aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Mips/MipsISelLowering.cpp
blob: 224569b25033823a7c74164e3239e2f58299e2ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Mips uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "mips-lower"
#include "MipsISelLowering.h"
#include "MipsMachineFunction.h"
#include "MipsTargetMachine.h"
#include "MipsTargetObjectFile.h"
#include "MipsSubtarget.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;

const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch (Opcode) {
    case MipsISD::JmpLink    : return "MipsISD::JmpLink";
    case MipsISD::Hi         : return "MipsISD::Hi";
    case MipsISD::Lo         : return "MipsISD::Lo";
    case MipsISD::GPRel      : return "MipsISD::GPRel";
    case MipsISD::Ret        : return "MipsISD::Ret";
    case MipsISD::SelectCC   : return "MipsISD::SelectCC";
    case MipsISD::FPSelectCC : return "MipsISD::FPSelectCC";
    case MipsISD::FPBrcond   : return "MipsISD::FPBrcond";
    case MipsISD::FPCmp      : return "MipsISD::FPCmp";
    case MipsISD::FPRound    : return "MipsISD::FPRound";
    case MipsISD::MAdd       : return "MipsISD::MAdd";
    case MipsISD::MAddu      : return "MipsISD::MAddu";
    case MipsISD::MSub       : return "MipsISD::MSub";
    case MipsISD::MSubu      : return "MipsISD::MSubu";
    default                  : return NULL;
  }
}

MipsTargetLowering::
MipsTargetLowering(MipsTargetMachine &TM)
  : TargetLowering(TM, new MipsTargetObjectFile()) {
  Subtarget = &TM.getSubtarget<MipsSubtarget>();

  // Mips does not have i1 type, so use i32 for
  // setcc operations results (slt, sgt, ...).
  setBooleanContents(ZeroOrOneBooleanContent);

  // Set up the register classes
  addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
  addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);

  // When dealing with single precision only, use libcalls
  if (!Subtarget->isSingleFloat())
    if (!Subtarget->isFP64bit())
      addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);

  // Load extented operations for i1 types must be promoted
  setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
  setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);

  // MIPS doesn't have extending float->double load/store
  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);

  // Used by legalize types to correctly generate the setcc result.
  // Without this, every float setcc comes with a AND/OR with the result,
  // we don't want this, since the fpcmp result goes to a flag register,
  // which is used implicitly by brcond and select operations.
  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);

  // Mips Custom Operations
  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Custom);
  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
  setOperationAction(ISD::VASTART,            MVT::Other, Custom);


  // We custom lower AND/OR to handle the case where the DAG contain 'ands/ors'
  // with operands comming from setcc fp comparions. This is necessary since
  // the result from these setcc are in a flag registers (FCR31).
  setOperationAction(ISD::AND,              MVT::i32,   Custom);
  setOperationAction(ISD::OR,               MVT::i32,   Custom);

  // Operations not directly supported by Mips.
  setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
  setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
  setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
  setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);

  if (!Subtarget->isMips32r2())
    setOperationAction(ISD::ROTR, MVT::i32,   Expand);

  setOperationAction(ISD::SHL_PARTS,         MVT::i32,   Expand);
  setOperationAction(ISD::SRA_PARTS,         MVT::i32,   Expand);
  setOperationAction(ISD::SRL_PARTS,         MVT::i32,   Expand);
  setOperationAction(ISD::FCOPYSIGN,         MVT::f32,   Expand);
  setOperationAction(ISD::FCOPYSIGN,         MVT::f64,   Expand);
  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
  setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);

  setOperationAction(ISD::EH_LABEL,          MVT::Other, Expand);

  // Use the default for now
  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
  setOperationAction(ISD::MEMBARRIER,        MVT::Other, Expand);

  if (Subtarget->isSingleFloat())
    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);

  if (!Subtarget->hasSEInReg()) {
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
  }

  if (!Subtarget->hasBitCount())
    setOperationAction(ISD::CTLZ, MVT::i32, Expand);

  if (!Subtarget->hasSwap())
    setOperationAction(ISD::BSWAP, MVT::i32, Expand);

  setTargetDAGCombine(ISD::ADDE);
  setTargetDAGCombine(ISD::SUBE);

  setStackPointerRegisterToSaveRestore(Mips::SP);
  computeRegisterProperties();
}

MVT::SimpleValueType MipsTargetLowering::getSetCCResultType(EVT VT) const {
  return MVT::i32;
}

/// getFunctionAlignment - Return the Log2 alignment of this function.
unsigned MipsTargetLowering::getFunctionAlignment(const Function *) const {
  return 2;
}

// SelectMadd -
// Transforms a subgraph in CurDAG if the following pattern is found:
//  (addc multLo, Lo0), (adde multHi, Hi0),
// where,
//  multHi/Lo: product of multiplication
//  Lo0: initial value of Lo register     
//  Hi0: initial value of Hi register     
// Return true if mattern matching was successful.
static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
  // ADDENode's second operand must be a flag output of an ADDC node in order 
  // for the matching to be successful.
  SDNode* ADDCNode = ADDENode->getOperand(2).getNode();

  if (ADDCNode->getOpcode() != ISD::ADDC)
    return false;

  SDValue MultHi = ADDENode->getOperand(0);
  SDValue MultLo = ADDCNode->getOperand(0);
  SDNode* MultNode = MultHi.getNode(); 
  unsigned MultOpc = MultHi.getOpcode();

  // MultHi and MultLo must be generated by the same node,
  if (MultLo.getNode() != MultNode)
    return false;

  // and it must be a multiplication.
  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    return false;
  
  // MultLo amd MultHi must be the first and second output of MultNode 
  // respectively.  
  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    return false;

