aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Mips/MipsInstrFPU.td
blob: b0c486dad8f7c6a0c55196acd7a33144d63cdeb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//===- MipsInstrFPU.td - Mips FPU Instruction Information -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Floating Point Instructions
// ------------------------
// * 64bit fp:
//    - 32 64-bit registers (default mode)
//    - 16 even 32-bit registers (32-bit compatible mode) for
//      single and double access.
// * 32bit fp:
//    - 16 even 32-bit registers - single and double (aliased)
//    - 32 32-bit registers (within single-only mode)
//===----------------------------------------------------------------------===//

// Floating Point Compare and Branch
def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisSameAs<0, 2>, SDTCisInt<0>,
                                     SDTCisVT<1, OtherVT>]>;
def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<0>, 
                                  SDTCisInt<2>]>;
def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond, 
                          [SDNPHasChain]>; 
def MipsFPCmp    : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp>;

// Operand for printing out a condition code.
let PrintMethod = "printFCCOperand" in
  def condcode : Operand<i32>;

//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//

def In32BitMode      : Predicate<"!Subtarget.isFP64bit()">;
def In64BitMode      : Predicate<"Subtarget.isFP64bit()">;
def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">;
def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;

//===----------------------------------------------------------------------===//
// Instruction Class Templates
//
// A set of multiclasses is used to address this in one shot. 
// SO32 - single precision only, uses all 32 32-bit fp registers
//        require FGR32 Register Class and IsSingleFloat
// AS32 - 16 even fp registers are used for single precision
//        require AFGR32 Register Class and In32BitMode
// S64  - 32 64 bit registers are used to hold 32-bit single precision values.
//        require FGR64 Register Class and In64BitMode
// D32  - 16 even fp registers are used for double precision
//        require AFGR64 Register Class and In32BitMode
// D64  - 32 64 bit registers are used to hold 64-bit double precision values.
//        require FGR64 Register Class and In64BitMode
//
// Only SO32, AS32 and D32 are supported right now.
//
//===----------------------------------------------------------------------===//

multiclass FFR1_1<bits<6> funct, string asmstr> 
{
  def _SO32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
      !strconcat(asmstr, ".s $fd, $fs"), []>, Requires<[IsSingleFloat]>;

  def _AS32 : FFR<0x11, funct, 0x0, (outs AFGR32:$fd), (ins AFGR32:$fs),
      !strconcat(asmstr, ".s $fd, $fs"), []>, Requires<[In32BitMode]>;

  def _D32  : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
      !strconcat(asmstr, ".d $fd, $fs"), []>, Requires<[In32BitMode]>;
}

multiclass FFR1_2<bits<6> funct, string asmstr, SDNode FOp> 
{
  def _SO32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
                 !strconcat(asmstr, ".s $fd, $fs"), 
                 [(set FGR32:$fd, (FOp FGR32:$fs))]>, Requires<[IsSingleFloat]>;

  def _AS32 : FFR<0x11, funct, 0x0, (outs AFGR32:$fd), (ins AFGR32:$fs),
                 !strconcat(asmstr, ".s $fd, $fs"), 
                 [(set AFGR32:$fd, (FOp AFGR32:$fs))]>, Requires<[In32BitMode]>;

  def _D32  : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
                 !strconcat(asmstr, ".d $fd, $fs"), 
                 [(set AFGR64:$fd, (FOp AFGR64:$fs))]>, Requires<[In32BitMode]>;
}

class FFR1_3<bits<6> funct, bits<5> fmt, RegisterClass RcSrc, 
              RegisterClass RcDst, string asmstr>: 
  FFR<0x11, funct, fmt, (outs RcSrc:$fd), (ins RcDst:$fs), 
      !strconcat(asmstr, " $fd, $fs"), []>; 


multiclass FFR1_4<bits<6> funct, string asmstr, SDNode FOp> {
  def _SO32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), 
                 (ins FGR32:$fs, FGR32:$ft), 
                 !strconcat(asmstr, ".s $fd, $fs, $ft"),
                 [(set FGR32:$fd, (FOp FGR32:$fs, FGR32:$ft))]>,
                 Requires<[IsSingleFloat]>;

  def _AS32 : FFR<0x11, funct, 0x0, (outs AFGR32:$fd), 
                 (ins AFGR32:$fs, AFGR32:$ft), 
                 !strconcat(asmstr, ".s $fd, $fs, $ft"),
                 [(set AFGR32:$fd, (FOp AFGR32:$fs, AFGR32:$ft))]>,
                 Requires<[In32BitMode]>;

  def _D32  : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), 
                 (ins AFGR64:$fs, AFGR64:$ft), 
                 !strconcat(asmstr, ".d $fd, $fs, $ft"),
                 [(set AFGR64:$fd, (FOp AFGR64:$fs, AFGR64:$ft))]>,
                 Requires<[In32BitMode]>;
}

