aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/IA64/IA64ISelDAGToDAG.cpp
blob: 8173e96ccbfc9c6b2f37daaf20d8fa3c2cf63b40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
//===---- IA64ISelDAGToDAG.cpp - IA64 pattern matching inst selector ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for IA64,
// converting a legalized dag to an IA64 dag.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "ia64-codegen"
#include "IA64.h"
#include "IA64TargetMachine.h"
#include "IA64ISelLowering.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <queue>
#include <set>
using namespace llvm;

namespace {
  //===--------------------------------------------------------------------===//
  /// IA64DAGToDAGISel - IA64 specific code to select IA64 machine
  /// instructions for SelectionDAG operations.
  ///
  class IA64DAGToDAGISel : public SelectionDAGISel {
    IA64TargetLowering IA64Lowering;
    unsigned GlobalBaseReg;
  public:
    explicit IA64DAGToDAGISel(IA64TargetMachine &TM)
      : SelectionDAGISel(IA64Lowering), IA64Lowering(*TM.getTargetLowering()) {}
    
    virtual bool runOnFunction(Function &Fn) {
      // Make sure we re-emit a set of the global base reg if necessary
      GlobalBaseReg = 0;
      return SelectionDAGISel::runOnFunction(Fn);
    }
 
    /// getI64Imm - Return a target constant with the specified value, of type
    /// i64.
    inline SDValue getI64Imm(uint64_t Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i64);
    }

    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    /// base register.  Return the virtual register that holds this value.
    // SDValue getGlobalBaseReg(); TODO: hmm
    
    // Select - Convert the specified operand from a target-independent to a
    // target-specific node if it hasn't already been changed.
    SDNode *Select(SDValue N);
    
    SDNode *SelectIntImmediateExpr(SDValue LHS, SDValue RHS,
                                   unsigned OCHi, unsigned OCLo,
                                   bool IsArithmetic = false,
                                   bool Negate = false);
    SDNode *SelectBitfieldInsert(SDNode *N);

    /// SelectCC - Select a comparison of the specified values with the
    /// specified condition code, returning the CR# of the expression.
    SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC);

    /// SelectAddr - Given the specified address, return the two operands for a
    /// load/store instruction, and return true if it should be an indexed [r+r]
    /// operation.
    bool SelectAddr(SDValue Addr, SDValue &Op1, SDValue &Op2);

    /// InstructionSelect - This callback is invoked by
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
    virtual void InstructionSelect(SelectionDAG &DAG);
    
    virtual const char *getPassName() const {
      return "IA64 (Itanium) DAG->DAG Instruction Selector";
    } 

// Include the pieces autogenerated from the target description.
#include "IA64GenDAGISel.inc"
    
private:
    SDNode *SelectDIV(SDValue Op);
  };
}

/// InstructionSelect - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void IA64DAGToDAGISel::InstructionSelect(SelectionDAG &DAG) {
  DEBUG(BB->dump());

  // Select target instructions for the DAG.
  SelectRoot();
  DAG.RemoveDeadNodes();
}

SDNode *IA64DAGToDAGISel::SelectDIV(SDValue Op) {
  SDNode *N = Op.Val;
  SDValue Chain = N->getOperand(0);
  SDValue Tmp1 = N->getOperand(0);
  SDValue Tmp2 = N->getOperand(1);
  AddToISelQueue(Chain);

  AddToISelQueue(Tmp1);
  AddToISelQueue(Tmp2);

  bool isFP=false;

  if(Tmp1.getValueType().isFloatingPoint())
    isFP=true;
    
  bool isModulus=false; // is it a division or a modulus?
  bool isSigned=false;

  switch(N->getOpcode()) {
    case ISD::FDIV:
    case ISD::SDIV:  isModulus=false; isSigned=true;  break;
    case ISD::UDIV:  isModulus=false; isSigned=false; break;
    case ISD::FREM:
    case ISD::SREM:  isModulus=true;  isSigned=true;  break;
    case ISD::UREM:  isModulus=true;  isSigned=false; break;
  }

  // TODO: check for integer divides by powers of 2 (or other simple patterns?)

