelectLoad(SDNode *N);
  SDNode *SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl);
  SDNode *SelectIndexedLoad(LoadSDNode *LD, SDLoc dl);
  SDNode *SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode,
                                        SDLoc dl);
  SDNode *SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode,
                                        SDLoc dl);
  SDNode *SelectBaseOffsetStore(StoreSDNode *ST, SDLoc dl);
  SDNode *SelectIndexedStore(StoreSDNode *ST, SDLoc dl);
  SDNode *SelectStore(SDNode *N);
  SDNode *SelectSHL(SDNode *N);
  SDNode *SelectMul(SDNode *N);
  SDNode *SelectZeroExtend(SDNode *N);
  SDNode *SelectIntrinsicWChain(SDNode *N);
  SDNode *SelectIntrinsicWOChain(SDNode *N);
  SDNode *SelectConstant(SDNode *N);
  SDNode *SelectConstantFP(SDNode *N);
  SDNode *SelectAdd(SDNode *N);
  SDNode *SelectBitOp(SDNode *N);

  // XformMskToBitPosU5Imm - Returns the bit position which
  // the single bit 32 bit mask represents.
  // Used in Clr and Set bit immediate memops.
  SDValue XformMskToBitPosU5Imm(uint32_t Imm) {
    int32_t bitPos;
    bitPos = Log2_32(Imm);
    assert(bitPos >= 0 && bitPos < 32 &&
           "Constant out of range for 32 BitPos Memops");
    return CurDAG->getTargetConstant(bitPos, MVT::i32);
  }

  // XformMskToBitPosU4Imm - Returns the bit position which the single-bit
  // 16 bit mask represents. Used in Clr and Set bit immediate memops.
  SDValue XformMskToBitPosU4Imm(uint16_t Imm) {
    return XformMskToBitPosU5Imm(Imm);
  }

  // XformMskToBitPosU3Imm - Returns the bit position which the single-bit
  // 8 bit mask represents. Used in Clr and Set bit immediate memops.
  SDValue XformMskToBitPosU3Imm(uint8_t Imm) {
    return XformMskToBitPosU5Imm(Imm);
  }

  // Return true if there is exactly one bit set in V, i.e., if V is one of the
  // following integers: 2^0, 2^1, ..., 2^31.
  bool ImmIsSingleBit(uint32_t v) const {
    return isPowerOf2_32(v);
  }

  // XformM5ToU5Imm - Return a target constant with the specified value, of
  // type i32 where the negative literal is transformed into a positive literal
  // for use in -= memops.
  inline SDValue XformM5ToU5Imm(signed Imm) {
     assert( (Imm >= -31 && Imm <= -1)  && "Constant out of range for Memops");
     return CurDAG->getTargetConstant( - Imm, MVT::i32);
  }

  // XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
  // [1..128], used in cmpb.gtu instructions.
  inline SDValue XformU7ToU7M1Imm(signed Imm) {
    assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
    return CurDAG->getTargetConstant(Imm - 1, MVT::i8);
  }

  // XformS8ToS8M1Imm - Return a target constant decremented by 1.
  inline SDValue XformSToSM1Imm(signed Imm) {
    return CurDAG->getTargetConstant(Imm - 1, MVT::i32);
  }

  // XformU8ToU8M1Imm - Return a target constant decremented by 1.
  inline SDValue XformUToUM1Imm(unsigned Imm) {
    assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
    return CurDAG->getTargetConstant(Imm - 1, MVT::i32);
  }

  // XformSToSM2Imm - Return a target constant decremented by 2.
  inline SDValue XformSToSM2Imm(unsigned Imm) {
    return CurDAG->getTargetConstant(Imm - 2, MVT::i32);
  }

  // XformSToSM3Imm - Return a target constant decremented by 3.
  inline SDValue XformSToSM3Imm(unsigned Imm) {
    return CurDAG->getTargetConstant(Imm - 3, MVT::i32);
  }

  // Include the pieces autogenerated from the target description.
  #include "HexagonGenDAGISel.inc"

private:
  bool isValueExtension(const SDValue &Val, unsigned FromBits, SDValue &Src);
}; // end HexagonDAGToDAGISel
}  // end anonymous namespace


/// createHexagonISelDag - This pass converts a legalized DAG into a
/// Hexagon-specific DAG, ready for instruction scheduling.
///
namespace llvm {
FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
                                   CodeGenOpt::Level OptLevel) {
  return new HexagonDAGToDAGISel(TM, OptLevel);
}
}

static void initializePassOnce(PassRegistry &Registry) {
  const char *Name = "Hexagon DAG->DAG Pattern Instruction Selection";
  PassInfo *PI = new PassInfo(Name, "hexagon-isel",
                              &SelectionDAGISel::ID, nullptr, false, false);
  Registry.registerPass(*PI, true);
}

void llvm::initializeHexagonDAGToDAGISelPass(PassRegistry &Registry) {
  CALL_ONCE_INITIALIZATION(initializePassOnce)
}


