1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
|
//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "MipsInstrFormats.td"
//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//
def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<3, 4>,
SDTCisInt<4>]>;
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDT_MipsMAddMSub : SDTypeProfile<0, 4,
[SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<2, 3>]>;
def SDT_MipsDivRem : SDTypeProfile<0, 2,
[SDTCisVT<0, i32>,
SDTCisSameAs<0, 1>]>;
def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
def SDT_MipsDynAlloc : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
SDTCisVT<1, iPTR>]>;
def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
// Call
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
SDNPVariadic]>;
// Hi and Lo nodes are used to handle global addresses. Used on
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
// static model. (nothing to do with Mips Registers Hi and Lo)
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
// TlsGd node is used to handle General Dynamic TLS
def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
// TprelHi and TprelLo nodes are used to handle Local Exec TLS
def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
// Thread pointer
def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
// Return
def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
SDNPOptInGlue]>;
// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
// MAdd*/MSub* nodes
def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
// DivRem(u) nodes
def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
[SDNPOutGlue]>;
def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
[SDNPOutGlue]>;
// Target constant nodes that are not part of any isel patterns and remain
// unchanged can cause instructions with illegal operands to be emitted.
// Wrapper node patterns give the instruction selector a chance to replace
// target constant nodes that would otherwise remain unchanged with ADDiu
// nodes. Without these wrapper node patterns, the following conditional move
// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
// compiled:
// movn %got(d)($gp), %got(c)($gp), $4
// This instruction is illegal since movn can take only register operands.
def MipsWrapperPIC : SDNode<"MipsISD::WrapperPIC", SDTIntUnaryOp>;
// Pointer to dynamically allocated stack area.
def MipsDynAlloc : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
[SDNPHasChain, SDNPInGlue]>;
def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>;
//===----------------------------------------------------------------------===//
// Mips Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">;
def HasBitCount : Predicate<"Subtarget.hasBitCount()">;
def HasSwap : Predicate<"Subtarget.hasSwap()">;
def HasCondMov : Predicate<"Subtarget.hasCondMov()">;
def IsMips32 : Predicate<"Subtarget.isMips32()">;
def IsMips32r2 : Predicate<"Subtarget.isMips32r2()">;
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Instruction operand types
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
def simm16 : Operand<i32>;
def shamt : Operand<i32>;
// Unsigned Operand
def uimm16 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
// Address operand
def mem : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops CPURegs, simm16);
}
def mem_ea : Operand<i32> {
let PrintMethod = "printMemOperandEA";
let MIOperandInfo = (ops CPURegs, simm16);
}
// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() & 0xFFFF);
}]>;
// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() >> 16);
}]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
else
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;
// shamt field must fit in 5 bits.
def immZExt5 : PatLeaf<(imm), [{
return N->getZExtValue() == ((N->getZExtValue()) & 0x1f) ;
}]>;
// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr : ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], []>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Arithmetic 3 register operands
class ArithR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
InstrItinClass itin, bit isComm = 0>:
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], itin> {
let isCommutable = isComm;
}
class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
bit isComm = 0>:
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"), [], IIAlu> {
let isCommutable = isComm;
}
// Arithmetic 2 register operands
class ArithI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))], IIAlu>;
class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"), [], IIAlu>;
// Arithmetic Multiply ADD/SUB
let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
!strconcat(instr_asm, "\t$rs, $rt"),
[(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
let isCommutable = isComm;