  // Transform this to a MADD only if ADDENode and ADDCNode are the only users 
  // of the values of MultNode, in which case MultNode will be removed in later
  // phases.
  // If there exist users other than ADDENode or ADDCNode, this function returns
  // here, which will result in MultNode being mapped to a single MULT 
  // instruction node rather than a pair of MULT and MADD instructions being 
  // produced.
  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    return false;

  SDValue Chain = CurDAG->getEntryNode(); 
  DebugLoc dl = ADDENode->getDebugLoc();

  // create MipsMAdd(u) node
  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
  
  SDValue MAdd = CurDAG->getNode(MultOpc, dl,
                                 MVT::Glue,
                                 MultNode->getOperand(0),// Factor 0
                                 MultNode->getOperand(1),// Factor 1
                                 ADDCNode->getOperand(1),// Lo0 
                                 ADDENode->getOperand(1));// Hi0

  // create CopyFromReg nodes
  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
                                              MAdd);
  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl, 
                                              Mips::HI, MVT::i32,
                                              CopyFromLo.getValue(2));

  // replace uses of adde and addc here
  if (!SDValue(ADDCNode, 0).use_empty())
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);

  if (!SDValue(ADDENode, 0).use_empty())
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);

  return true;  
}

// SelectMsub -
// Transforms a subgraph in CurDAG if the following pattern is found:
//  (addc Lo0, multLo), (sube Hi0, multHi),
// where,
//  multHi/Lo: product of multiplication
//  Lo0: initial value of Lo register     
//  Hi0: initial value of Hi register     
// Return true if mattern matching was successful.
static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
  // SUBENode's second operand must be a flag output of an SUBC node in order 
  // for the matching to be successful.
  SDNode* SUBCNode = SUBENode->getOperand(2).getNode();

  if (SUBCNode->getOpcode() != ISD::SUBC)
    return false;

  SDValue MultHi = SUBENode->getOperand(1);
  SDValue MultLo = SUBCNode->getOperand(1);
  SDNode* MultNode = MultHi.getNode(); 
  unsigned MultOpc = MultHi.getOpcode();

  // MultHi and MultLo must be generated by the same node,
  if (MultLo.getNode() != MultNode)
    return false;

  // and it must be a multiplication.
  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    return false;

  // MultLo amd MultHi must be the first and second output of MultNode
  // respectively.
  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    return false;

  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
  // of the values of MultNode, in which case MultNode will be removed in later
  // phases.
  // If there exist users other than SUBENode or SUBCNode, this function returns
  // here, which will result in MultNode being mapped to a single MULT
  // instruction node rather than a pair of MULT and MSUB instructions being
  // produced.
  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    return false;

  SDValue Chain = CurDAG->getEntryNode();
  DebugLoc dl = SUBENode->getDebugLoc();

  // create MipsSub(u) node
  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;

  SDValue MSub = CurDAG->getNode(MultOpc, dl,
                                 MVT::Glue,
                                 MultNode->getOperand(0),// Factor 0
                                 MultNode->getOperand(1),// Factor 1
                                 SUBCNode->getOperand(0),// Lo0
                                 SUBENode->getOperand(0));// Hi0

  // create CopyFromReg nodes
  SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
                                              MSub);
  SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
                                              Mips::HI, MVT::i32,
                                              CopyFromLo.getValue(2));

  // replace uses of sube and subc here
  if (!SDValue(SUBCNode, 0).use_empty())
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);

  if (!SDValue(SUBENode, 0).use_empty())
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);

  return true;
}

static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const MipsSubtarget* Subtarget) {
  if (DCI.isBeforeLegalize())
    return SDValue();

  if (Subtarget->isMips32() && SelectMadd(N, &DAG))
    return SDValue(N, 0);
  
  return SDValue();
} 		

static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
                                  TargetLowering::DAGCombinerInfo &DCI,
                                  const MipsSubtarget* Subtarget) {
  if (DCI.isBeforeLegalize())
    return SDValue();

  if (Subtarget->isMips32() && SelectMsub(N, &DAG))
    return SDValue(N, 0);
  
  return SDValue();
} 		

SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) 
  const {
  SelectionDAG &DAG = DCI.DAG;
  unsigned opc = N->getOpcode();

  switch (opc) {
  default: break;
  case ISD::ADDE:
    return PerformADDECombine(N, DAG, DCI, Subtarget);
  case ISD::SUBE:
    return PerformSUBECombine(N, DAG, DCI, Subtarget);
  }

  return SDValue();
}

SDValue MipsTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const
{
  switch (Op.getOpcode())
  {
    case ISD::AND:                return LowerANDOR(Op, DAG);
    case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
    case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
    case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
    case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
    case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
    case ISD::OR:                 return LowerANDOR(Op, DAG);
    case ISD::SELECT:             return LowerSELECT(Op, DAG);
    case ISD::SETCC:              return LowerSETCC(Op, DAG);
    case ISD::VASTART:            return LowerVASTART(Op, DAG);
  }
  return SDValue();
}

//===----------------------------------------------------------------------===//
//  Lower helper functions
//===----------------------------------------------------------------------===//

// AddLiveIn - This helper function adds the specified physical register to the
// MachineFunction as a live in value.  It also creates a corresponding
// virtual register for it.
static unsigned
AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
{
  assert(RC->contains(PReg) && "Not the correct regclass!");
  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
  MF.getRegInfo().addLiveIn(PReg, VReg);
  return VReg;
}

