aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp
blob: 33e7c81904f02642f98693f5c356bdbce72c222e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
//===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
//
//===----------------------------------------------------------------------===//

#include "HexagonMCInstrInfo.h"
#include "HexagonBaseInfo.h"

namespace llvm {
void HexagonMCInstrInfo::AppendImplicitOperands(MCInst &MCI) {
  MCI.addOperand(MCOperand::CreateImm(0));
  MCI.addOperand(MCOperand::CreateInst(nullptr));
}

unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII,
                                         MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}

// Return constant extended operand number.
unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII,
                                                MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}

MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
                                               MCInst const &MCI) {
  return (MCII.get(MCI.getOpcode()));
}

std::bitset<16> HexagonMCInstrInfo::GetImplicitBits(MCInst const &MCI) {
  SanityCheckImplicitOperands(MCI);
  std::bitset<16> Bits(MCI.getOperand(MCI.getNumOperands() - 2).getImm());
  return Bits;
}

// Return the max value that a constant extendable operand can have
// without being extended.
int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
                                    MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  unsigned isSigned =
      (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
  unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;

  if (isSigned) // if value is signed
    return ~(-1U << (bits - 1));
  else
    return ~(-1U << bits);
}

// Return the min value that a constant extendable operand can have
// without being extended.
int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
                                    MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  unsigned isSigned =
      (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
  unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;

  if (isSigned) // if value is signed
    return -1U << (bits - 1);
  else
    return 0;
}

// Return the operand that consumes or produces a new value.
MCOperand const &HexagonMCInstrInfo::getNewValue(MCInstrInfo const &MCII,
                                                 MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  unsigned const O =
      (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask;
  MCOperand const &MCO = MCI.getOperand(O);

  assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
          HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
         MCO.isReg());
  return (MCO);
}

// Return the Hexagon ISA class for the insn.
unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
                                     MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;

  return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
}

// Return whether the instruction is a legal new-value producer.
bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
                                     MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
}

// Return whether the insn is an actual insn.
bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
  return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
          !HexagonMCInstrInfo::isPrefix(MCII, MCI) &&
          HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
}

// Return whether the instruction needs to be constant extended.
// 1) Always return true if the instruction has 'isExtended' flag set.
//
// isExtendable:
// 2) For immediate extended operands, return true only if the value is
//    out-of-range.
// 3) For global address, always return true.

bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
                                         MCInst const &MCI) {
  if (HexagonMCInstrInfo::isExtended(MCII, MCI))
    return true;

  if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
    return false;

  short ExtOpNum = HexagonMCInstrInfo::getCExtOpNum(MCII, MCI);
  int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
  int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
  MCOperand const &MO = MCI.getOperand(ExtOpNum);

  // We could be using an instruction with an extendable immediate and shoehorn
  // a global address into it. If it is a global address it will be constant
  // extended. We do this for COMBINE.
  // We currently only handle isGlobal() because it is the only kind of
  // object we are going to end up with here for now.
  // In the future we probably should add isSymbol(), etc.
  if (MO.isExpr())
    return true;

  // If the extendable operand is not 'Immediate' type, the instruction should
  // have 'isExtended' flag set.
  assert(MO.isImm() && "Extendable operand must be Immediate type");

  int ImmValue = MO.getImm();
  return (ImmValue < MinValue || ImmValue > MaxValue);
}

// Return true if the instruction may be extended based on the operand value.
bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
                                      MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
}

// Return whether the instruction must be always extended.
bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
                                    MCInst const &MCI) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
}

// Return whether the insn is a new-value consumer.
bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
                                    MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}

// Return whether the operand can be constant extended.
bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII,
                                           MCInst const &MCI,
                                           unsigned short OperandNum) {
  uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) ==
         OperandNum;
}

bool HexagonMCInstrInfo::isPacketBegin(MCInst const &MCI) {
  std::bitset<16> Bits(GetImplicitBits(MCI));
  return Bits.test(packetBeginIndex);
}

bool HexagonMCInstrInfo::isPacketEnd(MCInst const &MCI) {
  std::bitset<16> Bits(GetImplicitBits(MCI));
  return Bits.test(packetEndIndex);
}

// Return whether the insn is a prefix.
bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
  return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX);
}

// Return whether the insn is solo, i.e., cannot be in a packet.
bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
  const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
  return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
}

void HexagonMCInstrInfo::resetPacket(MCInst &MCI) {
  setPacketBegin(MCI, false);
  setPacketEnd(MCI, false);
}

void HexagonMCInstrInfo::SetImplicitBits(MCInst &MCI, std::bitset<16> Bits) {
  SanityCheckImplicitOperands(MCI);
  MCI.getOperand(MCI.getNumOperands() - 2).setImm(Bits.to_ulong());
}

void HexagonMCInstrInfo::setPacketBegin(MCInst &MCI, bool f) {
  std::bitset<16> Bits(GetImplicitBits(MCI));
  Bits.set(packetBeginIndex, f);
  SetImplicitBits(MCI, Bits);
}

void HexagonMCInstrInfo::setPacketEnd(MCInst &MCI, bool f) {
  std::bitset<16> Bits(GetImplicitBits(MCI));
  Bits.set(packetEndIndex, f);
  SetImplicitBits(MCI, Bits);
}
}