aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Mips/MipsInstrInfo.td
blob: 4cde36d18881e033245e74738b82fe6d997d44e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
//===- MipsInstrInfo.td - Mips Register defs --------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//

include "MipsInstrFormats.td"

//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//

// Call
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def MipsJmpLink     : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, [SDNPHasChain,
                             SDNPOutFlag]>;

// Hi and Lo nodes are used to handle global addresses. Used on 
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol 
// static model. (nothing to do with Mips Registers Hi and Lo)
def MipsHi  : SDNode<"MipsISD::Hi", SDTIntUnaryOp, [SDNPOutFlag]>;
def MipsLo  : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;

// Return
def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def MipsRet     : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
                             SDNPOptInFlag]>;

// These are target-independent nodes, but have target-specific formats.
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>,
                                         SDTCisVT<1, i32>]>;

def callseq_start   : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
                             [SDNPHasChain, SDNPOutFlag]>;
def callseq_end     : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
                             [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;

//===----------------------------------------------------------------------===//
// Mips Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def IsStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">;

//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//

// Instruction operand types
def brtarget    : Operand<OtherVT>;
def calltarget  : Operand<i32>;
def uimm16      : Operand<i32>;
def simm16      : Operand<i32>;
def shamt       : Operand<i32>;
def addrlabel   : Operand<i32>;

// Address operand
def mem : Operand<i32> {
  let PrintMethod = "printMemOperand";
  let MIOperandInfo = (ops simm16, CPURegs);
}

// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
  return getI32Imm((unsigned)N->getValue() & 0xFFFF);
}]>;

// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
  return getI32Imm((unsigned)N->getValue() >> 16);
}]>;

// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16  : PatLeaf<(imm), [{
  if (N->getValueType(0) == MVT::i32)
    return (int32_t)N->getValue() == (short)N->getValue();
  else
    return (int64_t)N->getValue() == (short)N->getValue();
}]>;

// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16  : PatLeaf<(imm), [{
  if (N->getValueType(0) == MVT::i32)
    return (uint32_t)N->getValue() == (unsigned short)N->getValue();
  else
    return (uint64_t)N->getValue() == (unsigned short)N->getValue();
}], LO16>;

// Node immediate fits as 32-bit zero extended on target immediate.
//def immZExt32  : PatLeaf<(imm), [{
//  return (uint64_t)N->getValue() == (uint32_t)N->getValue();
//}], LO16>;

// shamt field must fit in 5 bits.
def immZExt5 : PatLeaf<(imm), [{
  return N->getValue() == ((N->getValue()) & 0x1f) ;
}]>;

// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr : ComplexPattern<i32, 2, "SelectAddr", [frameindex], []>;

//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//

// Arithmetic 3 register operands
let isCommutable = 1 in
class ArithR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
             InstrItinClass itin>:
  FR< op,
      func,
      (outs CPURegs:$dst),
      (ins CPURegs:$b, CPURegs:$c),
      !strconcat(instr_asm, " $dst, $b, $c"),
      [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], itin>;

let isCommutable = 1 in
class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm>:
  FR< op,
      func,
      (outs CPURegs:$dst),
      (ins CPURegs:$b, CPURegs:$c),
      !strconcat(instr_asm, " $dst, $b, $c"),
      [], IIAlu>;

// Arithmetic 2 register operands
let isCommutable = 1 in
class ArithI<bits<6> op, string instr_asm, SDNode OpNode,
             Operand Od, PatLeaf imm_type> :
  FI< op,
      (outs CPURegs:$dst),
      (ins CPURegs:$b, Od:$c),
      !strconcat(instr_asm, " $dst, $b, $c"),
      [(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))], IIAlu>;

// Arithmetic Multiply ADD/SUB
let rd=0 in
class MArithR<bits<6> func, string instr_asm> :
  FR< 0x1c,
      func,
      (outs CPURegs:$rs),
      (ins CPURegs:$rt),
      !strconcat(instr_asm, " $rs, $rt"),
      [], IIImul>;

