aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Mips/MipsInstrInfo.td
blob: 712e204427861307c154595514ff834c60b9ec53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//

def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
                                                SDTCisSameAs<1, 2>,
                                                SDTCisSameAs<3, 4>,
                                                SDTCisInt<4>]>;
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDT_ExtractLOHI : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, untyped>,
                                           SDTCisVT<2, i32>]>;
def SDT_InsertLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
                                          SDTCisVT<1, i32>,
                                          SDTCisSameAs<1, 2>]>;
def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
                                    SDTCisSameAs<1, 2>]>;
def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
                                     [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
                                      SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;

def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;

def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;

def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
                                   SDTCisSameAs<0, 4>]>;

def SDTMipsLoadLR  : SDTypeProfile<1, 2,
                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
                                    SDTCisSameAs<0, 2>]>;

// Call
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
                          SDNPVariadic]>;

// Tail call
def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

// Hi and Lo nodes are used to handle global addresses. Used on
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
// static model. (nothing to do with Mips Registers Hi and Lo)
def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;

// TlsGd node is used to handle General Dynamic TLS
def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;

// TprelHi and TprelLo nodes are used to handle Local Exec TLS
def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;

// Thread pointer
def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;

// Return
def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
                           [SDNPHasChain, SDNPSideEffect,
                            SDNPOptInGlue, SDNPOutGlue]>;

// Node used to extract integer from LO/HI register.
def ExtractLOHI : SDNode<"MipsISD::ExtractLOHI", SDT_ExtractLOHI>;

// Node used to insert 32-bit integers to LOHI register pair.
def InsertLOHI : SDNode<"MipsISD::InsertLOHI", SDT_InsertLOHI>;

// Mult nodes.
def MipsMult  : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;

// MAdd*/MSub* nodes
def MipsMAdd  : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
def MipsMSub  : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;

// DivRem(u) nodes
def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
def MipsDivRem16  : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16,
                           [SDNPOutGlue]>;
def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
                           [SDNPOutGlue]>;

// Target constant nodes that are not part of any isel patterns and remain
// unchanged can cause instructions with illegal operands to be emitted.
// Wrapper node patterns give the instruction selector a chance to replace
// target constant nodes that would otherwise remain unchanged with ADDiu
// nodes. Without these wrapper node patterns, the following conditional move
// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
// compiled:
//  movn  %got(d)($gp), %got(c)($gp), $4
// This instruction is illegal since movn can take only register operands.

def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;

def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;

def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;

def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;

//===----------------------------------------------------------------------===//
// Mips Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
                      AssemblerPredicate<"FeatureSEInReg">;
def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
                      AssemblerPredicate<"FeatureBitCount">;
def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
                      AssemblerPredicate<"FeatureSwap">;
def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
                      AssemblerPredicate<"FeatureCondMov">;
def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
                      AssemblerPredicate<"FeatureFPIdx">;
def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
                      AssemblerPredicate<"FeatureMips32">;
def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
                      AssemblerPredicate<"FeatureMips32r2">;
def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
                      AssemblerPredicate<"FeatureMips64">;
def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
                      AssemblerPredicate<"!FeatureMips64">;
def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
                      AssemblerPredicate<"FeatureMips64r2">;
def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
                      AssemblerPredicate<"FeatureN64">;
def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
                      AssemblerPredicate<"!FeatureN64">;
def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
                      AssemblerPredicate<"FeatureMips16">;
def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
                      AssemblerPredicate<"FeatureMips32">;
def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
                      AssemblerPredicate<"FeatureMips32">;
def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
                      AssemblerPredicate<"FeatureMips32">;
def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
                      AssemblerPredicate<"!FeatureMips16">;
def NotDSP :          Predicate<"!Subtarget.hasDSP()">;

class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
  let Predicates = [HasStdEnc];
}

class IsCommutable {
  bit isCommutable = 1;
}

class IsBranch {
  bit isBranch = 1;
}

class IsReturn {
  bit isReturn = 1;
}

class IsCall {
  bit isCall = 1;
}

class IsTailCall {
  bit isCall = 1;
  bit isTerminator = 1;
  bit isReturn = 1;
  bit isBarrier = 1;
  bit hasExtraSrcRegAllocReq = 1;
  bit isCodeGenOnly = 1;
}

class IsAsCheapAsAMove {
  bit isAsCheapAsAMove = 1;
}

class NeverHasSideEffects {
  bit neverHasSideEffects = 1;
}

//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//

include "MipsInstrFormats.td"