}
// Logical
let isCommutable = 1 in
class LogicR<bits<6> func, string instr_asm, SDNode OpNode>:
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;
class LogicI<bits<6> op, string instr_asm, SDNode OpNode>:
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, uimm16:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt16:$c))], IIAlu>;
let isCommutable = 1 in
class LogicNOR<bits<6> op, bits<6> func, string instr_asm>:
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (not (or CPURegs:$b, CPURegs:$c)))], IIAlu>;
// Shifts
class LogicR_shift_rotate_imm<bits<6> func, bits<5> _rs, string instr_asm,
SDNode OpNode>:
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, shamt:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))], IIAlu> {
let rs = _rs;
}
class LogicR_shift_rotate_reg<bits<6> func, bits<5> _shamt, string instr_asm,
SDNode OpNode>:
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$c, CPURegs:$b),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu> {
let shamt = _shamt;
}
// Load Upper Imediate
class LoadUpper<bits<6> op, string instr_asm>:
FI< op,
(outs CPURegs:$dst),
(ins uimm16:$imm),
!strconcat(instr_asm, "\t$dst, $imm"),
[], IIAlu>;
// Memory Load/Store
let canFoldAsLoad = 1, hasDelaySlot = 1 in
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI<op, (outs CPURegs:$dst), (ins mem:$addr),
!strconcat(instr_asm, "\t$dst, $addr"),
[(set CPURegs:$dst, (OpNode addr:$addr))], IILoad>;
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI<op, (outs), (ins CPURegs:$dst, mem:$addr),
!strconcat(instr_asm, "\t$dst, $addr"),
[(OpNode CPURegs:$dst, addr:$addr)], IIStore>;
// Conditional Branch
let isBranch = 1, isTerminator=1, hasDelaySlot = 1 in {
class CBranch<bits<6> op, string instr_asm, PatFrag cond_op>:
FI<op, (outs), (ins CPURegs:$a, CPURegs:$b, brtarget:$offset),
!strconcat(instr_asm, "\t$a, $b, $offset"),
[(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)],
IIBranch>;
class CBranchZero<bits<6> op, string instr_asm, PatFrag cond_op>:
FI<op, (outs), (ins CPURegs:$src, brtarget:$offset),
!strconcat(instr_asm, "\t$src, $offset"),
[(brcond (cond_op CPURegs:$src, 0), bb:$offset)],
IIBranch>;
}
// SetCC
class SetCC_R<bits<6> op, bits<6> func, string instr_asm,
PatFrag cond_op>:
FR<op, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, CPURegs:$c))],
IIAlu>;
class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op,
Operand Od, PatLeaf imm_type>:
FI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, imm_type:$c))],
IIAlu>;
// Unconditional branch
let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
class JumpFJ<bits<6> op, string instr_asm>:
FJ<op, (outs), (ins brtarget:$target),
!strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch>;
let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in
class JumpFR<bits<6> op, bits<6> func, string instr_asm>:
FR<op, func, (outs), (ins CPURegs:$target),
!strconcat(instr_asm, "\t$target"), [(brind CPURegs:$target)], IIBranch>;
// Jump and Link (Call)
let isCall=1, hasDelaySlot=1,
// All calls clobber the non-callee saved registers...
Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
class JumpLink<bits<6> op, string instr_asm>:
FJ<op, (outs), (ins calltarget:$target, variable_ops),
!strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
IIBranch>;
let rd=31 in
class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>:
FR<op, func, (outs), (ins CPURegs:$rs, variable_ops),
!strconcat(instr_asm, "\t$rs"), [(MipsJmpLink CPURegs:$rs)], IIBranch>;
class BranchLink<string instr_asm>:
FI<0x1, (outs), (ins CPURegs:$rs, brtarget:$target, variable_ops),
!strconcat(instr_asm, "\t$rs, $target"), [], IIBranch>;
}
// Mul, Div
let Defs = [HI, LO] in {
let isCommutable = 1 in
class Mul<bits<6> func, string instr_asm, InstrItinClass itin>:
FR<0x00, func, (outs), (ins CPURegs:$a, CPURegs:$b),
!strconcat(instr_asm, "\t$a, $b"), [], itin>;
class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
FR<0x00, func, (outs), (ins CPURegs:$a, CPURegs:$b),
!strconcat(instr_asm, "\t$$zero, $a, $b"),
[(op CPURegs:$a, CPURegs:$b)], itin>;
}
// Move from Hi/Lo
class MoveFromLOHI<bits<6> func, string instr_asm>:
FR<0x00, func, (outs CPURegs:$dst), (ins),
!strconcat(instr_asm, "\t$dst"), [], IIHiLo>;
class MoveToLOHI<bits<6> func, string instr_asm>:
FR<0x00, func, (outs), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$src"), [], IIHiLo>;
class EffectiveAddress<string instr_asm> :
FI<0x09, (outs CPURegs:$dst), (ins mem_ea:$addr),
instr_asm, [(set CPURegs:$dst, addr:$addr)], IIAlu>;
// Count Leading Ones/Zeros in Word
class CountLeading<bits<6> func, string instr_asm, list<dag> pattern>:
FR<0x1c, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"), pattern, IIAlu>,
Requires<[HasBitCount]> {
let shamt = 0;
let rt = rd;
}
// Sign Extend in Register.
