1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
|
//===- MipsInstrInfo.td - Mips Register defs --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bruno Cardoso Lopes and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "MipsInstrFormats.td"
//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//
// Call
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, [SDNPHasChain,
SDNPOutFlag]>;
// Hi and Lo nodes are created to let easy manipulation of 16-bit when
// handling 32-bit immediates. They are used on MipsISelLowering to
// lower stuff like GlobalAddress, ExternalSymbol, ...
// This two nodes have nothing to do with Mips Registers Hi and Lo.
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
// Return
def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
SDNPOptInFlag]>;
// These are target-independent nodes, but have target-specific formats.
def SDT_MipsCallSeq : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeq,
[SDNPHasChain, SDNPOutFlag]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeq,
[SDNPHasChain, SDNPOutFlag]>;
// Instruction operand types
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
def uimm16 : Operand<i32>;
def simm16 : Operand<i32>;
def shamt : Operand<i32>;
// Address operand
def mem : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops simm16, CPURegs);
}
//===----------------------------------------------------------------------===//
// Mips Patterns and Transformations
//===----------------------------------------------------------------------===//
// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getValue() & 0xFFFF);
}]>;
// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getValue() >> 16);
}]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (int32_t)N->getValue() == (short)N->getValue();
else
return (int64_t)N->getValue() == (short)N->getValue();
}]>;
// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (uint32_t)N->getValue() == (unsigned short)N->getValue();
else
return (uint64_t)N->getValue() == (unsigned short)N->getValue();
}], LO16>;
// shamt field must fit in 5 bits.
def immZExt5 : PatLeaf<(imm), [{
return N->getValue() == ((N->getValue()) & 0x1f) ;
}]>;
// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr : ComplexPattern<i32, 2, "SelectAddr", [frameindex], []>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Arithmetic 3 register operands
let isCommutable = 1 in
class ArithR< bits<6> op, bits<6> func, string instr_asm, SDNode OpNode>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))] >;
let isCommutable = 1 in
class ArithOverflowR< bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[]>;
// Arithmetic 2 register operands
let isCommutable = 1 in
class ArithI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))] >;
// Arithmetic Multiply ADD/SUB
let rd=0 in
class MArithR<bits<6> func, string instr_asm> :
FR< 0x1c,
func,
(outs CPURegs:$rs),
(ins CPURegs:$rt),
!strconcat(instr_asm, " $rs, $rt"),
[]>;
// Logical
class LogicR<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))] >;
class LogicI<bits<6> op, string instr_asm, SDNode OpNode>:
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, uimm16:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immSExt16:$c))]>;
class LogicNOR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (not (or CPURegs:$b, CPURegs:$c)))] >;
// Shifts
let rt = 0 in
class LogicR_shift_imm<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, shamt:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))] >;
class LogicR_shift_reg<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))] >;
// Load Upper Imediate
class LoadUpper<bits<6> op, string instr_asm>:
FI< op,
(outs CPURegs:$dst),
(ins uimm16:$imm),
!strconcat(instr_asm, " $dst, $imm"),
[]>;
// Memory Load/Store
let isLoad = 1 in
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI< op,
(outs CPURegs:$dst),
(ins mem:$addr),
!strconcat(instr_asm, " $dst, $addr"),
[(set CPURegs:$dst, (OpNode addr:$addr))]>;
let isStore = 1 in
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI< op,
(outs),
(ins CPURegs:$dst, mem:$addr),
!strconcat(instr_asm, " $dst, $addr"),
[(OpNode CPURegs:$dst, addr:$addr)]>;
// Conditional Branch
let isBranch = 1, isTerminator=1 in
class CBranch<bits<6> op, string instr_asm, PatFrag cond_op>:
FI< op,
(outs),
(ins CPURegs:$a, CPURegs:$b, brtarget:$offset),
!strconcat(instr_asm, " $a, $b, $offset"),