// Intrinsics that return a a predicate.
static unsigned doesIntrinsicReturnPredicate(unsigned ID)
{
  switch (ID) {
    default:
      return 0;
    case Intrinsic::hexagon_C2_cmpeq:
    case Intrinsic::hexagon_C2_cmpgt:
    case Intrinsic::hexagon_C2_cmpgtu:
    case Intrinsic::hexagon_C2_cmpgtup:
    case Intrinsic::hexagon_C2_cmpgtp:
    case Intrinsic::hexagon_C2_cmpeqp:
    case Intrinsic::hexagon_C2_bitsset:
    case Intrinsic::hexagon_C2_bitsclr:
    case Intrinsic::hexagon_C2_cmpeqi:
    case Intrinsic::hexagon_C2_cmpgti:
    case Intrinsic::hexagon_C2_cmpgtui:
    case Intrinsic::hexagon_C2_cmpgei:
    case Intrinsic::hexagon_C2_cmpgeui:
    case Intrinsic::hexagon_C2_cmplt:
    case Intrinsic::hexagon_C2_cmpltu:
    case Intrinsic::hexagon_C2_bitsclri:
    case Intrinsic::hexagon_C2_and:
    case Intrinsic::hexagon_C2_or:
    case Intrinsic::hexagon_C2_xor:
    case Intrinsic::hexagon_C2_andn:
    case Intrinsic::hexagon_C2_not:
    case Intrinsic::hexagon_C2_orn:
    case Intrinsic::hexagon_C2_pxfer_map:
    case Intrinsic::hexagon_C2_any8:
    case Intrinsic::hexagon_C2_all8:
    case Intrinsic::hexagon_A2_vcmpbeq:
    case Intrinsic::hexagon_A2_vcmpbgtu:
    case Intrinsic::hexagon_A2_vcmpheq:
    case Intrinsic::hexagon_A2_vcmphgt:
    case Intrinsic::hexagon_A2_vcmphgtu:
    case Intrinsic::hexagon_A2_vcmpweq:
    case Intrinsic::hexagon_A2_vcmpwgt:
    case Intrinsic::hexagon_A2_vcmpwgtu:
    case Intrinsic::hexagon_C2_tfrrp:
    case Intrinsic::hexagon_S2_tstbit_i:
    case Intrinsic::hexagon_S2_tstbit_r:
      return 1;
  }
}

SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD,
                                                           unsigned Opcode,
                                                           SDLoc dl) {
  SDValue Chain = LD->getChain();
  EVT LoadedVT = LD->getMemoryVT();
  SDValue Base = LD->getBasePtr();
  SDValue Offset = LD->getOffset();
  SDNode *OffsetNode = Offset.getNode();
  int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();

  const HexagonInstrInfo &TII = *HST->getInstrInfo();
  if (TII.isValidAutoIncImm(LoadedVT, Val)) {
    SDValue TargetConst = CurDAG->getTargetConstant(Val, MVT::i32);
    SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32,
                                              MVT::Other, Base, TargetConst,
                                              Chain);
    SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
                                              SDValue(Result_1, 0));
    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    MemOp[0] = LD->getMemOperand();
    cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
    const SDValue Froms[] = { SDValue(LD, 0),
                              SDValue(LD, 1),
                              SDValue(LD, 2) };
    const SDValue Tos[]   = { SDValue(Result_2, 0),
                              SDValue(Result_1, 1),
                              SDValue(Result_1, 2) };
    ReplaceUses(Froms, Tos, 3);
    return Result_2;
  }

  SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
  SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
  SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
                                            Base, TargetConst0, Chain);
  SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
                                            SDValue(Result_1, 0));
  SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
                                            Base, TargetConstVal,
                                            SDValue(Result_1, 1));
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = LD->getMemOperand();
  cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
  const SDValue Froms[] = { SDValue(LD, 0),
                            SDValue(LD, 1),
                            SDValue(LD, 2) };
  const SDValue Tos[]   = { SDValue(Result_2, 0),
                            SDValue(Result_3, 0),
                            SDValue(Result_1, 1) };
  ReplaceUses(Froms, Tos, 3);
  return Result_2;
}


SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD,
                                                           unsigned Opcode,
                                                           SDLoc dl) {
  SDValue Chain = LD->getChain();
  EVT LoadedVT = LD->getMemoryVT();
  SDValue Base = LD->getBasePtr();
  SDValue Offset = LD->getOffset();
  SDNode *OffsetNode = Offset.getNode();
  int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();

  const HexagonInstrInfo &TII = *HST->getInstrInfo();
  if (TII.isValidAutoIncImm(LoadedVT, Val)) {
    SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
    SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
    SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
                                              MVT::i32, MVT::Other, Base,
                                              TargetConstVal, Chain);
    SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A4_combineir, dl,
                                              MVT::i64, MVT::Other,
                                              TargetConst0,
                                              SDValue(Result_1,0));
    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    MemOp[0] = LD->getMemOperand();
    cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
    const SDValue Froms[] = { SDValue(LD, 0),
                              SDValue(LD, 1),
                              SDValue(LD, 2) };
    const SDValue Tos[]   = { SDValue(Result_2, 0),
                              SDValue(Result_1, 1),
                              SDValue(Result_1, 2) };
    ReplaceUses(Froms, Tos, 3);
    return Result_2;
  }

  // Generate an indirect load.
  SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
  SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
  SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
                                            MVT::Other, Base, TargetConst0,
                                            Chain);
  SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A4_combineir, dl,
                                            MVT::i64, MVT::Other,
                                            TargetConst0,
                                            SDValue(Result_1,0));
  // Add offset to base.
  SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
                                            Base, TargetConstVal,
                                            SDValue(Result_1, 1));
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = LD->getMemOperand();
  cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
  const SDValue Froms[] = { SDValue(LD, 0),
                            SDValue(LD, 1),
                            SDValue(LD, 2) };
  const SDValue Tos[]   = { SDValue(Result_2, 0), // Load value.
                            SDValue(Result_3, 0), // New address.
                            SDValue(Result_1, 1) };
  ReplaceUses(Froms, Tos, 3);
  return Result_2;
}


SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, SDLoc dl) {
  SDValue Chain = LD->getChain();
  SDValue Base = LD->getBasePtr();
  SDValue Offset = LD->getOffset();
  SDNode *OffsetNode = Offset.getNode();
  // Get the constant value.
  int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
  EVT LoadedVT = LD->getMemoryVT();
  unsigned Opcode = 0;

  // Check for zero extended loads. Treat any-extend loads as zero extended
  // loads.
  ISD::LoadExtType ExtType = LD->getExtensionType();
  bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);