//  Logical
class LogicR<bits<6> func, string instr_asm, SDNode OpNode>:
  FR< 0x00,
      func,
      (outs CPURegs:$dst),
      (ins CPURegs:$b, CPURegs:$c),
      !strconcat(instr_asm, " $dst, $b, $c"),
      [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;

class LogicI<bits<6> op, string instr_asm, SDNode OpNode>:
  FI< op,
      (outs CPURegs:$dst),
      (ins CPURegs:$b, uimm16:$c),
      !strconcat(instr_asm, " $dst, $b, $c"),
      [(set CPURegs:$dst, (OpNode CPURegs:$b, immSExt16:$c))], IIAlu>;

class LogicNOR<bits<6> op, bits<6> func, string instr_asm>:
  FR< op,
      func,
      (outs CPURegs:$dst),
      (ins CPURegs:$b, CPURegs:$c),
      !strconcat(instr_asm, " $dst, $b, $c"),
      [(set CPURegs:$dst, (not (or CPURegs:$b, CPURegs:$c)))], IIAlu>;

// Shifts
let rt = 0 in
class LogicR_shift_imm<bits<6> func, string instr_asm, SDNode OpNode>:
  FR< 0x00,
      func,
      (outs CPURegs:$dst),
      (ins CPURegs:$b, shamt:$c),
      !strconcat(instr_asm, " $dst, $b, $c"),
      [(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))], IIAlu>;

class LogicR_shift_reg<bits<6> func, string instr_asm, SDNode OpNode>:
  FR< 0x00,
      func,
      (outs CPURegs:$dst),
      (ins CPURegs:$b, CPURegs:$c),
      !strconcat(instr_asm, " $dst, $b, $c"),
      [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;

// Load Upper Imediate
class LoadUpper<bits<6> op, string instr_asm>:
  FI< op,
      (outs CPURegs:$dst),
      (ins uimm16:$imm),
      !strconcat(instr_asm, " $dst, $imm"),
      [], IIAlu>;

// Memory Load/Store
let isLoad = 1, hasDelaySlot = 1 in
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode>:
  FI< op,
      (outs CPURegs:$dst),
      (ins mem:$addr),
      !strconcat(instr_asm, " $dst, $addr"),
      [(set CPURegs:$dst, (OpNode addr:$addr))], IILoad>;

let isStore = 1 in
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode>:
  FI< op,
      (outs),
      (ins CPURegs:$dst, mem:$addr),
      !strconcat(instr_asm, " $dst, $addr"),
      [(OpNode CPURegs:$dst, addr:$addr)], IIStore>;

// Conditional Branch
let isBranch = 1, isTerminator=1, hasDelaySlot = 1 in {
class CBranch<bits<6> op, string instr_asm, PatFrag cond_op>:
  FI< op,
      (outs),
      (ins CPURegs:$a, CPURegs:$b, brtarget:$offset),
      !strconcat(instr_asm, " $a, $b, $offset"),
      [(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)],
      IIBranch>;


class CBranchZero<bits<6> op, string instr_asm, PatFrag cond_op>:
  FI< op,
      (outs),
      (ins CPURegs:$src, brtarget:$offset),
      !strconcat(instr_asm, " $src, $offset"),
      [(brcond (cond_op CPURegs:$src, 0), bb:$offset)],
      IIBranch>;
}

// SetCC
class SetCC_R<bits<6> op, bits<6> func, string instr_asm,
      PatFrag cond_op>:
  FR< op,
      func,
      (outs CPURegs:$dst),
      (ins CPURegs:$b, CPURegs:$c),
      !strconcat(instr_asm, " $dst, $b, $c"),
      [(set CPURegs:$dst, (cond_op CPURegs:$b, CPURegs:$c))],
      IIAlu>;

class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op,
      Operand Od, PatLeaf imm_type>:
  FI< op,
      (outs CPURegs:$dst),
      (ins CPURegs:$b, Od:$c),
      !strconcat(instr_asm, " $dst, $b, $c"),
      [(set CPURegs:$dst, (cond_op CPURegs:$b, imm_type:$c))],
      IIAlu>;

// Unconditional branch
let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
class JumpFJ<bits<6> op, string instr_asm>:
  FJ< op,
      (outs),
      (ins brtarget:$target),
      !strconcat(instr_asm, " $target"),
      [(br bb:$target)], IIBranch>;

let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in
class JumpFR<bits<6> op, bits<6> func, string instr_asm>:
  FR< op,
      func,
      (outs),
      (ins CPURegs:$target),
      !strconcat(instr_asm, " $target"),
      [(brind CPURegs:$target)], IIBranch>;