// Get fp branch code (not opcode) from condition code.
static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
    return Mips::BRANCH_T;

  if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
    return Mips::BRANCH_F;

  return Mips::BRANCH_INVALID;
}

static unsigned FPBranchCodeToOpc(Mips::FPBranchCode BC) {
  switch(BC) {
    default:
      llvm_unreachable("Unknown branch code");
    case Mips::BRANCH_T  : return Mips::BC1T;
    case Mips::BRANCH_F  : return Mips::BC1F;
    case Mips::BRANCH_TL : return Mips::BC1TL;
    case Mips::BRANCH_FL : return Mips::BC1FL;
  }
}

static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
  switch (CC) {
  default: llvm_unreachable("Unknown fp condition code!");
  case ISD::SETEQ:
  case ISD::SETOEQ: return Mips::FCOND_EQ;
  case ISD::SETUNE: return Mips::FCOND_OGL;
  case ISD::SETLT:
  case ISD::SETOLT: return Mips::FCOND_OLT;
  case ISD::SETGT:
  case ISD::SETOGT: return Mips::FCOND_OGT;
  case ISD::SETLE:
  case ISD::SETOLE: return Mips::FCOND_OLE;
  case ISD::SETGE:
  case ISD::SETOGE: return Mips::FCOND_OGE;
  case ISD::SETULT: return Mips::FCOND_ULT;
  case ISD::SETULE: return Mips::FCOND_ULE;
  case ISD::SETUGT: return Mips::FCOND_UGT;
  case ISD::SETUGE: return Mips::FCOND_UGE;
  case ISD::SETUO:  return Mips::FCOND_UN;
  case ISD::SETO:   return Mips::FCOND_OR;
  case ISD::SETNE:
  case ISD::SETONE: return Mips::FCOND_NEQ;
  case ISD::SETUEQ: return Mips::FCOND_UEQ;
  }
}

MachineBasicBlock *
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
                                                MachineBasicBlock *BB) const {
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  bool isFPCmp = false;
  DebugLoc dl = MI->getDebugLoc();

  switch (MI->getOpcode()) {
  default: assert(false && "Unexpected instr type to insert");
  case Mips::Select_FCC:
  case Mips::Select_FCC_S32:
  case Mips::Select_FCC_D32:
    isFPCmp = true; // FALL THROUGH
  case Mips::Select_CC:
  case Mips::Select_CC_S32:
  case Mips::Select_CC_D32: {
    // To "insert" a SELECT_CC instruction, we actually have to insert the
    // diamond control-flow pattern.  The incoming instruction knows the
    // destination vreg to set, the condition code register to branch on, the
    // true/false values to select between, and a branch opcode to use.
    const BasicBlock *LLVM_BB = BB->getBasicBlock();
    MachineFunction::iterator It = BB;
    ++It;

    //  thisMBB:
    //  ...
    //   TrueVal = ...
    //   setcc r1, r2, r3
    //   bNE   r1, r0, copy1MBB
    //   fallthrough --> copy0MBB
    MachineBasicBlock *thisMBB  = BB;
    MachineFunction *F = BB->getParent();
    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
    F->insert(It, copy0MBB);
    F->insert(It, sinkMBB);

    // Transfer the remainder of BB and its successor edges to sinkMBB.
    sinkMBB->splice(sinkMBB->begin(), BB,
                    llvm::next(MachineBasicBlock::iterator(MI)),
                    BB->end());
    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

    // Next, add the true and fallthrough blocks as its successors.
    BB->addSuccessor(copy0MBB);
    BB->addSuccessor(sinkMBB);

    // Emit the right instruction according to the type of the operands compared
    if (isFPCmp) {
      // Find the condiction code present in the setcc operation.
      Mips::CondCode CC = (Mips::CondCode)MI->getOperand(4).getImm();
      // Get the branch opcode from the branch code.
      unsigned Opc = FPBranchCodeToOpc(GetFPBranchCodeFromCond(CC));
      BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
    } else
      BuildMI(BB, dl, TII->get(Mips::BNE)).addReg(MI->getOperand(1).getReg())
        .addReg(Mips::ZERO).addMBB(sinkMBB);

    //  copy0MBB:
    //   %FalseValue = ...
    //   # fallthrough to sinkMBB
    BB = copy0MBB;

    // Update machine-CFG edges
    BB->addSuccessor(sinkMBB);

    //  sinkMBB:
    //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
    //  ...
    BB = sinkMBB;
    BuildMI(*BB, BB->begin(), dl,
            TII->get(Mips::PHI), MI->getOperand(0).getReg())
      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB);

    MI->eraseFromParent();   // The pseudo instruction is gone now.
    return BB;
  }
  }
}

//===----------------------------------------------------------------------===//
//  Misc Lower Operation implementation
//===----------------------------------------------------------------------===//

SDValue MipsTargetLowering::
LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const
{
  if (!Subtarget->isMips1())
    return Op;

  MachineFunction &MF = DAG.getMachineFunction();
  unsigned CCReg = AddLiveIn(MF, Mips::FCR31, Mips::CCRRegisterClass);

  SDValue Chain = DAG.getEntryNode();
  DebugLoc dl = Op.getDebugLoc();
  SDValue Src = Op.getOperand(0);

  // Set the condition register
  SDValue CondReg = DAG.getCopyFromReg(Chain, dl, CCReg, MVT::i32);
  CondReg = DAG.getCopyToReg(Chain, dl, Mips::AT, CondReg);
  CondReg = DAG.getCopyFromReg(CondReg, dl, Mips::AT, MVT::i32);

  SDValue Cst = DAG.getConstant(3, MVT::i32);
  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, CondReg, Cst);
  Cst = DAG.getConstant(2, MVT::i32);
  SDValue Xor = DAG.getNode(ISD::XOR, dl, MVT::i32, Or, Cst);

  SDValue InFlag(0, 0);
  CondReg = DAG.getCopyToReg(Chain, dl, Mips::FCR31, Xor, InFlag);

  // Emit the round instruction and bit convert to integer
  SDValue Trunc = DAG.getNode(MipsISD::FPRound, dl, MVT::f32,
                              Src, CondReg.getValue(1));
  SDValue BitCvt = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Trunc);
  return BitCvt;
}

SDValue MipsTargetLowering::
LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
{
  SDValue Chain = Op.getOperand(0);
  SDValue Size = Op.getOperand(1);
  DebugLoc dl = Op.getDebugLoc();