class SignExtInReg<bits<6> func, string instr_asm, ValueType vt>:
FR<0x3f, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"),
[(set CPURegs:$dst, (sext_inreg CPURegs:$src, vt))], NoItinerary>;
// Byte Swap
class ByteSwap<bits<6> func, string instr_asm>:
FR<0x1f, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"),
[(set CPURegs:$dst, (bswap CPURegs:$src))], NoItinerary>;
// Conditional Move
class CondMov<bits<6> func, string instr_asm, PatLeaf MovCode>:
FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$F, CPURegs:$T,
CPURegs:$cond), !strconcat(instr_asm, "\t$dst, $T, $cond"),
[], NoItinerary>;
// Read Hardware
class ReadHardware: FR<0x1f, 0x3b, (outs CPURegs:$dst), (ins HWRegs:$src),
"rdhwr\t$dst, $src", [], IIAlu> {
let rs = 0;
let shamt = 0;
}
// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
class Atomic2Ops<PatFrag Op, string Opstr> :
MipsPseudo<(outs CPURegs:$dst), (ins CPURegs:$ptr, CPURegs:$incr),
!strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
[(set CPURegs:$dst,
(Op CPURegs:$ptr, CPURegs:$incr))]>;
// Atomic Compare & Swap.
class AtomicCmpSwap<PatFrag Op, string Width> :
MipsPseudo<(outs CPURegs:$dst),
(ins CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap),
!strconcat("atomic_cmp_swap_", Width,
"\t$dst, $ptr, $cmp, $swap"),
[(set CPURegs:$dst,
(Op CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap))]>;
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
// As stack alignment is always done with addiu, we need a 16-bit immediate
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt),
"!ADJCALLSTACKDOWN $amt",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2),
"!ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
// Some assembly macros need to avoid pseudoinstructions and assembler
// automatic reodering, we should reorder ourselves.
def MACRO : MipsPseudo<(outs), (ins), ".set\tmacro", []>;
def REORDER : MipsPseudo<(outs), (ins), ".set\treorder", []>;
def NOMACRO : MipsPseudo<(outs), (ins), ".set\tnomacro", []>;
def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>;
// These macros are inserted to prevent GAS from complaining
// when using the AT register.
def NOAT : MipsPseudo<(outs), (ins), ".set\tnoat", []>;
def ATMACRO : MipsPseudo<(outs), (ins), ".set\tat", []>;
// When handling PIC code the assembler needs .cpload and .cprestore
// directives. If the real instructions corresponding these directives
// are used, we have the same behavior, but get also a bunch of warnings
// from the assembler.
def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>;
def CPRESTORE : MipsPseudo<(outs), (ins i32imm:$loc), ".cprestore\t$loc", []>;
let usesCustomInserter = 1 in {
def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, "load_add_8">;
def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, "load_add_16">;
def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, "load_add_32">;
def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, "load_sub_8">;
def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, "load_sub_16">;
def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, "load_sub_32">;
def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, "load_and_8">;
def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, "load_and_16">;
def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, "load_and_32">;
def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, "load_or_8">;
def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, "load_or_16">;
def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, "load_or_32">;
def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, "load_xor_8">;
def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, "load_xor_16">;
def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, "load_xor_32">;
def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, "load_nand_8">;
