1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
|
//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes Mips64 instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Unsigned Operand
def uimm5_64 : Operand<i64> {
let PrintMethod = "printUnsignedImm";
}
def uimm16_64 : Operand<i64> {
let PrintMethod = "printUnsignedImm";
}
// Signed Operand
def simm10_64 : Operand<i64>;
def imm64: Operand<i64>;
// Transformation Function - get Imm - 32.
def Subtract32 : SDNodeXForm<imm, [{
return getImm(N, (unsigned)N->getZExtValue() - 32);
}]>;
// shamt must fit in 6 bits.
def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>;
// Node immediate fits as 10-bit sign extended on target immediate.
// e.g. seqi, snei
def immSExt10_64 : PatLeaf<(i64 imm),
[{ return isInt<10>(N->getSExtValue()); }]>;
def immZExt16_64 : PatLeaf<(i64 imm),
[{ return isInt<16>(N->getZExtValue()); }]>;
def immZExt5_64 : ImmLeaf<i64, [{ return Imm == (Imm & 0x1f); }]>;
// Transformation function: get log2 of low 32 bits of immediate
def Log2LO : SDNodeXForm<imm, [{
return getImm(N, Log2_64((unsigned) N->getZExtValue()));
}]>;
// Transformation function: get log2 of high 32 bits of immediate
def Log2HI : SDNodeXForm<imm, [{
return getImm(N, Log2_64((unsigned) (N->getZExtValue() >> 32)));
}]>;
// Predicate: True if immediate is a power of 2 and fits 32 bits
def PowerOf2LO : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i64) {
uint64_t Imm = N->getZExtValue();
return isPowerOf2_64(Imm) && (Imm & 0xffffffff) == Imm;
}
else
return false;
}]>;
// Predicate: True if immediate is a power of 2 and exceeds 32 bits
def PowerOf2HI : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i64) {
uint64_t Imm = N->getZExtValue();
return isPowerOf2_64(Imm) && (Imm & 0xffffffff00000000) == Imm;
}
else
return false;
}]>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
let usesCustomInserter = 1 in {
def ATOMIC_LOAD_ADD_I64 : Atomic2Ops<atomic_load_add_64, GPR64>;
def ATOMIC_LOAD_SUB_I64 : Atomic2Ops<atomic_load_sub_64, GPR64>;
def ATOMIC_LOAD_AND_I64 : Atomic2Ops<atomic_load_and_64, GPR64>;
def ATOMIC_LOAD_OR_I64 : Atomic2Ops<atomic_load_or_64, GPR64>;
def ATOMIC_LOAD_XOR_I64 : Atomic2Ops<atomic_load_xor_64, GPR64>;
def ATOMIC_LOAD_NAND_I64 : Atomic2Ops<atomic_load_nand_64, GPR64>;
def ATOMIC_SWAP_I64 : Atomic2Ops<atomic_swap_64, GPR64>;
def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap<atomic_cmp_swap_64, GPR64>;
}
/// Pseudo instructions for loading and storing accumulator registers.
let isPseudo = 1, isCodeGenOnly = 1 in {
def LOAD_ACC128 : Load<"", ACC128>;
def STORE_ACC128 : Store<"", ACC128>;
}
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
let DecoderNamespace = "Mips64" in {
/// Arithmetic Instructions (ALU Immediate)