  // Get a reference from Mips stack pointer
  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, Mips::SP, MVT::i32);

  // Subtract the dynamic size from the actual stack size to
  // obtain the new stack size.
  SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);

  // The Sub result contains the new stack start address, so it
  // must be placed in the stack pointer register.
  Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, Mips::SP, Sub);

  // This node always has two return values: a new stack pointer
  // value and a chain
  SDValue Ops[2] = { Sub, Chain };
  return DAG.getMergeValues(Ops, 2, dl);
}

SDValue MipsTargetLowering::
LowerANDOR(SDValue Op, SelectionDAG &DAG) const
{
  SDValue LHS   = Op.getOperand(0);
  SDValue RHS   = Op.getOperand(1);
  DebugLoc dl   = Op.getDebugLoc();

  if (LHS.getOpcode() != MipsISD::FPCmp || RHS.getOpcode() != MipsISD::FPCmp)
    return Op;

  SDValue True  = DAG.getConstant(1, MVT::i32);
  SDValue False = DAG.getConstant(0, MVT::i32);

  SDValue LSEL = DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
                             LHS, True, False, LHS.getOperand(2));
  SDValue RSEL = DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
                             RHS, True, False, RHS.getOperand(2));

  return DAG.getNode(Op.getOpcode(), dl, MVT::i32, LSEL, RSEL);
}

SDValue MipsTargetLowering::
LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
{
  // The first operand is the chain, the second is the condition, the third is
  // the block to branch to if the condition is true.
  SDValue Chain = Op.getOperand(0);
  SDValue Dest = Op.getOperand(2);
  DebugLoc dl = Op.getDebugLoc();

  if (Op.getOperand(1).getOpcode() != MipsISD::FPCmp)
    return Op;

  SDValue CondRes = Op.getOperand(1);
  SDValue CCNode  = CondRes.getOperand(2);
  Mips::CondCode CC =
    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
  SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);

  return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
             Dest, CondRes);
}

SDValue MipsTargetLowering::
LowerSETCC(SDValue Op, SelectionDAG &DAG) const
{
  // The operands to this are the left and right operands to compare (ops #0,
  // and #1) and the condition code to compare them with (op #2) as a
  // CondCodeSDNode.
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  DebugLoc dl = Op.getDebugLoc();

  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();

  return DAG.getNode(MipsISD::FPCmp, dl, Op.getValueType(), LHS, RHS,
                 DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
}

SDValue MipsTargetLowering::
LowerSELECT(SDValue Op, SelectionDAG &DAG) const
{
  SDValue Cond  = Op.getOperand(0);
  SDValue True  = Op.getOperand(1);
  SDValue False = Op.getOperand(2);
  DebugLoc dl = Op.getDebugLoc();

  // if the incomming condition comes from a integer compare, the select
  // operation must be SelectCC or a conditional move if the subtarget
  // supports it.
  if (Cond.getOpcode() != MipsISD::FPCmp) {
    if (Subtarget->hasCondMov() && !True.getValueType().isFloatingPoint())
      return Op;
    return DAG.getNode(MipsISD::SelectCC, dl, True.getValueType(),
                       Cond, True, False);
  }

  // if the incomming condition comes from fpcmp, the select
  // operation must use FPSelectCC.
  SDValue CCNode = Cond.getOperand(2);
  return DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
                     Cond, True, False, CCNode);
}

SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
                                               SelectionDAG &DAG) const {
  // FIXME there isn't actually debug info here
  DebugLoc dl = Op.getDebugLoc();
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();

  if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
    SDVTList VTs = DAG.getVTList(MVT::i32);

    MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();

    // %gp_rel relocation
    if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
      SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
                                              MipsII::MO_GPREL);
      SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
      SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
      return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
    }
    // %hi/%lo relocation
    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
                                            MipsII::MO_ABS_HILO);
    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GA, 1);
    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA);
    return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);

  } else {
    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
                                            MipsII::MO_GOT);
    SDValue ResNode = DAG.getLoad(MVT::i32, dl,
                                  DAG.getEntryNode(), GA, MachinePointerInfo(),
                                  false, false, 0);
    // On functions and global targets not internal linked only
    // a load from got/GP is necessary for PIC to work.
    if (!GV->hasLocalLinkage() || isa<Function>(GV))
      return ResNode;
    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA);
    return DAG.getNode(ISD::ADD, dl, MVT::i32, ResNode, Lo);
  }

  llvm_unreachable("Dont know how to handle GlobalAddress");
  return SDValue(0,0);
}

SDValue MipsTargetLowering::
LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
{
  llvm_unreachable("TLS not implemented for MIPS.");
  return SDValue(); // Not reached
}

SDValue MipsTargetLowering::
LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
{
  SDValue ResNode;
  SDValue HiPart;
  // FIXME there isn't actually debug info here
  DebugLoc dl = Op.getDebugLoc();
  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
  unsigned char OpFlag = IsPIC ? MipsII::MO_GOT : MipsII::MO_ABS_HILO;

  EVT PtrVT = Op.getValueType();
  JumpTableSDNode *JT  = cast<JumpTableSDNode>(Op);

  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);

  if (!IsPIC) {
    SDValue Ops[] = { JTI };
    HiPart = DAG.getNode(MipsISD::Hi, dl, DAG.getVTList(MVT::i32), Ops, 1);
  } else // Emit Load from Global Pointer
    HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI,
                         MachinePointerInfo(),
                         false, false, 0);

  SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTI);
  ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);

  return ResNode;
}

SDValue MipsTargetLowering::
LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
{
  SDValue ResNode;
  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
  const Constant *C = N->getConstVal();
  // FIXME there isn't actually debug info here
  DebugLoc dl = Op.getDebugLoc();