  // Figure out the opcode.
  const HexagonInstrInfo &TII = *HST->getInstrInfo();
  if (LoadedVT == MVT::i64) {
    if (TII.isValidAutoIncImm(LoadedVT, Val))
      Opcode = Hexagon::L2_loadrd_pi;
    else
      Opcode = Hexagon::L2_loadrd_io;
  } else if (LoadedVT == MVT::i32) {
    if (TII.isValidAutoIncImm(LoadedVT, Val))
      Opcode = Hexagon::L2_loadri_pi;
    else
      Opcode = Hexagon::L2_loadri_io;
  } else if (LoadedVT == MVT::i16) {
    if (TII.isValidAutoIncImm(LoadedVT, Val))
      Opcode = IsZeroExt ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadrh_pi;
    else
      Opcode = IsZeroExt ? Hexagon::L2_loadruh_io : Hexagon::L2_loadrh_io;
  } else if (LoadedVT == MVT::i8) {
    if (TII.isValidAutoIncImm(LoadedVT, Val))
      Opcode = IsZeroExt ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrb_pi;
    else
      Opcode = IsZeroExt ? Hexagon::L2_loadrub_io : Hexagon::L2_loadrb_io;
  } else
    llvm_unreachable("unknown memory type");

  // For zero extended i64 loads, we need to add combine instructions.
  if (LD->getValueType(0) == MVT::i64 && IsZeroExt)
    return SelectIndexedLoadZeroExtend64(LD, Opcode, dl);
  // Handle sign extended i64 loads.
  if (LD->getValueType(0) == MVT::i64 && ExtType == ISD::SEXTLOAD)
    return SelectIndexedLoadSignExtend64(LD, Opcode, dl);

  if (TII.isValidAutoIncImm(LoadedVT, Val)) {
    SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
    SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
                                            LD->getValueType(0),
                                            MVT::i32, MVT::Other, Base,
                                            TargetConstVal, Chain);
    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    MemOp[0] = LD->getMemOperand();
    cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
    const SDValue Froms[] = { SDValue(LD, 0),
                              SDValue(LD, 1),
                              SDValue(LD, 2)
    };
    const SDValue Tos[]   = { SDValue(Result, 0),
                              SDValue(Result, 1),
                              SDValue(Result, 2)
    };
    ReplaceUses(Froms, Tos, 3);
    return Result;
  } else {
    SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
    SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
    SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl,
                                              LD->getValueType(0),
                                              MVT::Other, Base, TargetConst0,
                                              Chain);
    SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
                                              Base, TargetConstVal,
                                              SDValue(Result_1, 1));
    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    MemOp[0] = LD->getMemOperand();
    cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
    const SDValue Froms[] = { SDValue(LD, 0),
                              SDValue(LD, 1),
                              SDValue(LD, 2)
    };
    const SDValue Tos[]   = { SDValue(Result_1, 0),
                              SDValue(Result_2, 0),
                              SDValue(Result_1, 1)
    };
    ReplaceUses(Froms, Tos, 3);
    return Result_1;
  }
}


SDNode *HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
  SDNode *result;
  SDLoc dl(N);
  LoadSDNode *LD = cast<LoadSDNode>(N);
  ISD::MemIndexedMode AM = LD->getAddressingMode();

  // Handle indexed loads.
  if (AM != ISD::UNINDEXED) {
    result = SelectIndexedLoad(LD, dl);
  } else {
    result = SelectCode(LD);
  }

  return result;
}


SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) {
  SDValue Chain = ST->getChain();
  SDValue Base = ST->getBasePtr();
  SDValue Offset = ST->getOffset();
  SDValue Value = ST->getValue();
  SDNode *OffsetNode = Offset.getNode();
  // Get the constant value.
  int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
  EVT StoredVT = ST->getMemoryVT();
  EVT ValueVT = Value.getValueType();

  // Offset value must be within representable range
  // and must have correct alignment properties.
  const HexagonInstrInfo &TII = *HST->getInstrInfo();
  if (TII.isValidAutoIncImm(StoredVT, Val)) {
    unsigned Opcode = 0;

    // Figure out the post inc version of opcode.
    if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_pi;
    else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_pi;
    else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_pi;
    else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_pi;
    else llvm_unreachable("unknown memory type");

    if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
      assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
      Value = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg,
                                             dl, MVT::i32, Value);
    }
    SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, MVT::i32), Value,
                     Chain};
    // Build post increment store.
    SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
                                            MVT::Other, Ops);
    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    MemOp[0] = ST->getMemOperand();
    cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);

    ReplaceUses(ST, Result);
    ReplaceUses(SDValue(ST,1), SDValue(Result,1));
    return Result;
  }

  // Note: Order of operands matches the def of instruction:
  // def S2_storerd_io
  //   : STInst<(outs), (ins IntRegs:$base, imm:$offset, DoubleRegs:$src1), ...
  // and it differs for POST_ST* for instance.
  SDValue Ops[] = { Base, CurDAG->getTargetConstant(0, MVT::i32), Value,
                    Chain};
  unsigned Opcode = 0;

  // Figure out the opcode.
  if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_io;
  else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_io;
  else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_io;
  else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_io;
  else llvm_unreachable("unknown memory type");

  // Build regular store.
  SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
  SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
  // Build splitted incriment instruction.
  SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
                                            Base,
                                            TargetConstVal,
                                            SDValue(Result_1, 0));
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = ST->getMemOperand();
  cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);

  ReplaceUses(SDValue(ST,0), SDValue(Result_2,0));
  ReplaceUses(SDValue(ST,1), SDValue(Result_1,0));
  return Result_2;
}

SDNode *HexagonDAGToDAGISel::SelectStore(SDNode *N) {
  SDLoc dl(N);
  StoreSDNode *ST = cast<StoreSDNode>(N);
  ISD::MemIndexedMode AM = ST->getAddressingMode();

  // Handle indexed stores.
  if (AM != ISD::UNINDEXED) {
    return SelectIndexedStore(ST, dl);
  }

  return SelectCode(ST);
}

SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
  SDLoc dl(N);