def DADDi : ArithLogicI<"daddi", simm16_64, GPR64Opnd>, ADDI_FM<0x18>,
ISA_MIPS3_NOT_32R6_64R6;
def DADDiu : ArithLogicI<"daddiu", simm16_64, GPR64Opnd, II_DADDIU,
immSExt16, add>,
ADDI_FM<0x19>, IsAsCheapAsAMove, ISA_MIPS3;
let isCodeGenOnly = 1 in {
def SLTi64 : SetCC_I<"slti", setlt, simm16_64, immSExt16, GPR64Opnd>,
SLTI_FM<0xa>;
def SLTiu64 : SetCC_I<"sltiu", setult, simm16_64, immSExt16, GPR64Opnd>,
SLTI_FM<0xb>;
def ANDi64 : ArithLogicI<"andi", uimm16_64, GPR64Opnd, II_AND, immZExt16, and>,
ADDI_FM<0xc>;
def ORi64 : ArithLogicI<"ori", uimm16_64, GPR64Opnd, II_OR, immZExt16, or>,
ADDI_FM<0xd>;
def XORi64 : ArithLogicI<"xori", uimm16_64, GPR64Opnd, II_XOR, immZExt16, xor>,
ADDI_FM<0xe>;
def LUi64 : LoadUpper<"lui", GPR64Opnd, uimm16_64>, LUI_FM;
}
/// Arithmetic Instructions (3-Operand, R-Type)
def DADD : ArithLogicR<"dadd", GPR64Opnd, 1, II_DADD>, ADD_FM<0, 0x2c>,
ISA_MIPS3;
def DADDu : ArithLogicR<"daddu", GPR64Opnd, 1, II_DADDU, add>, ADD_FM<0, 0x2d>,
ISA_MIPS3;
def DSUBu : ArithLogicR<"dsubu", GPR64Opnd, 0, II_DSUBU, sub>, ADD_FM<0, 0x2f>,
ISA_MIPS3;
def DSUB : ArithLogicR<"dsub", GPR64Opnd, 0, II_DSUB>, ADD_FM<0, 0x2e>,
ISA_MIPS3;
let isCodeGenOnly = 1 in {
def SLT64 : SetCC_R<"slt", setlt, GPR64Opnd>, ADD_FM<0, 0x2a>;
def SLTu64 : SetCC_R<"sltu", setult, GPR64Opnd>, ADD_FM<0, 0x2b>;
def AND64 : ArithLogicR<"and", GPR64Opnd, 1, II_AND, and>, ADD_FM<0, 0x24>;
def OR64 : ArithLogicR<"or", GPR64Opnd, 1, II_OR, or>, ADD_FM<0, 0x25>;
def XOR64 : ArithLogicR<"xor", GPR64Opnd, 1, II_XOR, xor>, ADD_FM<0, 0x26>;
def NOR64 : LogicNOR<"nor", GPR64Opnd>, ADD_FM<0, 0x27>;
}
/// Shift Instructions
def DSLL : shift_rotate_imm<"dsll", uimm6, GPR64Opnd, II_DSLL, shl, immZExt6>,
SRA_FM<0x38, 0>, ISA_MIPS3;
def DSRL : shift_rotate_imm<"dsrl", uimm6, GPR64Opnd, II_DSRL, srl, immZExt6>,
SRA_FM<0x3a, 0>, ISA_MIPS3;
def DSRA : shift_rotate_imm<"dsra", uimm6, GPR64Opnd, II_DSRA, sra, immZExt6>,
SRA_FM<0x3b, 0>, ISA_MIPS3;
def DSLLV : shift_rotate_reg<"dsllv", GPR64Opnd, II_DSLLV, shl>,
SRLV_FM<0x14, 0>, ISA_MIPS3;
def DSRLV : shift_rotate_reg<"dsrlv", GPR64Opnd, II_DSRLV, srl>,
SRLV_FM<0x16, 0>, ISA_MIPS3;
def DSRAV : shift_rotate_reg<"dsrav", GPR64Opnd, II_DSRAV, sra>,
SRLV_FM<0x17, 0>, ISA_MIPS3;
def DSLL32 : shift_rotate_imm<"dsll32", uimm5, GPR64Opnd, II_DSLL32>,
SRA_FM<0x3c, 0>, ISA_MIPS3;
def DSRL32 : shift_rotate_imm<"dsrl32", uimm5, GPR64Opnd, II_DSRL32>,
SRA_FM<0x3e, 0>, ISA_MIPS3;
def DSRA32 : shift_rotate_imm<"dsra32", uimm5, GPR64Opnd, II_DSRA32>,
SRA_FM<0x3f, 0>, ISA_MIPS3;
// Rotate Instructions
def DROTR : shift_rotate_imm<"drotr", uimm6, GPR64Opnd, II_DROTR, rotr,
immZExt6>,
SRA_FM<0x3a, 1>, ISA_MIPS64R2;
def DROTRV : shift_rotate_reg<"drotrv", GPR64Opnd, II_DROTRV, rotr>,
SRLV_FM<0x16, 1>, ISA_MIPS64R2;