def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, "load_nand_16">;
def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, "load_nand_32">;
def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, "swap_8">;
def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, "swap_16">;
def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, "swap_32">;
def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, "8">;
def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, "16">;
def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, "32">;
}
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MipsI Instructions
//===----------------------------------------------------------------------===//
/// Arithmetic Instructions (ALU Immediate)
def ADDiu : ArithI<0x09, "addiu", add, simm16, immSExt16>;
def ADDi : ArithOverflowI<0x08, "addi", add, simm16, immSExt16>;
def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>;
def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16>;
def ANDi : LogicI<0x0c, "andi", and>;
def ORi : LogicI<0x0d, "ori", or>;
def XORi : LogicI<0x0e, "xori", xor>;
def LUi : LoadUpper<0x0f, "lui">;
/// Arithmetic Instructions (3-Operand, R-Type)
def ADDu : ArithR<0x00, 0x21, "addu", add, IIAlu, 1>;
def SUBu : ArithR<0x00, 0x23, "subu", sub, IIAlu>;
def ADD : ArithOverflowR<0x00, 0x20, "add", 1>;
def SUB : ArithOverflowR<0x00, 0x22, "sub">;
def SLT : SetCC_R<0x00, 0x2a, "slt", setlt>;
def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult>;
def AND : LogicR<0x24, "and", and>;
def OR : LogicR<0x25, "or", or>;
def XOR : LogicR<0x26, "xor", xor>;
def NOR : LogicNOR<0x00, 0x27, "nor">;
/// Shift Instructions
def SLL : LogicR_shift_rotate_imm<0x00, 0x00, "sll", shl>;
def SRL : LogicR_shift_rotate_imm<0x02, 0x00, "srl", srl>;
def SRA : LogicR_shift_rotate_imm<0x03, 0x00, "sra", sra>;
def SLLV : LogicR_shift_rotate_reg<0x04, 0x00, "sllv", shl>;
def SRLV : LogicR_shift_rotate_reg<0x06, 0x00, "srlv", srl>;
def SRAV : LogicR_shift_rotate_reg<0x07, 0x00, "srav", sra>;
// Rotate Instructions
let Predicates = [IsMips32r2] in {
def ROTR : LogicR_shift_rotate_imm<0x02, 0x01, "rotr", rotr>;
def ROTRV : LogicR_shift_rotate_reg<0x06, 0x01, "rotrv", rotr>;
}
/// Load and Store Instructions
def LB : LoadM<0x20, "lb", sextloadi8>;
def LBu : LoadM<0x24, "lbu", zextloadi8>;
def LH : LoadM<0x21, "lh", sextloadi16>;
def LHu : LoadM<0x25, "lhu", zextloadi16>;
def LW : LoadM<0x23, "lw", load>;
def SB : StoreM<0x28, "sb", truncstorei8>;
def SH : StoreM<0x29, "sh", truncstorei16>;
def SW : StoreM<0x2b, "sw", store>;
let hasSideEffects = 1 in
def SYNC : MipsInst<(outs), (ins i32imm:$stype), "sync $stype",
[(MipsSync imm:$stype)], NoItinerary>
{
let opcode = 0;
let Inst{25-11} = 0;
let Inst{5-0} = 15;
}
/// Load-linked, Store-conditional
let mayLoad = 1, hasDelaySlot = 1 in
def LL : FI<0x30, (outs CPURegs:$dst), (ins mem:$addr),
"ll\t$dst, $addr", [], IILoad>;
let mayStore = 1, Constraints = "$src = $dst" in
def SC : FI<0x38, (outs CPURegs:$dst), (ins CPURegs:$src, mem:$addr),
"sc\t$src, $addr", [], IIStore>;
/// Jump and Branch Instructions
def J : JumpFJ<0x02, "j">;
let isIndirectBranch = 1 in
def JR : JumpFR<0x00, 0x08, "jr">;
def JAL : JumpLink<0x03, "jal">;
def JALR : JumpLinkReg<0x00, 0x09, "jalr">;
def BEQ : CBranch<0x04, "beq", seteq>;
def BNE : CBranch<0x05, "bne", setne>;
let rt=1 in
def BGEZ : CBranchZero<0x01, "bgez", setge>;
let rt=0 in {
def BGTZ : CBranchZero<0x07, "bgtz", setgt>;
def BLEZ : CBranchZero<0x07, "blez", setle>;
def BLTZ : CBranchZero<0x01, "bltz", setlt>;
}
def BGEZAL : BranchLink<"bgezal">;
def BLTZAL : BranchLink<"bltzal">;
let isReturn=1, isTerminator=1, hasDelaySlot=1,
isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in
def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target),
"jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>;
/// Multiply and Divide Instructions.