  //
  // %conv.i = sext i32 %tmp1 to i64
  // %conv2.i = sext i32 %add to i64
  // %mul.i = mul nsw i64 %conv2.i, %conv.i
  //
  //   --- match with the following ---
  //
  // %mul.i = mpy (%tmp1, %add)
  //

  if (N->getValueType(0) == MVT::i64) {
    // Shifting a i64 signed multiply.
    SDValue MulOp0 = N->getOperand(0);
    SDValue MulOp1 = N->getOperand(1);

    SDValue OP0;
    SDValue OP1;

    // Handle sign_extend and sextload.
    if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
      SDValue Sext0 = MulOp0.getOperand(0);
      if (Sext0.getNode()->getValueType(0) != MVT::i32) {
        return SelectCode(N);
      }

      OP0 = Sext0;
    } else if (MulOp0.getOpcode() == ISD::LOAD) {
      LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
      if (LD->getMemoryVT() != MVT::i32 ||
          LD->getExtensionType() != ISD::SEXTLOAD ||
          LD->getAddressingMode() != ISD::UNINDEXED) {
        return SelectCode(N);
      }

      SDValue Chain = LD->getChain();
      SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
      OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
                                            MVT::Other,
                                            LD->getBasePtr(), TargetConst0,
                                            Chain), 0);
    } else {
      return SelectCode(N);
    }

    // Same goes for the second operand.
    if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
      SDValue Sext1 = MulOp1.getOperand(0);
      if (Sext1.getNode()->getValueType(0) != MVT::i32) {
        return SelectCode(N);
      }

      OP1 = Sext1;
    } else if (MulOp1.getOpcode() == ISD::LOAD) {
      LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
      if (LD->getMemoryVT() != MVT::i32 ||
          LD->getExtensionType() != ISD::SEXTLOAD ||
          LD->getAddressingMode() != ISD::UNINDEXED) {
        return SelectCode(N);
      }

      SDValue Chain = LD->getChain();
      SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
      OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
                                            MVT::Other,
                                            LD->getBasePtr(), TargetConst0,
                                            Chain), 0);
    } else {
      return SelectCode(N);
    }

    // Generate a mpy instruction.
    SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
                                            OP0, OP1);
    ReplaceUses(N, Result);
    return Result;
  }

  return SelectCode(N);
}

SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
  SDLoc dl(N);
  if (N->getValueType(0) == MVT::i32) {
    SDValue Shl_0 = N->getOperand(0);
    SDValue Shl_1 = N->getOperand(1);
    // RHS is const.
    if (Shl_1.getOpcode() == ISD::Constant) {
      if (Shl_0.getOpcode() == ISD::MUL) {
        SDValue Mul_0 = Shl_0.getOperand(0); // Val
        SDValue Mul_1 = Shl_0.getOperand(1); // Const
        // RHS of mul is const.
        if (Mul_1.getOpcode() == ISD::Constant) {
          int32_t ShlConst =
            cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
          int32_t MulConst =
            cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
          int32_t ValConst = MulConst << ShlConst;
          SDValue Val = CurDAG->getTargetConstant(ValConst,
                                                  MVT::i32);
          if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
            if (isInt<9>(CN->getSExtValue())) {
              SDNode* Result =
                CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
                                       MVT::i32, Mul_0, Val);
              ReplaceUses(N, Result);
              return Result;
            }

        }
      } else if (Shl_0.getOpcode() == ISD::SUB) {
        SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
        SDValue Sub_1 = Shl_0.getOperand(1); // Val
        if (Sub_0.getOpcode() == ISD::Constant) {
          int32_t SubConst =
            cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
          if (SubConst == 0) {
            if (Sub_1.getOpcode() == ISD::SHL) {
              SDValue Shl2_0 = Sub_1.getOperand(0); // Val
              SDValue Shl2_1 = Sub_1.getOperand(1); // Const
              if (Shl2_1.getOpcode() == ISD::Constant) {
                int32_t ShlConst =
                  cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
                int32_t Shl2Const =
                  cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
                int32_t ValConst = 1 << (ShlConst+Shl2Const);
                SDValue Val = CurDAG->getTargetConstant(-ValConst, MVT::i32);
                if (ConstantSDNode *CN =
                    dyn_cast<ConstantSDNode>(Val.getNode()))
                  if (isInt<9>(CN->getSExtValue())) {
                    SDNode* Result =
                      CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
                                             Shl2_0, Val);
                    ReplaceUses(N, Result);
                    return Result;
                  }
              }
            }
          }
        }
      }
    }
  }
  return SelectCode(N);
}


//
// If there is an zero_extend followed an intrinsic in DAG (this means - the
// result of the intrinsic is predicate); convert the zero_extend to
// transfer instruction.
//
// Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
// converted into a MUX as predicate registers defined as 1 bit in the
// compiler. Architecture defines them as 8-bit registers.
// We want to preserve all the lower 8-bits and, not just 1 LSB bit.
//
SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
  SDLoc dl(N);

  SDValue Op0 = N->getOperand(0);
  EVT OpVT = Op0.getValueType();
  unsigned OpBW = OpVT.getSizeInBits();

  // Special handling for zero-extending a vector of booleans.
  if (OpVT.isVector() && OpVT.getVectorElementType() == MVT::i1 && OpBW <= 64) {
    SDNode *Mask = CurDAG->getMachineNode(Hexagon::C2_mask, dl, MVT::i64, Op0);
    unsigned NE = OpVT.getVectorNumElements();
    EVT ExVT = N->getValueType(0);
    unsigned ES = ExVT.getVectorElementType().getSizeInBits();
    uint64_t MV = 0, Bit = 1;
    for (unsigned i = 0; i < NE; ++i) {
      MV |= Bit;
      Bit <<= ES;
    }
    SDValue Ones = CurDAG->getTargetConstant(MV, MVT::i64);
    SDNode *OnesReg = CurDAG->getMachineNode(Hexagon::CONST64_Int_Real, dl,
                                             MVT::i64, Ones);
    if (ExVT.getSizeInBits() == 32) {
      SDNode *And = CurDAG->getMachineNode(Hexagon::A2_andp, dl, MVT::i64,
                                           SDValue(Mask,0), SDValue(OnesReg,0));
      SDValue SubR = CurDAG->getTargetConstant(Hexagon::subreg_loreg, MVT::i32);
      return CurDAG->getMachineNode(Hexagon::EXTRACT_SUBREG, dl, ExVT,
                                    SDValue(And,0), SubR);
    }
    return CurDAG->getMachineNode(Hexagon::A2_andp, dl, ExVT,
                                  SDValue(Mask,0), SDValue(OnesReg,0));
  }