  // gp_rel relocation
  // FIXME: we should reference the constant pool using small data sections,
  // but the asm printer currently doens't support this feature without
  // hacking it. This feature should come soon so we can uncomment the
  // stuff below.
  //if (IsInSmallSection(C->getType())) {
  //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
  //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
  //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);

  if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
    SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
                                      N->getOffset(), MipsII::MO_ABS_HILO);
    SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CP);
    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CP);
    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
  } else {
    SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
                                      N->getOffset(), MipsII::MO_GOT);
    SDValue Load = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(),
                               CP, MachinePointerInfo::getConstantPool(),
                               false, false, 0);
    SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CP);
    ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
  }

  return ResNode;
}

SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();

  DebugLoc dl = Op.getDebugLoc();
  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
                                 getPointerTy());

  // vastart just stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
                      MachinePointerInfo(SV),
                      false, false, 0);
}

//===----------------------------------------------------------------------===//
//                      Calling Convention Implementation
//===----------------------------------------------------------------------===//

#include "MipsGenCallingConv.inc"

//===----------------------------------------------------------------------===//
// TODO: Implement a generic logic using tblgen that can support this.
// Mips O32 ABI rules:
// ---
// i32 - Passed in A0, A1, A2, A3 and stack
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
//       an argument. Otherwise, passed in A1, A2, A3 and stack.
// f64 - Only passed in two aliased f32 registers if no int reg has been used
//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
//       not used, it must be shadowed. If only A3 is avaiable, shadow it and
//       go to stack.
//===----------------------------------------------------------------------===//

static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
                       MVT LocVT, CCValAssign::LocInfo LocInfo,
                       ISD::ArgFlagsTy ArgFlags, CCState &State) {

  static const unsigned IntRegsSize=4, FloatRegsSize=2;

  static const unsigned IntRegs[] = {
      Mips::A0, Mips::A1, Mips::A2, Mips::A3
  };
  static const unsigned F32Regs[] = {
      Mips::F12, Mips::F14
  };
  static const unsigned F64Regs[] = {
      Mips::D6, Mips::D7
  };

  unsigned Reg=0;
  unsigned UnallocIntReg = State.getFirstUnallocated(IntRegs, IntRegsSize);
  bool IntRegUsed = (IntRegs[UnallocIntReg] != (unsigned (Mips::A0)));

  // Promote i8 and i16
  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
    LocVT = MVT::i32;
    if (ArgFlags.isSExt())
      LocInfo = CCValAssign::SExt;
    else if (ArgFlags.isZExt())
      LocInfo = CCValAssign::ZExt;
    else
      LocInfo = CCValAssign::AExt;
  }

  if (ValVT == MVT::i32 || (ValVT == MVT::f32 && IntRegUsed)) {
    Reg = State.AllocateReg(IntRegs, IntRegsSize);
    IntRegUsed = true;
    LocVT = MVT::i32;
  }

  if (ValVT.isFloatingPoint() && !IntRegUsed) {
    if (ValVT == MVT::f32)
      Reg = State.AllocateReg(F32Regs, FloatRegsSize);
    else
      Reg = State.AllocateReg(F64Regs, FloatRegsSize);
  }

  if (ValVT == MVT::f64 && IntRegUsed) {
    if (UnallocIntReg != IntRegsSize) {
      // If we hit register A3 as the first not allocated, we must
      // mark it as allocated (shadow) and use the stack instead.
      if (IntRegs[UnallocIntReg] != (unsigned (Mips::A3)))
        Reg = Mips::A2;
      for (;UnallocIntReg < IntRegsSize; ++UnallocIntReg)
        State.AllocateReg(UnallocIntReg);
    }
    LocVT = MVT::i32;
  }

  if (!Reg) {
    unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
    unsigned Offset = State.AllocateStack(SizeInBytes, SizeInBytes);
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
  } else
    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));

  return false; // CC must always match
}

static bool CC_MipsO32_VarArgs(unsigned ValNo, MVT ValVT,
                       MVT LocVT, CCValAssign::LocInfo LocInfo,
                       ISD::ArgFlagsTy ArgFlags, CCState &State) {

  static const unsigned IntRegsSize=4;

  static const unsigned IntRegs[] = {
      Mips::A0, Mips::A1, Mips::A2, Mips::A3
  };

  // Promote i8 and i16
  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
    LocVT = MVT::i32;
    if (ArgFlags.isSExt())
      LocInfo = CCValAssign::SExt;
    else if (ArgFlags.isZExt())
      LocInfo = CCValAssign::ZExt;
    else
      LocInfo = CCValAssign::AExt;
  }

  if (ValVT == MVT::i32 || ValVT == MVT::f32) {
    if (unsigned Reg = State.AllocateReg(IntRegs, IntRegsSize)) {
      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, MVT::i32, LocInfo));
      return false;
    }
    unsigned Off = State.AllocateStack(4, 4);
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Off, LocVT, LocInfo));
    return false;
  }

  unsigned UnallocIntReg = State.getFirstUnallocated(IntRegs, IntRegsSize);
  if (ValVT == MVT::f64) {
    if (IntRegs[UnallocIntReg] == (unsigned (Mips::A1))) {
      // A1 can't be used anymore, because 64 bit arguments
      // must be aligned when copied back to the caller stack
      State.AllocateReg(IntRegs, IntRegsSize);
      UnallocIntReg++;
    }

    if (IntRegs[UnallocIntReg] == (unsigned (Mips::A0)) ||
        IntRegs[UnallocIntReg] == (unsigned (Mips::A2))) {
      unsigned Reg = State.AllocateReg(IntRegs, IntRegsSize);
      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, MVT::i32, LocInfo));
      // Shadow the next register so it can be used
      // later to get the other 32bit part.
      State.AllocateReg(IntRegs, IntRegsSize);
      return false;
    }