    SDValue TmpPR, TmpPR2;
    SDValue TmpF1, TmpF2, TmpF3, TmpF4, TmpF5, TmpF6, TmpF7, TmpF8;
    SDValue TmpF9, TmpF10,TmpF11,TmpF12,TmpF13,TmpF14,TmpF15;
    SDNode *Result;

    // we'll need copies of F0 and F1
    SDValue F0 = CurDAG->getRegister(IA64::F0, MVT::f64);
    SDValue F1 = CurDAG->getRegister(IA64::F1, MVT::f64);
    
    // OK, emit some code:

    if(!isFP) {
      // first, load the inputs into FP regs.
      TmpF1 =
        SDValue(CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp1), 0);
      Chain = TmpF1.getValue(1);
      TmpF2 =
        SDValue(CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp2), 0);
      Chain = TmpF2.getValue(1);
      
      // next, convert the inputs to FP
      if(isSigned) {
        TmpF3 =
          SDValue(CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF1), 0);
        Chain = TmpF3.getValue(1);
        TmpF4 =
          SDValue(CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF2), 0);
        Chain = TmpF4.getValue(1);
      } else { // is unsigned
        TmpF3 =
          SDValue(CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF1), 0);
        Chain = TmpF3.getValue(1);
        TmpF4 =
          SDValue(CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF2), 0);
        Chain = TmpF4.getValue(1);
      }

    } else { // this is an FP divide/remainder, so we 'leak' some temp
             // regs and assign TmpF3=Tmp1, TmpF4=Tmp2
      TmpF3=Tmp1;
      TmpF4=Tmp2;
    }

    // we start by computing an approximate reciprocal (good to 9 bits?)
    // note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate)
    if(isFP)
      TmpF5 = SDValue(CurDAG->getTargetNode(IA64::FRCPAS0, MVT::f64, MVT::i1,
                                              TmpF3, TmpF4), 0);
    else
      TmpF5 = SDValue(CurDAG->getTargetNode(IA64::FRCPAS1, MVT::f64, MVT::i1,
                                              TmpF3, TmpF4), 0);
                                  
    TmpPR = TmpF5.getValue(1);
    Chain = TmpF5.getValue(2);

    SDValue minusB;
    if(isModulus) { // for remainders, it'll be handy to have
                             // copies of -input_b
      minusB = SDValue(CurDAG->getTargetNode(IA64::SUB, MVT::i64,
                  CurDAG->getRegister(IA64::r0, MVT::i64), Tmp2), 0);
      Chain = minusB.getValue(1);
    }
    
    SDValue TmpE0, TmpY1, TmpE1, TmpY2;

    SDValue OpsE0[] = { TmpF4, TmpF5, F1, TmpPR };
    TmpE0 = SDValue(CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64,
                                            OpsE0, 4), 0);
    Chain = TmpE0.getValue(1);
    SDValue OpsY1[] = { TmpF5, TmpE0, TmpF5, TmpPR };
    TmpY1 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
                                            OpsY1, 4), 0);
    Chain = TmpY1.getValue(1);
    SDValue OpsE1[] = { TmpE0, TmpE0, F0, TmpPR };
    TmpE1 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
                                            OpsE1, 4), 0);
    Chain = TmpE1.getValue(1);
    SDValue OpsY2[] = { TmpY1, TmpE1, TmpY1, TmpPR };
    TmpY2 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
                                            OpsY2, 4), 0);
    Chain = TmpY2.getValue(1);
    
    if(isFP) { // if this is an FP divide, we finish up here and exit early
      if(isModulus)
        assert(0 && "Sorry, try another FORTRAN compiler.");
 
      SDValue TmpE2, TmpY3, TmpQ0, TmpR0;