  SDNode *IsIntrinsic = N->getOperand(0).getNode();
  if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
    unsigned ID =
      cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
    if (doesIntrinsicReturnPredicate(ID)) {
      // Now we need to differentiate target data types.
      if (N->getValueType(0) == MVT::i64) {
        // Convert the zero_extend to Rs = Pd followed by A2_combinew(0,Rs).
        SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
        SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
                                                  MVT::i32,
                                                  SDValue(IsIntrinsic, 0));
        SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
                                                  MVT::i32,
                                                  TargetConst0);
        SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
                                                  MVT::i64, MVT::Other,
                                                  SDValue(Result_2, 0),
                                                  SDValue(Result_1, 0));
        ReplaceUses(N, Result_3);
        return Result_3;
      }
      if (N->getValueType(0) == MVT::i32) {
        // Convert the zero_extend to Rs = Pd
        SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
                                              MVT::i32,
                                              SDValue(IsIntrinsic, 0));
        ReplaceUses(N, RsPd);
        return RsPd;
      }
      llvm_unreachable("Unexpected value type");
    }
  }
  return SelectCode(N);
}

//
// Checking for intrinsics circular load/store, and bitreverse load/store
// instrisics in order to select the correct lowered operation.
//
SDNode *HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
  if (IntNo == Intrinsic::hexagon_circ_ldd  ||
      IntNo == Intrinsic::hexagon_circ_ldw  ||
      IntNo == Intrinsic::hexagon_circ_lduh ||
      IntNo == Intrinsic::hexagon_circ_ldh  ||
      IntNo == Intrinsic::hexagon_circ_ldub ||
      IntNo == Intrinsic::hexagon_circ_ldb) {
    SDLoc dl(N);
    SDValue Chain = N->getOperand(0);
    SDValue Base = N->getOperand(2);
    SDValue Load = N->getOperand(3);
    SDValue ModifierExpr = N->getOperand(4);
    SDValue Offset = N->getOperand(5);

    // We need to add the rerurn type for the load.  This intrinsic has
    // two return types, one for the load and one for the post-increment.
    // Only the *_ld instructions push the extra return type, and bump the
    // result node operand number correspondingly.
    std::vector<EVT> ResTys;
    unsigned opc;
    unsigned memsize, align;
    MVT MvtSize = MVT::i32;

    if (IntNo == Intrinsic::hexagon_circ_ldd) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i64);
      opc = Hexagon::L2_loadrd_pci_pseudo;
      memsize = 8;
      align = 8;
    } else if (IntNo == Intrinsic::hexagon_circ_ldw) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i32);
      opc = Hexagon::L2_loadri_pci_pseudo;
      memsize = 4;
      align = 4;
    } else if (IntNo == Intrinsic::hexagon_circ_ldh) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i32);
      opc = Hexagon::L2_loadrh_pci_pseudo;
      memsize = 2;
      align = 2;
      MvtSize = MVT::i16;
    } else if (IntNo == Intrinsic::hexagon_circ_lduh) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i32);
      opc = Hexagon::L2_loadruh_pci_pseudo;
      memsize = 2;
      align = 2;
      MvtSize = MVT::i16;
    } else if (IntNo == Intrinsic::hexagon_circ_ldb) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i32);
      opc = Hexagon::L2_loadrb_pci_pseudo;
      memsize = 1;
      align = 1;
      MvtSize = MVT::i8;
    } else if (IntNo == Intrinsic::hexagon_circ_ldub) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i32);
      opc = Hexagon::L2_loadrub_pci_pseudo;
      memsize = 1;
      align = 1;
      MvtSize = MVT::i8;
    } else
      llvm_unreachable("no opc");

    ResTys.push_back(MVT::Other);

    // Copy over the arguments, which are the same mostly.
    SmallVector<SDValue, 5> Ops;
    Ops.push_back(Base);
    Ops.push_back(Load);
    Ops.push_back(ModifierExpr);
    int32_t Val = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
    Ops.push_back(CurDAG->getTargetConstant(Val, MVT::i32));
    Ops.push_back(Chain);
    SDNode* Result = CurDAG->getMachineNode(opc, dl, ResTys, Ops);

    SDValue ST;
    MachineMemOperand *Mem =
      MF->getMachineMemOperand(MachinePointerInfo(),
                               MachineMemOperand::MOStore, memsize, align);
    if (MvtSize != MVT::i32)
      ST = CurDAG->getTruncStore(Chain, dl, SDValue(Result, 1), Load,
                                 MvtSize, Mem);
    else
      ST = CurDAG->getStore(Chain, dl, SDValue(Result, 1), Load, Mem);

    SDNode* Store = SelectStore(ST.getNode());

    const SDValue Froms[] = { SDValue(N, 0),
                              SDValue(N, 1) };
    const SDValue Tos[]   = { SDValue(Result, 0),
                              SDValue(Store, 0) };
    ReplaceUses(Froms, Tos, 2);
    return Result;
  }

  if (IntNo == Intrinsic::hexagon_brev_ldd  ||
      IntNo == Intrinsic::hexagon_brev_ldw  ||
      IntNo == Intrinsic::hexagon_brev_ldh  ||
      IntNo == Intrinsic::hexagon_brev_lduh ||
      IntNo == Intrinsic::hexagon_brev_ldb  ||
      IntNo == Intrinsic::hexagon_brev_ldub) {
    SDLoc dl(N);
    SDValue Chain = N->getOperand(0);
    SDValue Base = N->getOperand(2);
    SDValue Load = N->getOperand(3);
    SDValue ModifierExpr = N->getOperand(4);