// Jump and Link (Call)
let isCall=1, hasDelaySlot=1,
  // All calls clobber the non-callee saved registers...
  Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2,
          T3, T4, T5, T6, T7, T8, T9, K0, K1], Uses = [GP] in {
  class JumpLink<bits<6> op, string instr_asm>:
    FJ< op,
        (outs),
        (ins calltarget:$target),
        !strconcat(instr_asm, " $target"),
        [(MipsJmpLink imm:$target)], IIBranch>;

  let rd=31 in
  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>:
    FR< op,
        func,
        (outs),
        (ins CPURegs:$rs),
        !strconcat(instr_asm, " $rs"),
        [(MipsJmpLink CPURegs:$rs)], IIBranch>;

  class BranchLink<string instr_asm>:
    FI< 0x1,
        (outs),
        (ins CPURegs:$rs, brtarget:$target),
        !strconcat(instr_asm, " $rs, $target"),
        [], IIBranch>;
}

// Mul, Div
class MulDiv<bits<6> func, string instr_asm, InstrItinClass itin>:
  FR< 0x00,
      func,
      (outs),
      (ins CPURegs:$a, CPURegs:$b),
      !strconcat(instr_asm, " $a, $b"),
      [], itin>;

// Move from Hi/Lo
class MoveFromTo<bits<6> func, string instr_asm>:
  FR< 0x00,
      func,
      (outs CPURegs:$dst),
      (ins),
      !strconcat(instr_asm, " $dst"),
      [], IIHiLo>;

// Count Leading Ones/Zeros in Word
class CountLeading<bits<6> func, string instr_asm>:
  FR< 0x1c,
      func,
      (outs CPURegs:$dst),
      (ins CPURegs:$src),
      !strconcat(instr_asm, " $dst, $src"),
      [], IIAlu>;

class EffectiveAddress<string instr_asm> :
  FI<0x09,
     (outs CPURegs:$dst),
     (ins mem:$addr),
     instr_asm,
     [(set CPURegs:$dst, addr:$addr)], IIAlu>;

//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//

// As stack alignment is always done with addiu, we need a 16-bit immediate
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : PseudoInstMips<(outs), (ins uimm16:$amt),
                                      "!ADJCALLSTACKDOWN $amt",
                                      [(callseq_start imm:$amt)]>;
def ADJCALLSTACKUP   : PseudoInstMips<(outs), (ins uimm16:$amt1, uimm16:$amt2),
                                      "!ADJCALLSTACKUP $amt1",
                                      [(callseq_end imm:$amt1, imm:$amt2)]>;
}

let isImplicitDef = 1 in
def IMPLICIT_DEF_CPURegs : PseudoInstMips<(outs CPURegs:$dst), (ins),
                                          "!IMPLICIT_DEF $dst",
                                          [(set CPURegs:$dst, (undef))]>;

// When handling PIC code the assembler needs .cpload and .cprestore
// directives. If the real instructions corresponding these directives
// are used, we have the same behavior, but get also a bunch of warnings
// from the assembler.
def CPLOAD: PseudoInstMips<(outs), (ins CPURegs:$reg),
                          ".set noreorder\n\t.cpload $reg\n\t.set reorder\n", []>;
def CPRESTORE: PseudoInstMips<(outs), (ins uimm16:$loc),
                              ".cprestore $loc\n", []>;

//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// MipsI Instructions
//===----------------------------------------------------------------------===//

// Arithmetic

// ADDiu just accept 16-bit immediates but we handle this on Pat's.
// immZExt32 is used here so it can match GlobalAddress immediates.
def ADDiu   : ArithI<0x09, "addiu", add, uimm16, immZExt16>;
def ADDi    : ArithI<0x08, "addi",  add, simm16, immSExt16>;
def MUL     : ArithR<0x1c, 0x02, "mul", mul, IIImul>;
def ADDu    : ArithR<0x00, 0x21, "addu", add, IIAlu>;
def SUBu    : ArithR<0x00, 0x23, "subu", sub, IIAlu>;
def ADD     : ArithOverflowR<0x00, 0x20, "add">;
def SUB     : ArithOverflowR<0x00, 0x22, "sub">;