      SDValue OpsE2[] = { TmpE1, TmpE1, F0, TmpPR };
      TmpE2 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
                                              OpsE2, 4), 0);
      Chain = TmpE2.getValue(1);
      SDValue OpsY3[] = { TmpY2, TmpE2, TmpY2, TmpPR };
      TmpY3 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
                                              OpsY3, 4), 0);
      Chain = TmpY3.getValue(1);
      SDValue OpsQ0[] = { Tmp1, TmpY3, F0, TmpPR };
      TmpQ0 =
        SDValue(CurDAG->getTargetNode(IA64::CFMADS1, MVT::f64, // double prec!
                                        OpsQ0, 4), 0);
      Chain = TmpQ0.getValue(1);
      SDValue OpsR0[] = { Tmp2, TmpQ0, Tmp1, TmpPR };
      TmpR0 =
        SDValue(CurDAG->getTargetNode(IA64::CFNMADS1, MVT::f64, // double prec!
                                        OpsR0, 4), 0);
      Chain = TmpR0.getValue(1);

// we want Result to have the same target register as the frcpa, so
// we two-address hack it. See the comment "for this to work..." on
// page 48 of Intel application note #245415
      SDValue Ops[] = { TmpF5, TmpY3, TmpR0, TmpQ0, TmpPR };
      Result = CurDAG->getTargetNode(IA64::TCFMADS0, MVT::f64, // d.p. s0 rndg!
                                     Ops, 5);
      Chain = SDValue(Result, 1);
      return Result; // XXX: early exit!
    } else { // this is *not* an FP divide, so there's a bit left to do:
    
      SDValue TmpQ2, TmpR2, TmpQ3, TmpQ;

      SDValue OpsQ2[] = { TmpF3, TmpY2, F0, TmpPR };
      TmpQ2 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64,
                                              OpsQ2, 4), 0);
      Chain = TmpQ2.getValue(1);
      SDValue OpsR2[] = { TmpF4, TmpQ2, TmpF3, TmpPR };
      TmpR2 = SDValue(CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64,
                                              OpsR2, 4), 0);
      Chain = TmpR2.getValue(1);
      
// we want TmpQ3 to have the same target register as the frcpa? maybe we
// should two-address hack it. See the comment "for this to work..." on page
// 48 of Intel application note #245415
      SDValue OpsQ3[] = { TmpF5, TmpR2, TmpY2, TmpQ2, TmpPR };
      TmpQ3 = SDValue(CurDAG->getTargetNode(IA64::TCFMAS1, MVT::f64,
                                         OpsQ3, 5), 0);
      Chain = TmpQ3.getValue(1);

      // STORY: without these two-address instructions (TCFMAS1 and TCFMADS0)
      // the FPSWA won't be able to help out in the case of large/tiny
      // arguments. Other fun bugs may also appear, e.g. 0/x = x, not 0.
      
      if(isSigned)
        TmpQ = SDValue(CurDAG->getTargetNode(IA64::FCVTFXTRUNCS1,
                                               MVT::f64, TmpQ3), 0);
      else
        TmpQ = SDValue(CurDAG->getTargetNode(IA64::FCVTFXUTRUNCS1,
                                               MVT::f64, TmpQ3), 0);
      
      Chain = TmpQ.getValue(1);

      if(isModulus) {
        SDValue FPminusB =
          SDValue(CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, minusB), 0);
        Chain = FPminusB.getValue(1);
        SDValue Remainder =
          SDValue(CurDAG->getTargetNode(IA64::XMAL, MVT::f64,
                                          TmpQ, FPminusB, TmpF1), 0);
        Chain = Remainder.getValue(1);
        Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, Remainder);
        Chain = SDValue(Result, 1);
      } else { // just an integer divide
        Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, TmpQ);
        Chain = SDValue(Result, 1);
      }

      return Result;
    } // wasn't an FP divide
}

// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDNode *IA64DAGToDAGISel::Select(SDValue Op) {
  SDNode *N = Op.Val;
  if (N->isMachineOpcode())
    return NULL;   // Already selected.

  switch (N->getOpcode()) {
  default: break;

  case IA64ISD::BRCALL: { // XXX: this is also a hack!
    SDValue Chain = N->getOperand(0);
    SDValue InFlag;  // Null incoming flag value.