    // We need to add the rerurn type for the load.  This intrinsic has
    // two return types, one for the load and one for the post-increment.
    std::vector<EVT> ResTys;
    unsigned opc;
    unsigned memsize, align;
    MVT MvtSize = MVT::i32;

    if (IntNo == Intrinsic::hexagon_brev_ldd) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i64);
      opc = Hexagon::L2_loadrd_pbr_pseudo;
      memsize = 8;
      align = 8;
    } else if (IntNo == Intrinsic::hexagon_brev_ldw) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i32);
      opc = Hexagon::L2_loadri_pbr_pseudo;
      memsize = 4;
      align = 4;
    } else if (IntNo == Intrinsic::hexagon_brev_ldh) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i32);
      opc = Hexagon::L2_loadrh_pbr_pseudo;
      memsize = 2;
      align = 2;
      MvtSize = MVT::i16;
    } else if (IntNo == Intrinsic::hexagon_brev_lduh) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i32);
      opc = Hexagon::L2_loadruh_pbr_pseudo;
      memsize = 2;
      align = 2;
      MvtSize = MVT::i16;
    } else if (IntNo == Intrinsic::hexagon_brev_ldb) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i32);
      opc = Hexagon::L2_loadrb_pbr_pseudo;
      memsize = 1;
      align = 1;
      MvtSize = MVT::i8;
    } else if (IntNo == Intrinsic::hexagon_brev_ldub) {
      ResTys.push_back(MVT::i32);
      ResTys.push_back(MVT::i32);
      opc = Hexagon::L2_loadrub_pbr_pseudo;
      memsize = 1;
      align = 1;
      MvtSize = MVT::i8;
    } else
      llvm_unreachable("no opc");

    ResTys.push_back(MVT::Other);

    // Copy over the arguments, which are the same mostly.
    SmallVector<SDValue, 4> Ops;
    Ops.push_back(Base);
    Ops.push_back(Load);
    Ops.push_back(ModifierExpr);
    Ops.push_back(Chain);
    SDNode* Result = CurDAG->getMachineNode(opc, dl, ResTys, Ops);
    SDValue ST;
    MachineMemOperand *Mem =
      MF->getMachineMemOperand(MachinePointerInfo(),
                               MachineMemOperand::MOStore, memsize, align);
    if (MvtSize != MVT::i32)
      ST = CurDAG->getTruncStore(Chain, dl, SDValue(Result, 1), Load,
                                 MvtSize, Mem);
    else
      ST = CurDAG->getStore(Chain, dl, SDValue(Result, 1), Load, Mem);

    SDNode* Store = SelectStore(ST.getNode());

    const SDValue Froms[] = { SDValue(N, 0),
                              SDValue(N, 1) };
    const SDValue Tos[]   = { SDValue(Result, 0),
                              SDValue(Store, 0) };
    ReplaceUses(Froms, Tos, 2);
    return Result;
  }

  return SelectCode(N);
}

//
// Checking for intrinsics which have predicate registers as operand(s)
// and lowering to the actual intrinsic.
//
SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
  unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
  unsigned Bits;
  switch (IID) {
  case Intrinsic::hexagon_S2_vsplatrb:
    Bits = 8;
    break;
  case Intrinsic::hexagon_S2_vsplatrh:
    Bits = 16;
    break;
  default:
    return SelectCode(N);
  }

  SDValue const &V = N->getOperand(1);
  SDValue U;
  if (isValueExtension(V, Bits, U)) {
    SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
      N->getOperand(0), U);
    return SelectCode(R.getNode());
  }
  return SelectCode(N);
}

//
// Map floating point constant values.
//
SDNode *HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
  SDLoc dl(N);
  ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
  APFloat APF = CN->getValueAPF();
  if (N->getValueType(0) == MVT::f32) {
    return CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
              CurDAG->getTargetConstantFP(APF.convertToFloat(), MVT::f32));
  }
  else if (N->getValueType(0) == MVT::f64) {
    return CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
              CurDAG->getTargetConstantFP(APF.convertToDouble(), MVT::f64));
  }

  return SelectCode(N);
}

//
// Map predicate true (encoded as -1 in LLVM) to a XOR.
//
SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
  SDLoc dl(N);
  if (N->getValueType(0) == MVT::i1) {
    SDNode* Result = 0;
    int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
    if (Val == -1) {
      Result = CurDAG->getMachineNode(Hexagon::TFR_PdTrue, dl, MVT::i1);
    } else if (Val == 0) {
      Result = CurDAG->getMachineNode(Hexagon::TFR_PdFalse, dl, MVT::i1);
    }
    if (Result) {
      ReplaceUses(N, Result);
      return Result;
    }
  }

  return SelectCode(N);
}


//
// Map add followed by a asr -> asr +=.
//
SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
  SDLoc dl(N);
  if (N->getValueType(0) != MVT::i32) {
    return SelectCode(N);
  }
  // Identify nodes of the form: add(asr(...)).
  SDNode* Src1 = N->getOperand(0).getNode();
  if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
      || Src1->getValueType(0) != MVT::i32) {
    return SelectCode(N);
  }

  // Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
  // Rd and Rd' are assigned to the same register
  SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
                                          N->getOperand(1),
                                          Src1->getOperand(0),
                                          Src1->getOperand(1));
  ReplaceUses(N, Result);

  return Result;
}

//
// Map the following, where possible.
// AND/FABS -> clrbit
// OR -> setbit
// XOR/FNEG ->toggle_bit.
//
SDNode *HexagonDAGToDAGISel::SelectBitOp(SDNode *N) {
  SDLoc dl(N);
  EVT ValueVT = N->getValueType(0);

  // We handle only 32 and 64-bit bit ops.
  if (!(ValueVT == MVT::i32 || ValueVT == MVT::i64 ||
        ValueVT == MVT::f32 || ValueVT == MVT::f64))
    return SelectCode(N);