// Logical
def AND     : LogicR<0x24, "and", and>;
def OR      : LogicR<0x25, "or",  or>;
def XOR     : LogicR<0x26, "xor", xor>;
def ANDi    : LogicI<0x0c, "andi", and>;
def ORi     : LogicI<0x0d, "ori",  or>;
def XORi    : LogicI<0x0e, "xori",  xor>;
def NOR     : LogicNOR<0x00, 0x27, "nor">;

// Shifts
def SLL     : LogicR_shift_imm<0x00, "sll", shl>;
def SRL     : LogicR_shift_imm<0x02, "srl", srl>;
def SRA     : LogicR_shift_imm<0x03, "sra", sra>;
def SLLV    : LogicR_shift_reg<0x04, "sllv", shl>;
def SRLV    : LogicR_shift_reg<0x06, "srlv", srl>;
def SRAV    : LogicR_shift_reg<0x07, "srav", sra>;

// Load Upper Immediate
def LUi     : LoadUpper<0x0f, "lui">;

// Load/Store
def LB      : LoadM<0x20, "lb",  sextloadi8>;
def LBu     : LoadM<0x24, "lbu", zextloadi8>;
def LH      : LoadM<0x21, "lh",  sextloadi16>;
def LHu     : LoadM<0x25, "lhu", zextloadi16>;
def LW      : LoadM<0x23, "lw",  load>;
def SB      : StoreM<0x28, "sb", truncstorei8>;
def SH      : StoreM<0x29, "sh", truncstorei16>;
def SW      : StoreM<0x2b, "sw", store>;

// Conditional Branch
def BEQ     : CBranch<0x04, "beq", seteq>;
def BNE     : CBranch<0x05, "bne", setne>;

let rt=1 in
def BGEZ    : CBranchZero<0x01, "bgez", setge>;

let rt=0 in {
def BGTZ    : CBranchZero<0x07, "bgtz", setgt>;
def BLEZ    : CBranchZero<0x07, "blez", setle>;
def BLTZ    : CBranchZero<0x01, "bltz", setlt>;
}

// Set Condition Code
def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt>;
def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult>;
def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>;
def SLTiu   : SetCC_I<0x0b, "sltiu", setult, uimm16, immZExt16>;

// Unconditional jump
def J       : JumpFJ<0x02, "j">;
def JR      : JumpFR<0x00, 0x08, "jr">;

// Jump and Link (Call)
def JAL     : JumpLink<0x03, "jal">;
def JALR    : JumpLinkReg<0x00, 0x09, "jalr">;
def BGEZAL  : BranchLink<"bgezal">;
def BLTZAL  : BranchLink<"bltzal">;

// MulDiv and Move From Hi/Lo operations, have
// their correpondent SDNodes created on ISelDAG.
// Special Mul, Div operations
def MULT    : MulDiv<0x18, "mult", IIImul>;
def MULTu   : MulDiv<0x19, "multu", IIImul>;
def DIV     : MulDiv<0x1a, "div", IIIdiv>;
def DIVu    : MulDiv<0x1b, "divu", IIIdiv>;

// Move From Hi/Lo
def MFHI    : MoveFromTo<0x10, "mfhi">;
def MFLO    : MoveFromTo<0x12, "mflo">;
def MTHI    : MoveFromTo<0x11, "mthi">;
def MTLO    : MoveFromTo<0x13, "mtlo">;

// Count Leading
// CLO/CLZ are part of the newer MIPS32(tm) instruction
// set and not older Mips I keep this for future use
// though. 
//def CLO     : CountLeading<0x21, "clo">;
//def CLZ     : CountLeading<0x20, "clz">;

// MADD*/MSUB* are not part of MipsI either.
//def MADD    : MArithR<0x00, "madd">;
//def MADDU   : MArithR<0x01, "maddu">;
//def MSUB    : MArithR<0x04, "msub">;
//def MSUBU   : MArithR<0x05, "msubu">;

// No operation
let addr=0 in
def NOP     : FJ<0, (outs), (ins), "nop", [], IIAlu>;