def DROTR32 : shift_rotate_imm<"drotr32", uimm5, GPR64Opnd, II_DROTR32>,
SRA_FM<0x3e, 1>, ISA_MIPS64R2;
/// Load and Store Instructions
/// aligned
let isCodeGenOnly = 1 in {
def LB64 : Load<"lb", GPR64Opnd, sextloadi8, II_LB>, LW_FM<0x20>;
def LBu64 : Load<"lbu", GPR64Opnd, zextloadi8, II_LBU>, LW_FM<0x24>;
def LH64 : Load<"lh", GPR64Opnd, sextloadi16, II_LH>, LW_FM<0x21>;
def LHu64 : Load<"lhu", GPR64Opnd, zextloadi16, II_LHU>, LW_FM<0x25>;
def LW64 : Load<"lw", GPR64Opnd, sextloadi32, II_LW>, LW_FM<0x23>;
def SB64 : Store<"sb", GPR64Opnd, truncstorei8, II_SB>, LW_FM<0x28>;
def SH64 : Store<"sh", GPR64Opnd, truncstorei16, II_SH>, LW_FM<0x29>;
def SW64 : Store<"sw", GPR64Opnd, truncstorei32, II_SW>, LW_FM<0x2b>;
}
def LWu : Load<"lwu", GPR64Opnd, zextloadi32, II_LWU>, LW_FM<0x27>, ISA_MIPS3;
def LD : Load<"ld", GPR64Opnd, load, II_LD>, LW_FM<0x37>, ISA_MIPS3;
def SD : Store<"sd", GPR64Opnd, store, II_SD>, LW_FM<0x3f>, ISA_MIPS3;
/// load/store left/right
let isCodeGenOnly = 1 in {
def LWL64 : LoadLeftRight<"lwl", MipsLWL, GPR64Opnd, II_LWL>, LW_FM<0x22>;
def LWR64 : LoadLeftRight<"lwr", MipsLWR, GPR64Opnd, II_LWR>, LW_FM<0x26>;
def SWL64 : StoreLeftRight<"swl", MipsSWL, GPR64Opnd, II_SWL>, LW_FM<0x2a>;
def SWR64 : StoreLeftRight<"swr", MipsSWR, GPR64Opnd, II_SWR>, LW_FM<0x2e>;
}
def LDL : LoadLeftRight<"ldl", MipsLDL, GPR64Opnd, II_LDL>, LW_FM<0x1a>,
ISA_MIPS3_NOT_32R6_64R6;
def LDR : LoadLeftRight<"ldr", MipsLDR, GPR64Opnd, II_LDR>, LW_FM<0x1b>,
ISA_MIPS3_NOT_32R6_64R6;
def SDL : StoreLeftRight<"sdl", MipsSDL, GPR64Opnd, II_SDL>, LW_FM<0x2c>,
ISA_MIPS3_NOT_32R6_64R6;
def SDR : StoreLeftRight<"sdr", MipsSDR, GPR64Opnd, II_SDR>, LW_FM<0x2d>,
ISA_MIPS3_NOT_32R6_64R6;
/// Load-linked, Store-conditional
def LLD : LLBase<"lld", GPR64Opnd>, LW_FM<0x34>, ISA_MIPS3_NOT_32R6_64R6;
def SCD : SCBase<"scd", GPR64Opnd>, LW_FM<0x3c>, ISA_MIPS3_NOT_32R6_64R6;
/// Jump and Branch Instructions
let isCodeGenOnly = 1 in {
def JR64 : IndirectBranch<"jr", GPR64Opnd>, MTLO_FM<8>;
def BEQ64 : CBranch<"beq", brtarget, seteq, GPR64Opnd>, BEQ_FM<4>;
def BNE64 : CBranch<"bne", brtarget, setne, GPR64Opnd>, BEQ_FM<5>;
def BGEZ64 : CBranchZero<"bgez", brtarget, setge, GPR64Opnd>, BGEZ_FM<1, 1>;
def BGTZ64 : CBranchZero<"bgtz", brtarget, setgt, GPR64Opnd>, BGEZ_FM<7, 0>;
def BLEZ64 : CBranchZero<"blez", brtarget, setle, GPR64Opnd>, BGEZ_FM<6, 0>;
def BLTZ64 : CBranchZero<"bltz", brtarget, setlt, GPR64Opnd>, BGEZ_FM<1, 0>;
def JALR64 : JumpLinkReg<"jalr", GPR64Opnd>, JALR_FM;
def JALR64Pseudo : JumpLinkRegPseudo<GPR64Opnd, JALR, RA, GPR32Opnd>;
def TAILCALL64_R : TailCallReg<GPR64Opnd, JR, GPR32Opnd>;
}
def PseudoReturn64 : PseudoReturnBase<GPR64Opnd>;
def PseudoIndirectBranch64 : PseudoIndirectBranchBase<GPR64Opnd>;
/// Multiply and Divide Instructions.