  // We handly only fabs and fneg for V5.
  unsigned Opc = N->getOpcode();
  if ((Opc == ISD::FABS || Opc == ISD::FNEG) && !HST->hasV5TOps())
    return SelectCode(N);

  int64_t Val = 0;
  if (Opc != ISD::FABS && Opc != ISD::FNEG) {
    if (N->getOperand(1).getOpcode() == ISD::Constant)
      Val = cast<ConstantSDNode>((N)->getOperand(1))->getSExtValue();
    else
     return SelectCode(N);
  }

  if (Opc == ISD::AND) {
    if (((ValueVT == MVT::i32) &&
                  (!((Val & 0x80000000) || (Val & 0x7fffffff)))) ||
        ((ValueVT == MVT::i64) &&
                  (!((Val & 0x8000000000000000) || (Val & 0x7fffffff)))))
      // If it's simple AND, do the normal op.
      return SelectCode(N);
    else
      Val = ~Val;
  }

  // If OR or AND is being fed by shl, srl and, sra don't do this change,
  // because Hexagon provide |= &= on shl, srl, and sra.
  // Traverse the DAG to see if there is shl, srl and sra.
  if (Opc == ISD::OR || Opc == ISD::AND) {
    switch (N->getOperand(0)->getOpcode()) {
      default: break;
      case ISD::SRA:
      case ISD::SRL:
      case ISD::SHL:
        return SelectCode(N);
    }
  }

  // Make sure it's power of 2.
  unsigned bitpos = 0;
  if (Opc != ISD::FABS && Opc != ISD::FNEG) {
    if (((ValueVT == MVT::i32) && !isPowerOf2_32(Val)) ||
        ((ValueVT == MVT::i64) && !isPowerOf2_64(Val)))
      return SelectCode(N);

    // Get the bit position.
    bitpos = countTrailingZeros(uint64_t(Val));
  } else {
    // For fabs and fneg, it's always the 31st bit.
    bitpos = 31;
  }

  unsigned BitOpc = 0;
  // Set the right opcode for bitwise operations.
  switch(Opc) {
    default: llvm_unreachable("Only bit-wise/abs/neg operations are allowed.");
    case ISD::AND:
    case ISD::FABS:
      BitOpc = Hexagon::S2_clrbit_i;
      break;
    case ISD::OR:
      BitOpc = Hexagon::S2_setbit_i;
      break;
    case ISD::XOR:
    case ISD::FNEG:
      BitOpc = Hexagon::S2_togglebit_i;
      break;
  }

  SDNode *Result;
  // Get the right SDVal for the opcode.
  SDValue SDVal = CurDAG->getTargetConstant(bitpos, MVT::i32);

  if (ValueVT == MVT::i32 || ValueVT == MVT::f32) {
    Result = CurDAG->getMachineNode(BitOpc, dl, ValueVT,
                                    N->getOperand(0), SDVal);
  } else {
    // 64-bit gymnastic to use REG_SEQUENCE. But it's worth it.
    EVT SubValueVT;
    if (ValueVT == MVT::i64)
      SubValueVT = MVT::i32;
    else
      SubValueVT = MVT::f32;

    SDNode *Reg = N->getOperand(0).getNode();
    SDValue RegClass = CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID,
                                                 MVT::i64);

    SDValue SubregHiIdx = CurDAG->getTargetConstant(Hexagon::subreg_hireg,
                                                    MVT::i32);
    SDValue SubregLoIdx = CurDAG->getTargetConstant(Hexagon::subreg_loreg,
                                                    MVT::i32);

    SDValue SubregHI = CurDAG->getTargetExtractSubreg(Hexagon::subreg_hireg, dl,
                                                    MVT::i32, SDValue(Reg, 0));

    SDValue SubregLO = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg, dl,
                                                    MVT::i32, SDValue(Reg, 0));

    // Clear/set/toggle hi or lo registers depending on the bit position.
    if (SubValueVT != MVT::f32 && bitpos < 32) {
      SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
                                               SubregLO, SDVal);
      const SDValue Ops[] = { RegClass, SubregHI, SubregHiIdx,
                              SDValue(Result0, 0), SubregLoIdx };
      Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
                                      dl, ValueVT, Ops);
    } else {
      if (Opc != ISD::FABS && Opc != ISD::FNEG)
        SDVal = CurDAG->getTargetConstant(bitpos-32, MVT::i32);
      SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
                                               SubregHI, SDVal);
      const SDValue Ops[] = { RegClass, SDValue(Result0, 0), SubregHiIdx,
                              SubregLO, SubregLoIdx };
      Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
                                      dl, ValueVT, Ops);
    }
  }

  ReplaceUses(N, Result);
  return Result;
}


SDNode *HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
  int FX = cast<FrameIndexSDNode>(N)->getIndex();
  SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
  SDValue Zero = CurDAG->getTargetConstant(0, MVT::i32);
  SDLoc DL(N);

  SDNode *R = CurDAG->getMachineNode(Hexagon::TFR_FI, DL, MVT::i32, FI, Zero);

  if (N->getHasDebugValue())
    CurDAG->TransferDbgValues(SDValue(N, 0), SDValue(R, 0));
  return R;
}


SDNode *HexagonDAGToDAGISel::Select(SDNode *N) {
  if (N->isMachineOpcode()) {
    N->setNodeId(-1);
    return nullptr;   // Already selected.
  }

  switch (N->getOpcode()) {
  case ISD::Constant:
    return SelectConstant(N);

  case ISD::ConstantFP:
    return SelectConstantFP(N);

  case ISD::FrameIndex:
    return SelectFrameIndex(N);

  case ISD::ADD:
    return SelectAdd(N);

  case ISD::SHL:
    return SelectSHL(N);

  case ISD::LOAD:
    return SelectLoad(N);

  case ISD::STORE:
    return SelectStore(N);

  case ISD::MUL:
    return SelectMul(N);