//===----------------------------------------------------------------------===//
// Floating Point Instructions
//===----------------------------------------------------------------------===//

let ft = 0 in {
  defm FLOOR_W : FFR1_1<0b001111, "floor.w">;
  defm CEIL_W  : FFR1_1<0b001110, "ceil.w">;
  defm ROUND_W : FFR1_1<0b001100, "round.w">;
  defm TRUNC_W : FFR1_1<0b001101, "trunc.w">;
  defm CVTW    : FFR1_1<0b100100, "cvt.w">;
  defm FMOV    : FFR1_1<0b000110, "mov">;

  defm FABS    : FFR1_2<0b000101, "abs",  fabs>; 
  defm FNEG    : FFR1_2<0b000111, "neg",  fneg>; 
  defm FSQRT   : FFR1_2<0b000100, "sqrt", fsqrt>;

  let Predicates = [IsNotSingleFloat] in {
    /// Ceil to long signed integer
    def CEIL_LS   : FFR1_3<0b001010, 0x0, AFGR32, AFGR32, "ceil.l">;
    def CEIL_LD   : FFR1_3<0b001010, 0x1, AFGR64, AFGR64, "ceil.l">;

    /// Round to long signed integer
    def ROUND_LS  : FFR1_3<0b001000, 0x0, AFGR32, AFGR32, "round.l">;
    def ROUND_LD  : FFR1_3<0b001000, 0x1, AFGR64, AFGR64, "round.l">;

    /// Floor to long signed integer
    def FLOOR_LS  : FFR1_3<0b001011, 0x0, AFGR32, AFGR32, "floor.l">;
    def FLOOR_LD  : FFR1_3<0b001011, 0x1, AFGR64, AFGR64, "floor.l">;

    /// Trunc to long signed integer
    def TRUNC_LS  : FFR1_3<0b001001, 0x0, AFGR32, AFGR32, "trunc.l">;
    def TRUNC_LD  : FFR1_3<0b001001, 0x1, AFGR64, AFGR64, "trunc.l">;

    /// Convert to long signed integer
    def CVTL_S    : FFR1_3<0b100101, 0x0, AFGR32, AFGR32, "cvt.l">; 
    def CVTL_D    : FFR1_3<0b100101, 0x1, AFGR64, AFGR64, "cvt.l">; 

    /// Convert to Double Precison 
    def CVTD_S32 : FFR1_3<0b100001, 0x0, AFGR64, FGR32, "cvt.d.s">; 
    def CVTD_W32 : FFR1_3<0b100001, 0x2, AFGR64, FGR32, "cvt.d.w">; 
    def CVTD_L32 : FFR1_3<0b100001, 0x3, AFGR64, AFGR64, "cvt.d.l">; 
                   
    /// Convert to Single Precison
    def CVTS_D32 : FFR1_3<0b100000, 0x1, FGR32, AFGR64, "cvt.s.d">;
    def CVTS_L32 : FFR1_3<0b100000, 0x3, FGR32, AFGR64, "cvt.s.l">; 
  }

  /// Convert to Single Precison
  def CVTS_W32 : FFR1_3<0b100000, 0x2, FGR32,  FGR32,  "cvt.s.w">, 
                 Requires<[IsSingleFloat]>;
}

// The odd-numbered registers are only referenced when doing loads,
// stores, and moves between floating-point and integer registers.
// When defining instructions, we reference all 32-bit registers, 
// regardless of register aliasing.
let fd = 0 in {
  /// Move Control Registers From/To CPU Registers
  ///def CFC1  : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins FGR32:$fs),
  ///                "cfc1 $rt, $fs", []>;

  ///def CTC1  : FFR<0x11, 0x0, 0x6, (outs CPURegs:$rt), (ins FGR32:$fs),
  ///                "ctc1 $rt, $fs", []>;
  ///                
  ///def CFC1A : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins AFGR32:$fs),
  ///                "cfc1 $rt, $fs", []>;

  ///def CTC1A : FFR<0x11, 0x0, 0x6, (outs CPURegs:$rt), (ins AFGR32:$fs),
  ///                "ctc1 $rt, $fs", []>;

  def MFC1  : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
                  "mfc1 $rt, $fs", []>;

  def MTC1  : FFR<0x11, 0x00, 0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
                  "mtc1 $fs, $rt", []>;

  def MFC1A : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins AFGR32:$fs),
                  "mfc1 $rt, $fs", []>;

  def MTC1A : FFR<0x11, 0x00, 0x04, (outs AFGR32:$fs), (ins CPURegs:$rt),
                  "mtc1 $fs, $rt", []>;
}