def MULT : Mul<0x18, "mult", IIImul>;
def MULTu : Mul<0x19, "multu", IIImul>;
def SDIV : Div<MipsDivRem, 0x1a, "div", IIIdiv>;
def UDIV : Div<MipsDivRemU, 0x1b, "divu", IIIdiv>;
let Defs = [HI] in
def MTHI : MoveToLOHI<0x11, "mthi">;
let Defs = [LO] in
def MTLO : MoveToLOHI<0x13, "mtlo">;
let Uses = [HI] in
def MFHI : MoveFromLOHI<0x10, "mfhi">;
let Uses = [LO] in
def MFLO : MoveFromLOHI<0x12, "mflo">;
/// Sign Ext In Register Instructions.
let Predicates = [HasSEInReg] in {
let shamt = 0x10, rs = 0 in
def SEB : SignExtInReg<0x21, "seb", i8>;
let shamt = 0x18, rs = 0 in
def SEH : SignExtInReg<0x20, "seh", i16>;
}
/// Count Leading
def CLZ : CountLeading<0b100000, "clz",
[(set CPURegs:$dst, (ctlz CPURegs:$src))]>;
def CLO : CountLeading<0b100001, "clo",
[(set CPURegs:$dst, (ctlz (not CPURegs:$src)))]>;
/// Byte Swap
let Predicates = [HasSwap] in {
let shamt = 0x3, rs = 0 in
def WSBW : ByteSwap<0x20, "wsbw">;
}
/// Conditional Move
def MIPS_CMOV_ZERO : PatLeaf<(i32 0)>;
def MIPS_CMOV_NZERO : PatLeaf<(i32 1)>;
// Conditional moves:
// These instructions are expanded in
// MipsISelLowering::EmitInstrWithCustomInserter if target does not have
// conditional move instructions.
// flag:int, data:int
let usesCustomInserter = 1, shamt = 0, Constraints = "$F = $dst" in
class CondMovIntInt<bits<6> funct, string instr_asm> :
FR<0, funct, (outs CPURegs:$dst),
(ins CPURegs:$T, CPURegs:$cond, CPURegs:$F),
!strconcat(instr_asm, "\t$dst, $T, $cond"), [], NoItinerary>;
def MOVZ_I : CondMovIntInt<0x0a, "movz">;
def MOVN_I : CondMovIntInt<0x0b, "movn">;
/// No operation
let addr=0 in
def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>;
// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched. It's similar to Sparc LEA_ADDRi
def LEA_ADDiu : EffectiveAddress<"addiu\t$dst, $addr">;
// DynAlloc node points to dynamically allocated stack space.
// $sp is added to the list of implicitly used registers to prevent dead code
// elimination from removing instructions that modify $sp.
let Uses = [SP] in
def DynAlloc : EffectiveAddress<"addiu\t$dst, $addr">;
// MADD*/MSUB*
def MADD : MArithR<0, "madd", MipsMAdd, 1>;
def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
def MSUB : MArithR<4, "msub", MipsMSub>;
def MSUBU : MArithR<5, "msubu", MipsMSubu>;
// MUL is a assembly macro in the current used ISAs. In recent ISA's
// it is a real instruction.
def MUL : ArithR<0x1c, 0x02, "mul", mul, IIImul, 1>, Requires<[IsMips32]>;
def RDHWR : ReadHardware;
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Small immediates
def : Pat<(i32 immSExt16:$in),
(ADDiu ZERO, imm:$in)>;
def : Pat<(i32 immZExt16:$in),
(ORi ZERO, imm:$in)>;
// Arbitrary immediates
def : Pat<(i32 imm:$imm),
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Carry patterns
def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs),
(SUBu CPURegs:$lhs, CPURegs:$rhs)>;
def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs),
(ADDu CPURegs:$lhs, CPURegs:$rhs)>;
def : Pat<(addc CPURegs:$src, immSExt16:$imm),
(ADDiu CPURegs:$src, imm:$imm)>;
// Call
def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
(JAL tglobaladdr:$dst)>;
def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
(JAL texternalsym:$dst)>;
//def : Pat<(MipsJmpLink CPURegs:$dst),
// (JALR CPURegs:$dst)>;
// hi/lo relocs
def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : Pat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
(ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
def : Pat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
(ADDiu CPURegs:$hi, tblockaddress:$lo)>;
def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
(ADDiu CPURegs:$hi, tjumptable:$lo)>;
def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
(ADDiu CPURegs:$hi, tconstpool:$lo)>;
// gp_rel relocs
def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
(ADDiu CPURegs:$gp, tglobaladdr:$in)>;
def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
(ADDiu CPURegs:$gp, tconstpool:$in)>;
// tlsgd
def : Pat<(add CPURegs:$gp, (MipsTlsGd tglobaltlsaddr:$in)),
(ADDiu CPURegs:$gp, tglobaltlsaddr:$in)>;
// tprel hi/lo