def DMULT : Mult<"dmult", II_DMULT, GPR64Opnd, [HI0_64, LO0_64]>,
MULT_FM<0, 0x1c>, ISA_MIPS3_NOT_32R6_64R6;
def DMULTu : Mult<"dmultu", II_DMULTU, GPR64Opnd, [HI0_64, LO0_64]>,
MULT_FM<0, 0x1d>, ISA_MIPS3_NOT_32R6_64R6;
def PseudoDMULT : MultDivPseudo<DMULT, ACC128, GPR64Opnd, MipsMult,
II_DMULT>, ISA_MIPS3_NOT_32R6_64R6;
def PseudoDMULTu : MultDivPseudo<DMULTu, ACC128, GPR64Opnd, MipsMultu,
II_DMULTU>, ISA_MIPS3_NOT_32R6_64R6;
def DSDIV : Div<"ddiv", II_DDIV, GPR64Opnd, [HI0_64, LO0_64]>,
MULT_FM<0, 0x1e>, ISA_MIPS3_NOT_32R6_64R6;
def DUDIV : Div<"ddivu", II_DDIVU, GPR64Opnd, [HI0_64, LO0_64]>,
MULT_FM<0, 0x1f>, ISA_MIPS3_NOT_32R6_64R6;
def PseudoDSDIV : MultDivPseudo<DSDIV, ACC128, GPR64Opnd, MipsDivRem,
II_DDIV, 0, 1, 1>, ISA_MIPS3_NOT_32R6_64R6;
def PseudoDUDIV : MultDivPseudo<DUDIV, ACC128, GPR64Opnd, MipsDivRemU,
II_DDIVU, 0, 1, 1>, ISA_MIPS3_NOT_32R6_64R6;
let isCodeGenOnly = 1 in {
def MTHI64 : MoveToLOHI<"mthi", GPR64Opnd, [HI0_64]>, MTLO_FM<0x11>,
ISA_MIPS3_NOT_32R6_64R6;
def MTLO64 : MoveToLOHI<"mtlo", GPR64Opnd, [LO0_64]>, MTLO_FM<0x13>,
ISA_MIPS3_NOT_32R6_64R6;
def MFHI64 : MoveFromLOHI<"mfhi", GPR64Opnd, AC0_64>, MFLO_FM<0x10>,
ISA_MIPS3_NOT_32R6_64R6;
def MFLO64 : MoveFromLOHI<"mflo", GPR64Opnd, AC0_64>, MFLO_FM<0x12>,
ISA_MIPS3_NOT_32R6_64R6;
def PseudoMFHI64 : PseudoMFLOHI<GPR64, ACC128, MipsMFHI>,
ISA_MIPS3_NOT_32R6_64R6;
def PseudoMFLO64 : PseudoMFLOHI<GPR64, ACC128, MipsMFLO>,
ISA_MIPS3_NOT_32R6_64R6;
def PseudoMTLOHI64 : PseudoMTLOHI<ACC128, GPR64>, ISA_MIPS3_NOT_32R6_64R6;
/// Sign Ext In Register Instructions.