    AddToISelQueue(Chain);
    if(N->getNumOperands()==3) { // we have an incoming chain, callee and flag
      InFlag = N->getOperand(2);
      AddToISelQueue(InFlag);
    }

    unsigned CallOpcode;
    SDValue CallOperand;
    
    // if we can call directly, do so
    if (GlobalAddressSDNode *GASD =
      dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
      CallOpcode = IA64::BRCALL_IPREL_GA;
      CallOperand = CurDAG->getTargetGlobalAddress(GASD->getGlobal(), MVT::i64);
    } else if (isa<ExternalSymbolSDNode>(N->getOperand(1))) {
      // FIXME: we currently NEED this case for correctness, to avoid
      // "non-pic code with imm reloc.n against dynamic symbol" errors
    CallOpcode = IA64::BRCALL_IPREL_ES;
    CallOperand = N->getOperand(1);
  } else {
    // otherwise we need to load the function descriptor,
    // load the branch target (function)'s entry point and GP,
    // branch (call) then restore the GP
    SDValue FnDescriptor = N->getOperand(1);
    AddToISelQueue(FnDescriptor);
   
    // load the branch target's entry point [mem] and 
    // GP value [mem+8]
    SDValue targetEntryPoint=
      SDValue(CurDAG->getTargetNode(IA64::LD8, MVT::i64, MVT::Other,
                                      FnDescriptor, CurDAG->getEntryNode()), 0);
    Chain = targetEntryPoint.getValue(1);
    SDValue targetGPAddr=
      SDValue(CurDAG->getTargetNode(IA64::ADDS, MVT::i64, 
                                      FnDescriptor,
                                      CurDAG->getConstant(8, MVT::i64)), 0);
    Chain = targetGPAddr.getValue(1);
    SDValue targetGP =
      SDValue(CurDAG->getTargetNode(IA64::LD8, MVT::i64,MVT::Other,
                                      targetGPAddr, CurDAG->getEntryNode()), 0);
    Chain = targetGP.getValue(1);

    Chain = CurDAG->getCopyToReg(Chain, IA64::r1, targetGP, InFlag);
    InFlag = Chain.getValue(1);
    Chain = CurDAG->getCopyToReg(Chain, IA64::B6, targetEntryPoint, InFlag); // FLAG these?
    InFlag = Chain.getValue(1);
    
    CallOperand = CurDAG->getRegister(IA64::B6, MVT::i64);
    CallOpcode = IA64::BRCALL_INDIRECT;
  }
 
   // Finally, once everything is setup, emit the call itself
   if(InFlag.Val)
     Chain = SDValue(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
                                             CallOperand, InFlag), 0);
   else // there might be no arguments
     Chain = SDValue(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
                                             CallOperand, Chain), 0);
   InFlag = Chain.getValue(1);

   std::vector<SDValue> CallResults;

   CallResults.push_back(Chain);
   CallResults.push_back(InFlag);

   for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
     ReplaceUses(Op.getValue(i), CallResults[i]);
   return NULL;
  }
  
  case IA64ISD::GETFD: {
    SDValue Input = N->getOperand(0);
    AddToISelQueue(Input);
    return CurDAG->getTargetNode(IA64::GETFD, MVT::i64, Input);
  } 
  
  case ISD::FDIV:
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::SREM:
  case ISD::UREM:
    return SelectDIV(Op);
 
  case ISD::TargetConstantFP: {
    SDValue Chain = CurDAG->getEntryNode(); // this is a constant, so..