  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::FABS:
  case ISD::FNEG:
    return SelectBitOp(N);

  case ISD::ZERO_EXTEND:
    return SelectZeroExtend(N);

  case ISD::INTRINSIC_W_CHAIN:
    return SelectIntrinsicWChain(N);

  case ISD::INTRINSIC_WO_CHAIN:
    return SelectIntrinsicWOChain(N);
  }

  return SelectCode(N);
}


bool HexagonDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
                             std::vector<SDValue> &OutOps) {
  SDValue Inp = Op, Res;

  switch (ConstraintID) {
  default:
    return true;
  case InlineAsm::Constraint_i:
  case InlineAsm::Constraint_o: // Offsetable.
  case InlineAsm::Constraint_v: // Not offsetable.
  case InlineAsm::Constraint_m: // Memory.
    if (SelectAddrFI(Inp, Res))
      OutOps.push_back(Res);
    else
      OutOps.push_back(Inp);
    break;
  }

  OutOps.push_back(CurDAG->getTargetConstant(0, MVT::i32));
  return false;
}

void HexagonDAGToDAGISel::PreprocessISelDAG() {
  SelectionDAG &DAG = *CurDAG;
  std::vector<SDNode*> Nodes;
  for (auto I = DAG.allnodes_begin(), E = DAG.allnodes_end(); I != E; ++I)
    Nodes.push_back(I);

  // Simplify: (or (select c x 0) z)  ->  (select c (or x z) z)
  //           (or (select c 0 y) z)  ->  (select c z (or y z))
  // This may not be the right thing for all targets, so do it here.
  for (auto I: Nodes) {
    if (I->getOpcode() != ISD::OR)
      continue;

    auto IsZero = [] (const SDValue &V) -> bool {
      if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
        return SC->isNullValue();
      return false;
    };
    auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
      if (Op.getOpcode() != ISD::SELECT)
        return false;
      return IsZero(Op.getOperand(1))  || IsZero(Op.getOperand(2));
    };

    SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
    EVT VT = I->getValueType(0);
    bool SelN0 = IsSelect0(N0);
    SDValue SOp = SelN0 ? N0 : N1;
    SDValue VOp = SelN0 ? N1 : N0;

    if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
      SDValue SC = SOp.getOperand(0);
      SDValue SX = SOp.getOperand(1);
      SDValue SY = SOp.getOperand(2);
      SDLoc DLS = SOp;
      if (IsZero(SY)) {
        SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
        SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
        DAG.ReplaceAllUsesWith(I, NewSel.getNode());
      } else if (IsZero(SX)) {
        SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
        SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
        DAG.ReplaceAllUsesWith(I, NewSel.getNode());
      }
    }
  }
}


bool HexagonDAGToDAGISel::SelectAddrFI(SDValue& N, SDValue &R) {
  if (N.getOpcode() != ISD::FrameIndex)
    return false;
  FrameIndexSDNode *FX = cast<FrameIndexSDNode>(N);
  R = CurDAG->getTargetFrameIndex(FX->getIndex(), MVT::i32);
  return true;
}

inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
  return SelectGlobalAddress(N, R, false);
}

inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
  return SelectGlobalAddress(N, R, true);
}

bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
                                              bool UseGP) {
  switch (N.getOpcode()) {
  case ISD::ADD: {
    SDValue N0 = N.getOperand(0);
    SDValue N1 = N.getOperand(1);
    unsigned GAOpc = N0.getOpcode();
    if (UseGP && GAOpc != HexagonISD::CONST32_GP)
      return false;
    if (!UseGP && GAOpc != HexagonISD::CONST32)
      return false;
    if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
      SDValue Addr = N0.getOperand(0);
      if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
        if (GA->getOpcode() == ISD::TargetGlobalAddress) {
          uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
          R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
                                             N.getValueType(), NewOff);
          return true;
        }
      }
    }
    break;
  }
  case HexagonISD::CONST32:
    // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
    // want in the instruction.
    if (!UseGP)
      R = N.getOperand(0);
    return !UseGP;
  case HexagonISD::CONST32_GP:
    if (UseGP)
      R = N.getOperand(0);
    return UseGP;
  default:
    return false;
  }

  return false;
}

bool HexagonDAGToDAGISel::isValueExtension(const SDValue &Val,
      unsigned FromBits, SDValue &Src) {
  unsigned Opc = Val.getOpcode();
  switch (Opc) {
  case ISD::SIGN_EXTEND:
  case ISD::ZERO_EXTEND:
  case ISD::ANY_EXTEND: {
    SDValue const &Op0 = Val.getOperand(0);
    EVT T = Op0.getValueType();
    if (T.isInteger() && T.getSizeInBits() == FromBits) {
      Src = Op0;
      return true;
    }
    break;
  }
  case ISD::SIGN_EXTEND_INREG:
  case ISD::AssertSext:
  case ISD::AssertZext:
    if (Val.getOperand(0).getValueType().isInteger()) {
      VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
      if (T->getVT().getSizeInBits() == FromBits) {
        Src = Val.getOperand(0);
        return true;
      }
    }
    break;
  case ISD::AND: {
    // Check if this is an AND with "FromBits" of lower bits set to 1.
    uint64_t FromMask = (1 << FromBits) - 1;
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
      if (C->getZExtValue() == FromMask) {
        Src = Val.getOperand(1);
        return true;
      }
    }
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
      if (C->getZExtValue() == FromMask) {
        Src = Val.getOperand(0);
        return true;
      }
    }
    break;
  }
  case ISD::OR:
  case ISD::XOR: {
    // OR/XOR with the lower "FromBits" bits set to 0.
    uint64_t FromMask = (1 << FromBits) - 1;
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
      if ((C->getZExtValue() & FromMask) == 0) {
        Src = Val.getOperand(1);
        return true;
      }
    }
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
      if ((C->getZExtValue() & FromMask) == 0) {
        Src = Val.getOperand(0);
        return true;
      }
    }
  }
  default:
    break;
  }
  return false;
}