def SEB64 : SignExtInReg<"seb", i8, GPR64Opnd, II_SEB>, SEB_FM<0x10, 0x20>,
ISA_MIPS32R2;
def SEH64 : SignExtInReg<"seh", i16, GPR64Opnd, II_SEH>, SEB_FM<0x18, 0x20>,
ISA_MIPS32R2;
}
/// Count Leading
def DCLZ : CountLeading0<"dclz", GPR64Opnd>, CLO_FM<0x24>, ISA_MIPS64_NOT_64R6;
def DCLO : CountLeading1<"dclo", GPR64Opnd>, CLO_FM<0x25>, ISA_MIPS64_NOT_64R6;
/// Double Word Swap Bytes/HalfWords
def DSBH : SubwordSwap<"dsbh", GPR64Opnd>, SEB_FM<2, 0x24>, ISA_MIPS64R2;
def DSHD : SubwordSwap<"dshd", GPR64Opnd>, SEB_FM<5, 0x24>, ISA_MIPS64R2;
def LEA_ADDiu64 : EffectiveAddress<"daddiu", GPR64Opnd>, LW_FM<0x19>;
let isCodeGenOnly = 1 in
def RDHWR64 : ReadHardware<GPR64Opnd, HWRegsOpnd>, RDHWR_FM;
def DEXT : ExtBase<"dext", GPR64Opnd, uimm6, MipsExt>, EXT_FM<3>;
def DEXTU : ExtBase<"dextu", GPR64Opnd, uimm6>, EXT_FM<2>;
def DEXTM : ExtBase<"dextm", GPR64Opnd, uimm5>, EXT_FM<1>;
def DINS : InsBase<"dins", GPR64Opnd, uimm6, MipsIns>, EXT_FM<7>;
def DINSU : InsBase<"dinsu", GPR64Opnd, uimm6>, EXT_FM<6>;
def DINSM : InsBase<"dinsm", GPR64Opnd, uimm5>, EXT_FM<5>;
let isCodeGenOnly = 1, rs = 0, shamt = 0 in {
def DSLL64_32 : FR<0x00, 0x3c, (outs GPR64:$rd), (ins GPR32:$rt),
"dsll\t$rd, $rt, 32", [], II_DSLL>;
def SLL64_32 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR32:$rt),
"sll\t$rd, $rt, 0", [], II_SLL>;
def SLL64_64 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR64:$rt),
"sll\t$rd, $rt, 0", [], II_SLL>;
}
// We need the following pseudo instruction to avoid offset calculation for
// long branches. See the comment in file MipsLongBranch.cpp for detailed
// explanation.
// Expands to: daddiu $dst, $src, %PART($tgt - $baltgt)
// where %PART may be %hi or %lo, depending on the relocation kind
// that $tgt is annotated with.
def LONG_BRANCH_DADDiu : PseudoSE<(outs GPR64Opnd:$dst),
(ins GPR64Opnd:$src, brtarget:$tgt, brtarget:$baltgt), []>;
// Cavium Octeon cmMIPS instructions
let EncodingPredicates = []<Predicate>, // FIXME: The lack of HasStdEnc is probably a bug
AdditionalPredicates = [HasCnMips] in {
class Count1s<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
[(set RO:$rd, (ctpop RO:$rs))], II_POP, FrmR, opstr> {
let TwoOperandAliasConstraint = "$rd = $rs";
}
class ExtsCins<string opstr, SDPatternOperator Op = null_frag>:
InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, uimm5:$pos, uimm5:$lenm1),
!strconcat(opstr, " $rt, $rs, $pos, $lenm1"),
[(set GPR64Opnd:$rt, (Op GPR64Opnd:$rs, imm:$pos, imm:$lenm1))],
NoItinerary, FrmR, opstr> {
let TwoOperandAliasConstraint = "$rt = $rs";
}
class SetCC64_R<string opstr, PatFrag cond_op> :
InstSE<(outs GPR64Opnd:$rd), (ins GPR64Opnd:$rs, GPR64Opnd:$rt),
!strconcat(opstr, "\t$rd, $rs, $rt"),
[(set GPR64Opnd:$rd, (zext (cond_op GPR64Opnd:$rs,
GPR64Opnd:$rt)))],
II_SEQ_SNE, FrmR, opstr> {
let TwoOperandAliasConstraint = "$rd = $rs";
}
class SetCC64_I<string opstr, PatFrag cond_op>:
InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, simm10_64:$imm10),