    SDValue V;
    ConstantFPSDNode* N2 = cast<ConstantFPSDNode>(N);
    if (N2->getValueAPF().isPosZero()) {
      V = CurDAG->getCopyFromReg(Chain, IA64::F0, MVT::f64);
    } else if (N2->isExactlyValue(N2->getValueType(0) == MVT::f32 ? 
                                  APFloat(+1.0f) : APFloat(+1.0))) {
      V = CurDAG->getCopyFromReg(Chain, IA64::F1, MVT::f64);
    } else
      assert(0 && "Unexpected FP constant!");
    
    ReplaceUses(SDValue(N, 0), V);
    return 0;
  }

  case ISD::FrameIndex: { // TODO: reduce creepyness
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
    if (N->hasOneUse())
      return CurDAG->SelectNodeTo(N, IA64::MOV, MVT::i64,
                                  CurDAG->getTargetFrameIndex(FI, MVT::i64));
    else
      return CurDAG->getTargetNode(IA64::MOV, MVT::i64,
                                   CurDAG->getTargetFrameIndex(FI, MVT::i64));
  }

  case ISD::ConstantPool: { // TODO: nuke the constant pool
    // (ia64 doesn't need one)
    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
    Constant *C = CP->getConstVal();
    SDValue CPI = CurDAG->getTargetConstantPool(C, MVT::i64,
                                                  CP->getAlignment());
    return CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64, // ?
                                 CurDAG->getRegister(IA64::r1, MVT::i64), CPI);
  }

  case ISD::GlobalAddress: {
    GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
    SDValue GA = CurDAG->getTargetGlobalAddress(GV, MVT::i64);
    SDValue Tmp =
      SDValue(CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64, 
                                      CurDAG->getRegister(IA64::r1,
                                                          MVT::i64), GA), 0);
    return CurDAG->getTargetNode(IA64::LD8, MVT::i64, MVT::Other, Tmp,
                                 CurDAG->getEntryNode());
  }
  
/* XXX
   case ISD::ExternalSymbol: {
     SDValue EA = CurDAG->getTargetExternalSymbol(
       cast<ExternalSymbolSDNode>(N)->getSymbol(),
       MVT::i64);
     SDValue Tmp = CurDAG->getTargetNode(IA64::ADDL_EA, MVT::i64, 
                                           CurDAG->getRegister(IA64::r1,
                                                               MVT::i64),
                                           EA);
     return CurDAG->getTargetNode(IA64::LD8, MVT::i64, Tmp);
   }
*/

  case ISD::LOAD: { // FIXME: load -1, not 1, for bools?
    LoadSDNode *LD = cast<LoadSDNode>(N);
    SDValue Chain = LD->getChain();
    SDValue Address = LD->getBasePtr();
    AddToISelQueue(Chain);
    AddToISelQueue(Address);

    MVT TypeBeingLoaded = LD->getMemoryVT();
    unsigned Opc;
    switch (TypeBeingLoaded.getSimpleVT()) {
    default:
#ifndef NDEBUG
      N->dump(CurDAG);
#endif
      assert(0 && "Cannot load this type!");
    case MVT::i1: { // this is a bool
      Opc = IA64::LD1; // first we load a byte, then compare for != 0
      if(N->getValueType(0) == MVT::i1) { // XXX: early exit!
        return CurDAG->SelectNodeTo(N, IA64::CMPNE, MVT::i1, MVT::Other, 
                    SDValue(CurDAG->getTargetNode(Opc, MVT::i64, Address), 0),
                                    CurDAG->getRegister(IA64::r0, MVT::i64), 
                                    Chain);
      }
      /* otherwise, we want to load a bool into something bigger: LD1
         will do that for us, so we just fall through */
    }
    case MVT::i8:  Opc = IA64::LD1; break;
    case MVT::i16: Opc = IA64::LD2; break;
    case MVT::i32: Opc = IA64::LD4; break;
    case MVT::i64: Opc = IA64::LD8; break;
    
    case MVT::f32: Opc = IA64::LDF4; break;
    case MVT::f64: Opc = IA64::LDF8; break;
    }