    // Register is shadowed to preserve alignment, and the
    // argument goes to a stack location.
    if (UnallocIntReg != IntRegsSize)
      State.AllocateReg(IntRegs, IntRegsSize);

    unsigned Off = State.AllocateStack(8, 8);
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Off, LocVT, LocInfo));
    return false;
  }

  return true; // CC didn't match
}

//===----------------------------------------------------------------------===//
//                  Call Calling Convention Implementation
//===----------------------------------------------------------------------===//

/// LowerCall - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
/// TODO: isTailCall.
SDValue
MipsTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
                              CallingConv::ID CallConv, bool isVarArg,
                              bool &isTailCall,
                              const SmallVectorImpl<ISD::OutputArg> &Outs,
                              const SmallVectorImpl<SDValue> &OutVals,
                              const SmallVectorImpl<ISD::InputArg> &Ins,
                              DebugLoc dl, SelectionDAG &DAG,
                              SmallVectorImpl<SDValue> &InVals) const {
  // MIPs target does not yet support tail call optimization.
  isTailCall = false;

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
                 *DAG.getContext());

  // To meet O32 ABI, Mips must always allocate 16 bytes on
  // the stack (even if less than 4 are used as arguments)
  if (Subtarget->isABI_O32()) {
    int VTsize = MVT(MVT::i32).getSizeInBits()/8;
    MFI->CreateFixedObject(VTsize, (VTsize*3), true);
    CCInfo.AnalyzeCallOperands(Outs,
                     isVarArg ? CC_MipsO32_VarArgs : CC_MipsO32);
  } else
    CCInfo.AnalyzeCallOperands(Outs, CC_Mips);

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();
  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));

  // With EABI is it possible to have 16 args on registers.
  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;

  // First/LastArgStackLoc contains the first/last
  // "at stack" argument location.
  int LastArgStackLoc = 0;
  unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);

  // Walk the register/memloc assignments, inserting copies/loads.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    SDValue Arg = OutVals[i];
    CCValAssign &VA = ArgLocs[i];

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default: llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      if (Subtarget->isABI_O32() && VA.isRegLoc()) {
        if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32)
          Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
        if (VA.getValVT() == MVT::f64 && VA.getLocVT() == MVT::i32) {
          Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
          SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Arg,
                                   DAG.getConstant(0, getPointerTy()));
          SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Arg,
                                   DAG.getConstant(1, getPointerTy()));
          RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
          RegsToPass.push_back(std::make_pair(VA.getLocReg()+1, Hi));
          continue;
        }
      }
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
      break;
    }

    // Arguments that can be passed on register must be kept at
    // RegsToPass vector
    if (VA.isRegLoc()) {
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
      continue;
    }

    // Register can't get to this point...
    assert(VA.isMemLoc());

    // Create the frame index object for this incoming parameter
    // This guarantees that when allocating Local Area the firsts
    // 16 bytes which are alwayes reserved won't be overwritten
    // if O32 ABI is used. For EABI the first address is zero.
    LastArgStackLoc = (FirstStackArgLoc + VA.getLocMemOffset());
    int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
                                    LastArgStackLoc, true);

    SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy());

    // emit ISD::STORE whichs stores the
    // parameter value to a stack Location
    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
                                       MachinePointerInfo(),
                                       false, false, 0));
  }

  // Transform all store nodes into one single node because all store
  // nodes are independent of each other.
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                        &MemOpChains[0], MemOpChains.size());

  // Build a sequence of copy-to-reg nodes chained together with token
  // chain and flag operands which copy the outgoing args into registers.
  // The InFlag in necessary since all emited instructions must be
  // stuck together.
  SDValue InFlag;
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                             RegsToPass[i].second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.
  unsigned char OpFlag = IsPIC ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
                                getPointerTy(), 0, OpFlag);
  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
    Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
                                getPointerTy(), OpFlag);

  // MipsJmpLink = #chain, #target_address, #opt_in_flags...
  //             = Chain, Callee, Reg#1, Reg#2, ...
  //
  // Returns a chain & a flag for retval copy to use.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add argument registers to the end of the list so that they are
  // known live into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));

  if (InFlag.getNode())
    Ops.push_back(InFlag);

  Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
  InFlag = Chain.getValue(1);

  // Create a stack location to hold GP when PIC is used. This stack
  // location is used on function prologue to save GP and also after all
  // emited CALL's to restore GP.
  if (IsPIC) {
      // Function can have an arbitrary number of calls, so
      // hold the LastArgStackLoc with the biggest offset.
      int FI;
      MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
      if (LastArgStackLoc >= MipsFI->getGPStackOffset()) {
        LastArgStackLoc = (!LastArgStackLoc) ? (16) : (LastArgStackLoc+4);
        // Create the frame index only once. SPOffset here can be anything
        // (this will be fixed on processFunctionBeforeFrameFinalized)
        if (MipsFI->getGPStackOffset() == -1) {
          FI = MFI->CreateFixedObject(4, 0, true);
          MipsFI->setGPFI(FI);
        }
        MipsFI->setGPStackOffset(LastArgStackLoc);
      }

      // Reload GP value.
      FI = MipsFI->getGPFI();
      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
      SDValue GPLoad = DAG.getLoad(MVT::i32, dl, Chain, FIN,
                                   MachinePointerInfo::getFixedStack(FI),
                                   false, false, 0);
      Chain = GPLoad.getValue(1);
      Chain = DAG.getCopyToReg(Chain, dl, DAG.getRegister(Mips::GP, MVT::i32),
                               GPLoad, SDValue(0,0));
      InFlag = Chain.getValue(1);
  }

  // Create the CALLSEQ_END node.
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
                             DAG.getIntPtrConstant(0, true), InFlag);
  InFlag = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
                         Ins, dl, DAG, InVals);
}

/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue
MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
                                    CallingConv::ID CallConv, bool isVarArg,
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
                                    DebugLoc dl, SelectionDAG &DAG,
                                    SmallVectorImpl<SDValue> &InVals) const {

  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
                 RVLocs, *DAG.getContext());