!strconcat(opstr, "\t$rt, $rs, $imm10"),
[(set GPR64Opnd:$rt, (zext (cond_op GPR64Opnd:$rs,
immSExt10_64:$imm10)))],
II_SEQI_SNEI, FrmI, opstr> {
let TwoOperandAliasConstraint = "$rt = $rs";
}
class CBranchBitNum<string opstr, DAGOperand opnd, PatFrag cond_op,
RegisterOperand RO, bits<64> shift = 1> :
InstSE<(outs), (ins RO:$rs, uimm5_64:$p, opnd:$offset),
!strconcat(opstr, "\t$rs, $p, $offset"),
[(brcond (i32 (cond_op (and RO:$rs, (shl shift, immZExt5_64:$p)), 0)),
bb:$offset)], IIBranch, FrmI, opstr> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
let Defs = [AT];
}
// Unsigned Byte Add
let Pattern = [(set GPR64Opnd:$rd,
(and (add GPR64Opnd:$rs, GPR64Opnd:$rt), 255))] in
def BADDu : ArithLogicR<"baddu", GPR64Opnd, 1, II_BADDU>,
ADD_FM<0x1c, 0x28>;
// Branch on Bit Clear /+32
def BBIT0 : CBranchBitNum<"bbit0", brtarget, seteq, GPR64Opnd>, BBIT_FM<0x32>;
def BBIT032: CBranchBitNum<"bbit032", brtarget, seteq, GPR64Opnd, 0x100000000>,
BBIT_FM<0x36>;
// Branch on Bit Set /+32
def BBIT1 : CBranchBitNum<"bbit1", brtarget, setne, GPR64Opnd>, BBIT_FM<0x3a>;
def BBIT132: CBranchBitNum<"bbit132", brtarget, setne, GPR64Opnd, 0x100000000>,
BBIT_FM<0x3e>;
// Multiply Doubleword to GPR
let Defs = [HI0, LO0, P0, P1, P2] in
def DMUL : ArithLogicR<"dmul", GPR64Opnd, 1, II_DMUL, mul>,
ADD_FM<0x1c, 0x03>;
// Extract a signed bit field /+32
def EXTS : ExtsCins<"exts">, EXTS_FM<0x3a>;
def EXTS32: ExtsCins<"exts32">, EXTS_FM<0x3b>;
// Clear and insert a bit field /+32
def CINS : ExtsCins<"cins">, EXTS_FM<0x32>;
def CINS32: ExtsCins<"cins32">, EXTS_FM<0x33>;
// Move to multiplier/product register
def MTM0 : MoveToLOHI<"mtm0", GPR64Opnd, [MPL0, P0, P1, P2]>, MTMR_FM<0x08>;
def MTM1 : MoveToLOHI<"mtm1", GPR64Opnd, [MPL1, P0, P1, P2]>, MTMR_FM<0x0c>;
def MTM2 : MoveToLOHI<"mtm2", GPR64Opnd, [MPL2, P0, P1, P2]>, MTMR_FM<0x0d>;
def MTP0 : MoveToLOHI<"mtp0", GPR64Opnd, [P0]>, MTMR_FM<0x09>;
def MTP1 : MoveToLOHI<"mtp1", GPR64Opnd, [P1]>, MTMR_FM<0x0a>;
def MTP2 : MoveToLOHI<"mtp2", GPR64Opnd, [P2]>, MTMR_FM<0x0b>;
// Count Ones in a Word/Doubleword
def POP : Count1s<"pop", GPR32Opnd>, POP_FM<0x2c>;
def DPOP : Count1s<"dpop", GPR64Opnd>, POP_FM<0x2d>;
// Set on equal/not equal
def SEQ : SetCC64_R<"seq", seteq>, SEQ_FM<0x2a>;
def SEQi : SetCC64_I<"seqi", seteq>, SEQI_FM<0x2e>;
def SNE : SetCC64_R<"sne", setne>, SEQ_FM<0x2b>;
def SNEi : SetCC64_I<"snei", setne>, SEQI_FM<0x2f>;
// 192-bit x 64-bit Unsigned Multiply and Add
let Defs = [P0, P1, P2] in
def V3MULU: ArithLogicR<"v3mulu", GPR64Opnd, 0, II_DMUL>,
ADD_FM<0x1c, 0x11>;
// 64-bit Unsigned Multiply and Add Move
let Defs = [MPL0, P0, P1, P2] in
def VMM0 : ArithLogicR<"vmm0", GPR64Opnd, 0, II_DMUL>,
ADD_FM<0x1c, 0x10>;
// 64-bit Unsigned Multiply and Add
let Defs = [MPL1, MPL2, P0, P1, P2] in
def VMULU : ArithLogicR<"vmulu", GPR64Opnd, 0, II_DMUL>,
ADD_FM<0x1c, 0x0f>;
}
}
/// Move between CPU and coprocessor registers
let DecoderNamespace = "Mips64", Predicates = [HasMips64] in {
def DMFC0 : MFC3OP<"dmfc0", GPR64Opnd>, MFC3OP_FM<0x10, 1>;