// Ret instruction - as mips does not have "ret" a
// jr $ra must be generated.
let isReturn=1, isTerminator=1, hasDelaySlot=1,
    isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in
{
  def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target),
                "jr $target", [(MipsRet CPURegs:$target)], IIBranch>;
}

// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched. It's similar to Sparc LEA_ADDRi
def LEA_ADDiu : EffectiveAddress<"addiu $dst, ${addr:stackloc}">;

//===----------------------------------------------------------------------===//
//  Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//

// Small immediates
def : Pat<(i32 immSExt16:$in),
          (ADDiu ZERO, imm:$in)>;
def : Pat<(i32 immZExt16:$in),
          (ORi ZERO, imm:$in)>;

// Arbitrary immediates
def : Pat<(i32 imm:$imm),
          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;

// Call
def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
          (JAL tglobaladdr:$dst)>;
def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
          (JAL texternalsym:$dst)>;
def : Pat<(MipsJmpLink CPURegs:$dst),
          (JALR CPURegs:$dst)>;

// GlobalAddress, Constant Pool, ExternalSymbol, and JumpTable
def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : Pat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
          (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
def : Pat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
          (ADDiu CPURegs:$hi, tjumptable:$lo)>;

// Mips does not have not, so we increase the operation
def : Pat<(not CPURegs:$in),
          (NOR CPURegs:$in, ZERO)>;

// extended load and stores
def : Pat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
def : Pat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
def : Pat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
def : Pat<(truncstorei1 CPURegs:$src, addr:$addr),
           (SB CPURegs:$src, addr:$addr)>;

// some peepholes
def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;

///
/// brcond patterns
///

// direct match equal/notequal zero branches
def : Pat<(brcond (setne CPURegs:$lhs, 0), bb:$dst),
          (BNE CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (seteq CPURegs:$lhs, 0), bb:$dst),
          (BEQ CPURegs:$lhs, ZERO, bb:$dst)>;

def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
          (BGEZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
          (BGEZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;

def : Pat<(brcond (setgt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
          (BGTZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setugt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
          (BGTZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;

def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
          (BLEZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
          (BLEZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;

def : Pat<(brcond (setlt CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
          (BNE (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setult CPURegs:$lhs, immZExt16:$rhs), bb:$dst),
          (BNE (SLTiu CPURegs:$lhs, immZExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setlt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
          (BNE (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setult CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
          (BNE (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;

def : Pat<(brcond (setlt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
          (BLTZ (SUB CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setult CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
          (BLTZ (SUBu CPURegs:$lhs, CPURegs:$rhs), bb:$dst)>;

// generic brcond pattern
def : Pat<(brcond CPURegs:$cond, bb:$dst),
          (BNE CPURegs:$cond, ZERO, bb:$dst)>;

///
/// setcc patterns, only matched when there
/// is no brcond following a setcc operation
///

// setcc 2 register operands
def : Pat<(setle CPURegs:$lhs, CPURegs:$rhs),
          (XORi (SLT CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setule CPURegs:$lhs, CPURegs:$rhs),
          (XORi (SLTu CPURegs:$rhs, CPURegs:$lhs), 1)>;

def : Pat<(setgt CPURegs:$lhs, CPURegs:$rhs),
          (SLT CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setugt CPURegs:$lhs, CPURegs:$rhs),
          (SLTu CPURegs:$rhs, CPURegs:$lhs)>;

def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs),
          (XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, CPURegs:$rhs),
          (XORi (SLTu CPURegs:$lhs, CPURegs:$rhs), 1)>;

def : Pat<(setne CPURegs:$lhs, CPURegs:$rhs),
          (OR (SLT CPURegs:$lhs, CPURegs:$rhs),
              (SLT CPURegs:$rhs, CPURegs:$lhs))>;

def : Pat<(seteq CPURegs:$lhs, CPURegs:$rhs),
          (XORi (OR (SLT CPURegs:$lhs, CPURegs:$rhs),
                    (SLT CPURegs:$rhs, CPURegs:$lhs)), 1)>;

// setcc reg/imm operands
def : Pat<(setge CPURegs:$lhs, immSExt16:$rhs),
          (XORi (SLTi CPURegs:$lhs, immSExt16:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, immZExt16:$rhs),
          (XORi (SLTiu CPURegs:$lhs, immZExt16:$rhs), 1)>;