  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
                               RVLocs[i].getValVT(), InFlag).getValue(1);
    InFlag = Chain.getValue(2);
    InVals.push_back(Chain.getValue(0));
  }

  return Chain;
}

//===----------------------------------------------------------------------===//
//             Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//

/// LowerFormalArguments - transform physical registers into virtual registers
/// and generate load operations for arguments places on the stack.
SDValue
MipsTargetLowering::LowerFormalArguments(SDValue Chain,
                                        CallingConv::ID CallConv, bool isVarArg,
                                        const SmallVectorImpl<ISD::InputArg>
                                        &Ins,
                                        DebugLoc dl, SelectionDAG &DAG,
                                        SmallVectorImpl<SDValue> &InVals)
                                          const {

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();

  unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF);
  MipsFI->setVarArgsFrameIndex(0);

  // Used with vargs to acumulate store chains.
  std::vector<SDValue> OutChains;

  // Keep track of the last register used for arguments
  unsigned ArgRegEnd = 0;

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
                 ArgLocs, *DAG.getContext());

  if (Subtarget->isABI_O32())
    CCInfo.AnalyzeFormalArguments(Ins,
                        isVarArg ? CC_MipsO32_VarArgs : CC_MipsO32);
  else
    CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);

  SDValue StackPtr;

  unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];

    // Arguments stored on registers
    if (VA.isRegLoc()) {
      EVT RegVT = VA.getLocVT();
      ArgRegEnd = VA.getLocReg();
      TargetRegisterClass *RC = 0;

      if (RegVT == MVT::i32)
        RC = Mips::CPURegsRegisterClass;
      else if (RegVT == MVT::f32)
        RC = Mips::FGR32RegisterClass;
      else if (RegVT == MVT::f64) {
        if (!Subtarget->isSingleFloat())
          RC = Mips::AFGR64RegisterClass;
      } else
        llvm_unreachable("RegVT not supported by FormalArguments Lowering");

      // Transform the arguments stored on
      // physical registers into virtual ones
      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegEnd, RC);
      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);

      // If this is an 8 or 16-bit value, it has been passed promoted
      // to 32 bits.  Insert an assert[sz]ext to capture this, then
      // truncate to the right size.
      if (VA.getLocInfo() != CCValAssign::Full) {
        unsigned Opcode = 0;
        if (VA.getLocInfo() == CCValAssign::SExt)
          Opcode = ISD::AssertSext;
        else if (VA.getLocInfo() == CCValAssign::ZExt)
          Opcode = ISD::AssertZext;
        if (Opcode)
          ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
                                 DAG.getValueType(VA.getValVT()));
        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
      }

      // Handle O32 ABI cases: i32->f32 and (i32,i32)->f64
      if (Subtarget->isABI_O32()) {
        if (RegVT == MVT::i32 && VA.getValVT() == MVT::f32)
          ArgValue = DAG.getNode(ISD::BITCAST, dl, MVT::f32, ArgValue);
        if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) {
          unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
                                    VA.getLocReg()+1, RC);
          SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
          SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, ArgValue2, ArgValue);
          ArgValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Pair);
        }
      }

      InVals.push_back(ArgValue);
    } else { // VA.isRegLoc()

      // sanity check
      assert(VA.isMemLoc());

      // The last argument is not a register anymore
      ArgRegEnd = 0;

      // The stack pointer offset is relative to the caller stack frame.
      // Since the real stack size is unknown here, a negative SPOffset
      // is used so there's a way to adjust these offsets when the stack
      // size get known (on EliminateFrameIndex). A dummy SPOffset is
      // used instead of a direct negative address (which is recorded to
      // be used on emitPrologue) to avoid mis-calc of the first stack
      // offset on PEI::calculateFrameObjectOffsets.
      // Arguments are always 32-bit.
      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
      int FI = MFI->CreateFixedObject(ArgSize, 0, true);
      MipsFI->recordLoadArgsFI(FI, -(ArgSize+
        (FirstStackArgLoc + VA.getLocMemOffset())));

      // Create load nodes to retrieve arguments from the stack
      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
                                   MachinePointerInfo::getFixedStack(FI),
                                   false, false, 0));
    }
  }

  // The mips ABIs for returning structs by value requires that we copy
  // the sret argument into $v0 for the return. Save the argument into
  // a virtual register so that we can access it from the return points.
  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
    unsigned Reg = MipsFI->getSRetReturnReg();
    if (!Reg) {
      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
      MipsFI->setSRetReturnReg(Reg);
    }
    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
  }

  // To meet ABI, when VARARGS are passed on registers, the registers
  // must have their values written to the caller stack frame. If the last
  // argument was placed in the stack, there's no need to save any register.
  if ((isVarArg) && (Subtarget->isABI_O32() && ArgRegEnd)) {
    if (StackPtr.getNode() == 0)
      StackPtr = DAG.getRegister(StackReg, getPointerTy());

    // The last register argument that must be saved is Mips::A3
    TargetRegisterClass *RC = Mips::CPURegsRegisterClass;
    unsigned StackLoc = ArgLocs.size()-1;

    for (++ArgRegEnd; ArgRegEnd <= Mips::A3; ++ArgRegEnd, ++StackLoc) {
      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegEnd, RC);
      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, MVT::i32);

      int FI = MFI->CreateFixedObject(4, 0, true);
      MipsFI->recordStoreVarArgsFI(FI, -(4+(StackLoc*4)));
      SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
      OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
                                       MachinePointerInfo(),
                                       false, false, 0));

      // Record the frame index of the first variable argument
      // which is a value necessary to VASTART.
      if (!MipsFI->getVarArgsFrameIndex())
        MipsFI->setVarArgsFrameIndex(FI);
    }
  }

  // All stores are grouped in one node to allow the matching between
  // the size of Ins and InVals. This only happens when on varg functions
  if (!OutChains.empty()) {
    OutChains.push_back(Chain);
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                        &OutChains[0], OutChains.size());
  }

  return Chain;
}

//===----------------------------------------------------------------------===//
//               Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//