def DMTC0 : MFC3OP<"dmtc0", GPR64Opnd>, MFC3OP_FM<0x10, 5>, ISA_MIPS3;
def DMFC2 : MFC3OP<"dmfc2", GPR64Opnd>, MFC3OP_FM<0x12, 1>, ISA_MIPS3;
def DMTC2 : MFC3OP<"dmtc2", GPR64Opnd>, MFC3OP_FM<0x12, 5>, ISA_MIPS3;
}
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// extended loads
def : MipsPat<(i64 (extloadi1 addr:$src)), (LB64 addr:$src)>;
def : MipsPat<(i64 (extloadi8 addr:$src)), (LB64 addr:$src)>;
def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64 addr:$src)>;
def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64 addr:$src)>;
// hi/lo relocs
def : MipsPat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
def : MipsPat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
def : MipsPat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
def : MipsPat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>;
def : MipsPat<(MipsHi texternalsym:$in), (LUi64 texternalsym:$in)>;
def : MipsPat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
def : MipsPat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>;
def : MipsPat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
def : MipsPat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
def : MipsPat<(MipsLo tglobaltlsaddr:$in),
(DADDiu ZERO_64, tglobaltlsaddr:$in)>;
def : MipsPat<(MipsLo texternalsym:$in), (DADDiu ZERO_64, texternalsym:$in)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tglobaladdr:$lo)),
(DADDiu GPR64:$hi, tglobaladdr:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tblockaddress:$lo)),
(DADDiu GPR64:$hi, tblockaddress:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tjumptable:$lo)),
(DADDiu GPR64:$hi, tjumptable:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tconstpool:$lo)),
(DADDiu GPR64:$hi, tconstpool:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tglobaltlsaddr:$lo)),
(DADDiu GPR64:$hi, tglobaltlsaddr:$lo)>;
def : WrapperPat<tglobaladdr, DADDiu, GPR64>;
def : WrapperPat<tconstpool, DADDiu, GPR64>;
def : WrapperPat<texternalsym, DADDiu, GPR64>;
def : WrapperPat<tblockaddress, DADDiu, GPR64>;
def : WrapperPat<tjumptable, DADDiu, GPR64>;
def : WrapperPat<tglobaltlsaddr, DADDiu, GPR64>;
defm : BrcondPats<GPR64, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
ZERO_64>;
def : MipsPat<(brcond (i32 (setlt i64:$lhs, 1)), bb:$dst),
(BLEZ64 i64:$lhs, bb:$dst)>;
def : MipsPat<(brcond (i32 (setgt i64:$lhs, -1)), bb:$dst),
(BGEZ64 i64:$lhs, bb:$dst)>;
// setcc patterns
defm : SeteqPats<GPR64, SLTiu64, XOR64, SLTu64, ZERO_64>;
defm : SetlePats<GPR64, SLT64, SLTu64>;
defm : SetgtPats<GPR64, SLT64, SLTu64>;
defm : SetgePats<GPR64, SLT64, SLTu64>;
defm : SetgeImmPats<GPR64, SLTi64, SLTiu64>;
// truncate
def : MipsPat<(trunc (assertsext GPR64:$src)),
(EXTRACT_SUBREG GPR64:$src, sub_32)>;
def : MipsPat<(trunc (assertzext GPR64:$src)),
(EXTRACT_SUBREG GPR64:$src, sub_32)>;
def : MipsPat<(i32 (trunc GPR64:$src)),
(SLL (EXTRACT_SUBREG GPR64:$src, sub_32), 0)>;
// Bypass trunc nodes for bitwise ops.