def : Pat<(MipsTprelHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
def : Pat<(add CPURegs:$hi, (MipsTprelLo tglobaltlsaddr:$lo)),
(ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
// wrapper_pic
class WrapperPICPat<SDNode node>:
Pat<(MipsWrapperPIC node:$in),
(ADDiu GP, node:$in)>;
def : WrapperPICPat<tglobaladdr>;
def : WrapperPICPat<tconstpool>;
def : WrapperPICPat<texternalsym>;
def : WrapperPICPat<tblockaddress>;
def : WrapperPICPat<tjumptable>;
// Mips does not have "not", so we expand our way
def : Pat<(not CPURegs:$in),
(NOR CPURegs:$in, ZERO)>;
// extended load and stores
def : Pat<(extloadi1 addr:$src), (LBu addr:$src)>;
def : Pat<(extloadi8 addr:$src), (LBu addr:$src)>;
def : Pat<(extloadi16 addr:$src), (LHu addr:$src)>;
// peepholes
def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
// brcond patterns
def : Pat<(brcond (setne CPURegs:$lhs, 0), bb:$dst),
(BNE CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (seteq CPURegs:$lhs, 0), bb:$dst),
(BEQ CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BEQ (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BEQ (SLTiu CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLT CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLTu CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond CPURegs:$cond, bb:$dst),
(BNE CPURegs:$cond, ZERO, bb:$dst)>;
// select patterns
multiclass MovzPats<RegisterClass RC, Instruction MOVZInst> {
def : Pat<(select (setge CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLT CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
def : Pat<(select (setuge CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLTu CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
def : Pat<(select (setge CPURegs:$lhs, immSExt16:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLTi CPURegs:$lhs, immSExt16:$rhs), RC:$F)>;
def : Pat<(select (setuge CPURegs:$lh, immSExt16:$rh), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLTiu CPURegs:$lh, immSExt16:$rh), RC:$F)>;
def : Pat<(select (setle CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLT CPURegs:$rhs, CPURegs:$lhs), RC:$F)>;
def : Pat<(select (setule CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (SLTu CPURegs:$rhs, CPURegs:$lhs), RC:$F)>;
def : Pat<(select (seteq CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVZInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
def : Pat<(select (seteq CPURegs:$lhs, 0), RC:$T, RC:$F),
(MOVZInst RC:$T, CPURegs:$lhs, RC:$F)>;
}
multiclass MovnPats<RegisterClass RC, Instruction MOVNInst> {
def : Pat<(select (setne CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F),
(MOVNInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
def : Pat<(select CPURegs:$cond, RC:$T, RC:$F),
(MOVNInst RC:$T, CPURegs:$cond, RC:$F)>;
def : Pat<(select (setne CPURegs:$lhs, 0), RC:$T, RC:$F),
(MOVNInst RC:$T, CPURegs:$lhs, RC:$F)>;
}
defm : MovzPats<CPURegs, MOVZ_I>;
defm : MovnPats<CPURegs, MOVN_I>;
// setcc patterns
def : Pat<(seteq CPURegs:$lhs, CPURegs:$rhs),
(SLTu (XOR CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setne CPURegs:$lhs, CPURegs:$rhs),
(SLTu ZERO, (XOR CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(setle CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setule CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLTu CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setgt CPURegs:$lhs, CPURegs:$rhs),
(SLT CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setugt CPURegs:$lhs, CPURegs:$rhs),
(SLTu CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLTu CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setge CPURegs:$lhs, immSExt16:$rhs),
(XORi (SLTi CPURegs:$lhs, immSExt16:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, immSExt16:$rhs),
(XORi (SLTiu CPURegs:$lhs, immSExt16:$rhs), 1)>;
// select MipsDynAlloc
def : Pat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
//===----------------------------------------------------------------------===//
// Floating Point Support
//===----------------------------------------------------------------------===//
include "MipsInstrFPU.td"
|