SDValue
MipsTargetLowering::LowerReturn(SDValue Chain,
                                CallingConv::ID CallConv, bool isVarArg,
                                const SmallVectorImpl<ISD::OutputArg> &Outs,
                                const SmallVectorImpl<SDValue> &OutVals,
                                DebugLoc dl, SelectionDAG &DAG) const {

  // CCValAssign - represent the assignment of
  // the return value to a location
  SmallVector<CCValAssign, 16> RVLocs;

  // CCState - Info about the registers and stack slot.
  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
                 RVLocs, *DAG.getContext());

  // Analize return values.
  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);

  // If this is the first return lowered for this function, add
  // the regs to the liveout set for the function.
  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
    for (unsigned i = 0; i != RVLocs.size(); ++i)
      if (RVLocs[i].isRegLoc())
        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
  }

  SDValue Flag;

  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");

    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
                             OutVals[i], Flag);

    // guarantee that all emitted copies are
    // stuck together, avoiding something bad
    Flag = Chain.getValue(1);
  }

  // The mips ABIs for returning structs by value requires that we copy
  // the sret argument into $v0 for the return. We saved the argument into
  // a virtual register in the entry block, so now we copy the value out
  // and into $v0.
  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
    MachineFunction &MF      = DAG.getMachineFunction();
    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
    unsigned Reg = MipsFI->getSRetReturnReg();

    if (!Reg)
      llvm_unreachable("sret virtual register not created in the entry block");
    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());

    Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
    Flag = Chain.getValue(1);
  }

  // Return on Mips is always a "jr $ra"
  if (Flag.getNode())
    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
                       Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
  else // Return Void
    return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
                       Chain, DAG.getRegister(Mips::RA, MVT::i32));
}

//===----------------------------------------------------------------------===//
//                           Mips Inline Assembly Support
//===----------------------------------------------------------------------===//

/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
MipsTargetLowering::ConstraintType MipsTargetLowering::
getConstraintType(const std::string &Constraint) const
{
  // Mips specific constrainy
  // GCC config/mips/constraints.md
  //
  // 'd' : An address register. Equivalent to r
  //       unless generating MIPS16 code.
  // 'y' : Equivalent to r; retained for
  //       backwards compatibility.
  // 'f' : Floating Point registers.
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
      default : break;
      case 'd':
      case 'y':
      case 'f':
        return C_RegisterClass;
        break;
    }
  }
  return TargetLowering::getConstraintType(Constraint);
}

/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
MipsTargetLowering::getSingleConstraintMatchWeight(
    AsmOperandInfo &info, const char *constraint) const {
  ConstraintWeight weight = CW_Invalid;
  Value *CallOperandVal = info.CallOperandVal;
    // If we don't have a value, we can't do a match,
    // but allow it at the lowest weight.
  if (CallOperandVal == NULL)
    return CW_Default;
  const Type *type = CallOperandVal->getType();
  // Look at the constraint type.
  switch (*constraint) {
  default:
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    break;
  case 'd':
  case 'y':
    if (type->isIntegerTy())
      weight = CW_Register;
    break;
  case 'f':
    if (type->isFloatTy())
      weight = CW_Register;
    break;
  }
  return weight;
}

/// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
/// return a list of registers that can be used to satisfy the constraint.
/// This should only be used for C_RegisterClass constraints.
std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
{
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'r':
      return std::make_pair(0U, Mips::CPURegsRegisterClass);
    case 'f':
      if (VT == MVT::f32)
        return std::make_pair(0U, Mips::FGR32RegisterClass);
      if (VT == MVT::f64)
        if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
          return std::make_pair(0U, Mips::AFGR64RegisterClass);
    }
  }
  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}

/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
std::vector<unsigned> MipsTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
                                  EVT VT) const
{
  if (Constraint.size() != 1)
    return std::vector<unsigned>();

  switch (Constraint[0]) {
    default : break;
    case 'r':
    // GCC Mips Constraint Letters
    case 'd':
    case 'y':
      return make_vector<unsigned>(Mips::T0, Mips::T1, Mips::T2, Mips::T3,
             Mips::T4, Mips::T5, Mips::T6, Mips::T7, Mips::S0, Mips::S1,
             Mips::S2, Mips::S3, Mips::S4, Mips::S5, Mips::S6, Mips::S7,
             Mips::T8, 0);

    case 'f':
      if (VT == MVT::f32) {
        if (Subtarget->isSingleFloat())
          return make_vector<unsigned>(Mips::F2, Mips::F3, Mips::F4, Mips::F5,
                 Mips::F6, Mips::F7, Mips::F8, Mips::F9, Mips::F10, Mips::F11,
                 Mips::F20, Mips::F21, Mips::F22, Mips::F23, Mips::F24,
                 Mips::F25, Mips::F26, Mips::F27, Mips::F28, Mips::F29,
                 Mips::F30, Mips::F31, 0);
        else
          return make_vector<unsigned>(Mips::F2, Mips::F4, Mips::F6, Mips::F8,
                 Mips::F10, Mips::F20, Mips::F22, Mips::F24, Mips::F26,
                 Mips::F28, Mips::F30, 0);
      }

      if (VT == MVT::f64)
        if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
          return make_vector<unsigned>(Mips::D1, Mips::D2, Mips::D3, Mips::D4,
                 Mips::D5, Mips::D10, Mips::D11, Mips::D12, Mips::D13,
                 Mips::D14, Mips::D15, 0);
  }
  return std::vector<unsigned>();
}

bool
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
  // The Mips target isn't yet aware of offsets.
  return false;
}

bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
  if (VT != MVT::f32 && VT != MVT::f64)
    return false;
  if (Imm.isNegZero())
    return false;
  return Imm.isZero();
}