def : MipsPat<(i32 (trunc (and GPR64:$lhs, GPR64:$rhs))),
(EXTRACT_SUBREG (AND64 GPR64:$lhs, GPR64:$rhs), sub_32)>;
def : MipsPat<(i32 (trunc (or GPR64:$lhs, GPR64:$rhs))),
(EXTRACT_SUBREG (OR64 GPR64:$lhs, GPR64:$rhs), sub_32)>;
def : MipsPat<(i32 (trunc (xor GPR64:$lhs, GPR64:$rhs))),
(EXTRACT_SUBREG (XOR64 GPR64:$lhs, GPR64:$rhs), sub_32)>;
// 32-to-64-bit extension
def : MipsPat<(i64 (anyext GPR32:$src)), (SLL64_32 GPR32:$src)>;
def : MipsPat<(i64 (zext GPR32:$src)), (DSRL (DSLL64_32 GPR32:$src), 32)>;
def : MipsPat<(i64 (sext GPR32:$src)), (SLL64_32 GPR32:$src)>;
// Sign extend in register
def : MipsPat<(i64 (sext_inreg GPR64:$src, i32)),
(SLL64_64 GPR64:$src)>;
// bswap MipsPattern
def : MipsPat<(bswap GPR64:$rt), (DSHD (DSBH GPR64:$rt))>;
// Carry pattern
def : MipsPat<(subc GPR64:$lhs, GPR64:$rhs),
(DSUBu GPR64:$lhs, GPR64:$rhs)>;
let AdditionalPredicates = [NotDSP] in {
def : MipsPat<(addc GPR64:$lhs, GPR64:$rhs),
(DADDu GPR64:$lhs, GPR64:$rhs)>;
def : MipsPat<(addc GPR64:$lhs, immSExt16:$imm),
(DADDiu GPR64:$lhs, imm:$imm)>;
}
// Octeon bbit0/bbit1 MipsPattern
let Predicates = [HasMips64, HasCnMips] in {
def : MipsPat<(brcond (i32 (seteq (and i64:$lhs, PowerOf2LO:$mask), 0)), bb:$dst),
(BBIT0 i64:$lhs, (Log2LO PowerOf2LO:$mask), bb:$dst)>;
def : MipsPat<(brcond (i32 (seteq (and i64:$lhs, PowerOf2HI:$mask), 0)), bb:$dst),
(BBIT032 i64:$lhs, (Log2HI PowerOf2HI:$mask), bb:$dst)>;
def : MipsPat<(brcond (i32 (setne (and i64:$lhs, PowerOf2LO:$mask), 0)), bb:$dst),
(BBIT1 i64:$lhs, (Log2LO PowerOf2LO:$mask), bb:$dst)>;
def : MipsPat<(brcond (i32 (setne (and i64:$lhs, PowerOf2HI:$mask), 0)), bb:$dst),
(BBIT132 i64:$lhs, (Log2HI PowerOf2HI:$mask), bb:$dst)>;
}
//===----------------------------------------------------------------------===//
// Instruction aliases
//===----------------------------------------------------------------------===//
def : MipsInstAlias<"move $dst, $src",
(DADDu GPR64Opnd:$dst, GPR64Opnd:$src, ZERO_64), 1>,
GPR_64;
def : MipsInstAlias<"daddu $rs, $rt, $imm",
(DADDiu GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
0>, ISA_MIPS3;
def : MipsInstAlias<"dadd $rs, $rt, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"daddu $rs, $imm",
(DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm),
0>, ISA_MIPS3;
def : MipsInstAlias<"dadd $rs, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"dsll $rd, $rt, $rs",
(DSLLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
ISA_MIPS3;
def : MipsInstAlias<"dsubu $rt, $rs, $imm",
(DADDiu GPR64Opnd:$rt, GPR64Opnd:$rs,
InvertedImOperand64:$imm), 0>, ISA_MIPS3;
def : MipsInstAlias<"dsubi $rs, $rt, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rt,
InvertedImOperand64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"dsubi $rs, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rs,
InvertedImOperand64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"dsub $rs, $rt, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rt,
InvertedImOperand64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"dsub $rs, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rs,
InvertedImOperand64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"dsubu $rs, $imm",
(DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs,
InvertedImOperand64:$imm),
0>, ISA_MIPS3;
def : MipsInstAlias<"dsra $rd, $rt, $rs",
(DSRAV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
ISA_MIPS3;
def : MipsInstAlias<"dsrl $rd, $rt, $rs",
(DSRLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
ISA_MIPS3;
// Two operand (implicit 0 selector) versions:
def : MipsInstAlias<"dmfc0 $rt, $rd", (DMFC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
def : MipsInstAlias<"dmtc0 $rt, $rd", (DMTC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
def : MipsInstAlias<"dmfc2 $rt, $rd", (DMFC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
def : MipsInstAlias<"dmtc2 $rt, $rd", (DMTC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;
let Predicates = [HasMips64, HasCnMips] in {
def : MipsInstAlias<"synciobdma", (SYNC 0x2), 0>;
def : MipsInstAlias<"syncs", (SYNC 0x6), 0>;
def : MipsInstAlias<"syncw", (SYNC 0x4), 0>;
def : MipsInstAlias<"syncws", (SYNC 0x5), 0>;
}
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions
//===----------------------------------------------------------------------===//
class LoadImm64<string instr_asm, Operand Od, RegisterOperand RO> :
MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm64),
!strconcat(instr_asm, "\t$rt, $imm64")> ;
def LoadImm64Reg : LoadImm64<"dli", imm64, GPR64Opnd>;
|