[(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)]>;
class SetCC_R<bits<6> op, bits<6> func, string instr_asm,
PatFrag cond_op>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, CPURegs:$c))]>;
class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op,
Operand Od, PatLeaf imm_type>:
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, imm_type:$c))]>;
// Unconditional branch
let hasCtrlDep=1, isTerminator=1 in
class JumpFJ<bits<6> op, string instr_asm>:
FJ< op,
(outs),
(ins brtarget:$target),
!strconcat(instr_asm, " $target"),
[(br bb:$target)]>;
let hasCtrlDep=1, isTerminator=1, rd=0 in
class JumpFR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs),
(ins CPURegs:$target),
!strconcat(instr_asm, " $target"),
[]>;
// Jump and Link (Call)
let isCall=1 in
class JumpLink<bits<6> op, string instr_asm>:
FJ< op,
(outs),
(ins calltarget:$target),
!strconcat(instr_asm, " $target"),
[(MipsJmpLink imm:$target)]>;
let isCall=1 in
class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs),
(ins CPURegs:$rd, CPURegs:$rs),
!strconcat(instr_asm, " $rs, $rd"),
[]>;
// Mul, Div
class MulDiv<bits<6> func, string instr_asm>:
FR< 0x00,
func,
(outs),
(ins CPURegs:$a, CPURegs:$b),
!strconcat(instr_asm, " $a, $b"),
[]>;
// Move from Hi/Lo
class MoveFromTo<bits<6> func, string instr_asm>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins),
!strconcat(instr_asm, " $dst"),
[]>;
// Count Leading Ones/Zeros in Word
class CountLeading<bits<6> func, string instr_asm>:
FR< 0x1c,
func,
(outs CPURegs:$dst),
(ins CPURegs:$src),
!strconcat(instr_asm, " $dst, $src"),
[]>;
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>:
MipsInst<outs, ins, asmstr, pattern>;
// As stack alignment is always done with addiu, we need a 16-bit immediate
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins uimm16:$amt),
"!ADJCALLSTACKDOWN $amt",
[(callseq_start imm:$amt)]>, Imp<[SP],[SP]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins uimm16:$amt),
"!ADJCALLSTACKUP $amt",
[(callseq_end imm:$amt)]>, Imp<[SP],[SP]>;
def IMPLICIT_DEF_CPURegs : Pseudo<(outs CPURegs:$dst), (ins),
"!IMPLICIT_DEF $dst",
[(set CPURegs:$dst, (undef))]>;
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Mips32 I
//===----------------------------------------------------------------------===//
// Arithmetic
def ADDiu : ArithI<0x09, "addiu", add, uimm16, immSExt16>;
def ADDi : ArithI<0x08, "addi", add, simm16, immZExt16>;
def MUL : ArithR<0x1c, 0x02, "mul", mul>;
def ADDu : ArithR<0x00, 0x21, "addu", add>;
def SUBu : ArithR<0x00, 0x23, "subu", sub>;
def ADD : ArithOverflowR<0x00, 0x20, "add">;
def SUB : ArithOverflowR<0x00, 0x22, "sub">;
def MADD : MArithR<0x00, "madd">;
def MADDU : MArithR<0x01, "maddu">;
def MSUB : MArithR<0x04, "msub">;
def MSUBU : MArithR<0x05, "msubu">;
// Logical
def AND : LogicR<0x24, "and", and>;
def OR : LogicR<0x25, "or", or>;
def XOR : LogicR<0x26, "xor", xor>;
def ANDi : LogicI<0x0c, "andi", and>;
def ORi : LogicI<0x0d, "ori", or>;
def XORi : LogicI<0x0e, "xori", xor>;
def NOR : LogicNOR<0x00, 0x27, "nor">;
// Shifts
def SLL : LogicR_shift_imm<0x00, "sll", shl>;
def SRL : LogicR_shift_imm<0x02, "srl", srl>;
def SRA : LogicR_shift_imm<0x03, "sra", sra>;
def SLLV : LogicR_shift_reg<0x04, "sllv", shl>;
def SRLV : LogicR_shift_reg<0x06, "srlv", srl>;
def SRAV : LogicR_shift_reg<0x07, "srav", sra>;
// Load Upper Immediate
def LUi : LoadUpper<0x0f, "lui">;
// Load/Store
def LB : LoadM<0x20, "lb", sextloadi8>;
def LBu : LoadM<0x24, "lbu", zextloadi8>;
def LH : LoadM<0x21, "lh", sextloadi16>;
def LHu : LoadM<0x25, "lhu", zextloadi16>;
def LW : LoadM<0x23, "lw", load>;
def SB : StoreM<0x28, "sb", truncstorei8>;
def SH : StoreM<0x29, "sh", truncstorei16>;
def SW : StoreM<0x2b, "sw", store>;
// Conditional Branch
def BEQ : CBranch<0x04, "beq", seteq>;
def BNE : CBranch<0x05, "bne", setne>;
def SLT : SetCC_R<0x00, 0x2a, "slt", setlt>;
def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult>;
def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>;
def SLTiu : SetCC_I<0x0b, "sltiu", setult, uimm16, immZExt16>;
// Unconditional jump
def J : JumpFJ<0x02, "j">;
def JR : JumpFR<0x00, 0x08, "jr">;
// Jump and Link (Call)
def JAL : JumpLink<0x03, "jal">;
def JALR : JumpLinkReg<0x00, 0x09, "jalr">;
// MulDiv and Move From Hi/Lo operations, have
// their correpondent SDNodes created on ISelDAG.