    // TODO: comment this
    return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
                                Address, Chain);
  }
  
  case ISD::STORE: {
    StoreSDNode *ST = cast<StoreSDNode>(N);
    SDValue Address = ST->getBasePtr();
    SDValue Chain = ST->getChain();
    AddToISelQueue(Address);
    AddToISelQueue(Chain);
   
    unsigned Opc;
    if (ISD::isNON_TRUNCStore(N)) {
      switch (N->getOperand(1).getValueType().getSimpleVT()) {
      default: assert(0 && "unknown type in store");
      case MVT::i1: { // this is a bool
        Opc = IA64::ST1; // we store either 0 or 1 as a byte 
        // first load zero!
        SDValue Initial = CurDAG->getCopyFromReg(Chain, IA64::r0, MVT::i64);
        Chain = Initial.getValue(1);
        // then load 1 into the same reg iff the predicate to store is 1
        SDValue Tmp = ST->getValue();
        AddToISelQueue(Tmp);
        Tmp =
          SDValue(CurDAG->getTargetNode(IA64::TPCADDS, MVT::i64, Initial,
                                          CurDAG->getTargetConstant(1, MVT::i64),
                                          Tmp), 0);
        return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Address, Tmp, Chain);
      }
      case MVT::i64: Opc = IA64::ST8;  break;
      case MVT::f64: Opc = IA64::STF8; break;
      }
    } else { // Truncating store
      switch(ST->getMemoryVT().getSimpleVT()) {
      default: assert(0 && "unknown type in truncstore");
      case MVT::i8:  Opc = IA64::ST1;  break;
      case MVT::i16: Opc = IA64::ST2;  break;
      case MVT::i32: Opc = IA64::ST4;  break;
      case MVT::f32: Opc = IA64::STF4; break;
      }
    }
    
    SDValue N1 = N->getOperand(1);
    SDValue N2 = N->getOperand(2);
    AddToISelQueue(N1);
    AddToISelQueue(N2);
    return CurDAG->SelectNodeTo(N, Opc, MVT::Other, N2, N1, Chain);
  }

  case ISD::BRCOND: {
    SDValue Chain = N->getOperand(0);
    SDValue CC = N->getOperand(1);
    AddToISelQueue(Chain);
    AddToISelQueue(CC);
    MachineBasicBlock *Dest =
      cast<BasicBlockSDNode>(N->getOperand(2))->getBasicBlock();
    //FIXME - we do NOT need long branches all the time
    return CurDAG->SelectNodeTo(N, IA64::BRLCOND_NOTCALL, MVT::Other, CC, 
                                CurDAG->getBasicBlock(Dest), Chain);
  }

  case ISD::CALLSEQ_START:
  case ISD::CALLSEQ_END: {
    int64_t Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue();
    unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ?
      IA64::ADJUSTCALLSTACKDOWN : IA64::ADJUSTCALLSTACKUP;
    SDValue N0 = N->getOperand(0);
    AddToISelQueue(N0);
    return CurDAG->SelectNodeTo(N, Opc, MVT::Other, getI64Imm(Amt), N0);
  }

  case ISD::BR:
    // FIXME: we don't need long branches all the time!
    SDValue N0 = N->getOperand(0);
    AddToISelQueue(N0);
    return CurDAG->SelectNodeTo(N, IA64::BRL_NOTCALL, MVT::Other, 
                                N->getOperand(1), N0);
  }
  
  return SelectCode(Op);
}


/// createIA64DAGToDAGInstructionSelector - This pass converts a legalized DAG
/// into an IA64-specific DAG, ready for instruction scheduling.
///
FunctionPass
*llvm::createIA64DAGToDAGInstructionSelector(IA64TargetMachine &TM) {
  return new IA64DAGToDAGISel(TM);
}