/// Floating Point Memory Instructions
let Predicates = [IsNotSingleFloat] in {
  def LDC1 : FFI<0b110101, (outs AFGR64:$ft), (ins mem:$addr), 
                 "ldc1 $ft, $addr", [(set AFGR64:$ft, (load addr:$addr))]>;

  def SDC1 : FFI<0b111101, (outs), (ins AFGR64:$ft, mem:$addr), 
                 "sdc1 $ft, $addr", [(store AFGR64:$ft, addr:$addr)]>;
}

// LWC1 and SWC1 can always be emited with odd registers.
def LWC1  : FFI<0b110001, (outs FGR32:$ft), (ins mem:$addr), "lwc1 $ft, $addr",
               [(set FGR32:$ft, (load addr:$addr))]>; 
def SWC1  : FFI<0b111001, (outs), (ins FGR32:$ft, mem:$addr), "swc1 $ft, $addr",
               [(store FGR32:$ft, addr:$addr)]>; 

def LWC1A : FFI<0b110001, (outs AFGR32:$ft), (ins mem:$addr), "lwc1 $ft, $addr",
               [(set AFGR32:$ft, (load addr:$addr))]>; 
def SWC1A : FFI<0b111001, (outs), (ins AFGR32:$ft, mem:$addr), 
                "swc1 $ft, $addr", [(store AFGR32:$ft, addr:$addr)]>; 

/// Floating-point Aritmetic
defm FADD : FFR1_4<0x10, "add", fadd>;
defm FDIV : FFR1_4<0x03, "div", fdiv>;
defm FMUL : FFR1_4<0x02, "mul", fmul>;
defm FSUB : FFR1_4<0x01, "sub", fsub>;

//===----------------------------------------------------------------------===//
// Floating Point Branch Codes
//===----------------------------------------------------------------------===//
// Mips branch codes. These correspond to condcode in MipsInstrInfo.h. 
// They must be kept in synch.
def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
def MIPS_BRANCH_FL : PatLeaf<(i32 2)>;
def MIPS_BRANCH_TL : PatLeaf<(i32 3)>;

/// Floating Point Branch of False/True (Likely)
let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in {
  class FBRANCH<PatLeaf op, string asmstr> : FFI<0x11, (ops), 
        (ins brtarget:$dst), !strconcat(asmstr, " $dst"),
        [(MipsFPBrcond op, bb:$dst, FCR31)]>;
}
def BC1F  : FBRANCH<MIPS_BRANCH_F, "bc1f">;
def BC1T  : FBRANCH<MIPS_BRANCH_T, "bc1t">;
def BC1FL : FBRANCH<MIPS_BRANCH_FL, "bc1fl">;
def BC1TL : FBRANCH<MIPS_BRANCH_TL, "bc1tl">;

//===----------------------------------------------------------------------===//
// Floating Point Flag Conditions
//===----------------------------------------------------------------------===//
// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h. 
// They must be kept in synch.
def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
def MIPS_FCOND_EQ   : PatLeaf<(i32 2)>;
def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;

/// Floating Point Compare
let hasDelaySlot = 1, Defs=[FCR31] in {

//multiclass FCC1_1<RegisterClass RC>

  def FCMP_SO32 : FCC<0x0, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
      "c.$cc.s $fs $ft", [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc), 
      (implicit FCR31)]>, Requires<[IsSingleFloat]>;
  
  def FCMP_AS32 : FCC<0x0, (outs), (ins AFGR32:$fs, AFGR32:$ft, condcode:$cc),
      "c.$cc.s $fs $ft", [(MipsFPCmp AFGR32:$fs, AFGR32:$ft, imm:$cc), 
      (implicit FCR31)]>, Requires<[In32BitMode]>;

  def FCMP_D32 : FCC<0x1, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
      "c.$cc.d $fs $ft", [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc),
      (implicit FCR31)]>, Requires<[In32BitMode]>;
}

//===----------------------------------------------------------------------===//
// Floating Point Patterns
//===----------------------------------------------------------------------===//
def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVTS_W32 (MTC1 CPURegs:$src))>;
def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVTD_W32 (MTC1 CPURegs:$src))>;
def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_SO32 FGR32:$src))>;
def : Pat<(i32 (fp_to_sint AFGR32:$src)), (MFC1 (TRUNC_W_AS32 AFGR32:$src))>;