// Special Mul, Div operations
def MULT : MulDiv<0x18, "mult">;
def MULTu : MulDiv<0x19, "multu">;
def DIV : MulDiv<0x1a, "div">;
def DIVu : MulDiv<0x1b, "divu">;
// Move From Hi/Lo
def MFHI : MoveFromTo<0x10, "mfhi">;
def MFLO : MoveFromTo<0x12, "mflo">;
def MTHI : MoveFromTo<0x11, "mthi">;
def MTLO : MoveFromTo<0x13, "mtlo">;
// Count Leading
def CLO : CountLeading<0x21, "clo">;
def CLZ : CountLeading<0x20, "clz">;
// No operation
let addr=0 in
def NOOP : FJ<0, (outs), (ins), "nop", []>;
// Ret instruction - as mips does not have "ret" a
// jr $ra must be generated.
let isReturn=1, isTerminator=1, hasDelaySlot=1,
isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in
{
def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target),
"jr $target", [(MipsRet CPURegs:$target)]>;
}
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Small immediates
def : Pat<(i32 immSExt16:$in),
(ADDiu ZERO, imm:$in)>;
def : Pat<(i32 immZExt16:$in),
(ORi ZERO, imm:$in)>;
// Arbitrary immediates
def : Pat<(i32 imm:$imm),
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Call
def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
(JAL tglobaladdr:$dst)>;
def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
(JAL texternalsym:$dst)>;
// GlobalAddress, Constant Pool, ExternalSymbol, and JumpTable
def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : Pat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
// When extracting the address from GlobalAddress we
// need something of the form "addiu $reg, %lo(addr)"
def : Pat<(add CPURegs:$a, (MipsLo tglobaladdr:$in)),
(ADDiu CPURegs:$a, tglobaladdr:$in)>;
// Mips does not have not, so we increase the operation
def : Pat<(not CPURegs:$in),
(NOR CPURegs:$in, CPURegs:$in)>;
// extended load and stores
def : Pat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>;
def : Pat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
def : Pat<(truncstorei1 CPURegs:$src, addr:$addr),
(SB CPURegs:$src, addr:$src)>;
def : Pat<(brcond (setne CPURegs:$lhs, (add ZERO, 0)), bb:$dst),
(BNE CPURegs:$lhs, ZERO, bb:$dst)>;
// Conditional branch patterns.
// cond branches patterns, 2 register operands signed.
def : Pat<(brcond (setlt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BNE (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLT CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setgt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BNE (SLT CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
// cond branches patterns, 2 register operands unsigned.
def : Pat<(brcond (setult CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BNE (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLTu CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setugt CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BNE (SLTu CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
// cond branches patterns, reg/imm operands signed.
def : Pat<(brcond (setult CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BNE (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BEQ (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
// cond branches patterns, reg/imm operands unsigned.
def : Pat<(brcond (setult CPURegs:$lhs, immZExt16:$rhs), bb:$dst),
(BNE (SLTiu CPURegs:$lhs, immZExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, immZExt16:$rhs), bb:$dst),
(BEQ (SLTiu CPURegs:$lhs, immZExt16:$rhs), ZERO, bb:$dst)>;
|