//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//

// Instruction operand types
def jmptarget   : Operand<OtherVT> {
  let EncoderMethod = "getJumpTargetOpValue";
}
def brtarget    : Operand<OtherVT> {
  let EncoderMethod = "getBranchTargetOpValue";
  let OperandType = "OPERAND_PCREL";
  let DecoderMethod = "DecodeBranchTarget";
}
def calltarget  : Operand<iPTR> {
  let EncoderMethod = "getJumpTargetOpValue";
}
def calltarget64: Operand<i64>;
def simm16      : Operand<i32> {
  let DecoderMethod= "DecodeSimm16";
}

def simm20      : Operand<i32> {
}

def uimm20      : Operand<i32> {
}

def uimm10      : Operand<i32> {
}

def simm16_64   : Operand<i64>;
def shamt       : Operand<i32>;

// Unsigned Operand
def uimm16      : Operand<i32> {
  let PrintMethod = "printUnsignedImm";
}

def MipsMemAsmOperand : AsmOperandClass {
  let Name = "Mem";
  let ParserMethod = "parseMemOperand";
}

// Address operand
def mem : Operand<i32> {
  let PrintMethod = "printMemOperand";
  let MIOperandInfo = (ops CPURegs, simm16);
  let EncoderMethod = "getMemEncoding";
  let ParserMatchClass = MipsMemAsmOperand;
  let OperandType = "OPERAND_MEMORY";
}

def mem64 : Operand<i64> {
  let PrintMethod = "printMemOperand";
  let MIOperandInfo = (ops CPU64Regs, simm16_64);
  let EncoderMethod = "getMemEncoding";
  let ParserMatchClass = MipsMemAsmOperand;
  let OperandType = "OPERAND_MEMORY";
}

def mem_ea : Operand<i32> {
  let PrintMethod = "printMemOperandEA";
  let MIOperandInfo = (ops CPURegs, simm16);
  let EncoderMethod = "getMemEncoding";
  let OperandType = "OPERAND_MEMORY";
}

def mem_ea_64 : Operand<i64> {
  let PrintMethod = "printMemOperandEA";
  let MIOperandInfo = (ops CPU64Regs, simm16_64);
  let EncoderMethod = "getMemEncoding";
  let OperandType = "OPERAND_MEMORY";
}

// size operand of ext instruction
def size_ext : Operand<i32> {
  let EncoderMethod = "getSizeExtEncoding";
  let DecoderMethod = "DecodeExtSize";
}

// size operand of ins instruction
def size_ins : Operand<i32> {
  let EncoderMethod = "getSizeInsEncoding";
  let DecoderMethod = "DecodeInsSize";
}

// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
  return getImm(N, N->getZExtValue() & 0xFFFF);
}]>;

// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
}]>;

// Plus 1.
def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;

// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt8  : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;

// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;

// Node immediate fits as 15-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;

// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16  : PatLeaf<(imm), [{
  if (N->getValueType(0) == MVT::i32)
    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
  else
    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;

// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
def immLow16Zero : PatLeaf<(imm), [{
  int64_t Val = N->getSExtValue();
  return isInt<32>(Val) && !(Val & 0xffff);
}]>;

// shamt field must fit in 5 bits.
def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;

// True if (N + 1) fits in 16-bit field.
def immSExt16Plus1 : PatLeaf<(imm), [{
  return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
}]>;

// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr :
  ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;

def addrRegImm :
  ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;

def addrDefault :
  ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;

//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//

// Arithmetic and logical instructions with 3 register operands.
class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
                  InstrItinClass Itin = NoItinerary,
                  SDPatternOperator OpNode = null_frag>:
  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
         !strconcat(opstr, "\t$rd, $rs, $rt"),
         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> {
  let isCommutable = isComm;
  let isReMaterializable = 1;
}

// Arithmetic and logical instructions with 2 register operands.
class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
                  SDPatternOperator imm_type = null_frag,
                  SDPatternOperator OpNode = null_frag> :
  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
         !strconcat(opstr, "\t$rt, $rs, $imm16"),
         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))],
         IIAlu, FrmI, opstr> {
  let isReMaterializable = 1;
  let TwoOperandAliasConstraint = "$rs = $rt";
}

// Arithmetic Multiply ADD/SUB
class MArithR<string opstr, bit isComm = 0> :
  InstSE<(outs), (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt),
         !strconcat(opstr, "\t$rs, $rt"), [], IIImul, FrmR> {
  let Defs = [HI, LO];
  let Uses = [HI, LO];
  let isCommutable = isComm;
}

//  Logical
class LogicNOR<string opstr, RegisterOperand RC>:
  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
         !strconcat(opstr, "\t$rd, $rs, $rt"),
         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR, opstr> {
  let isCommutable = 1;
}

// Shifts
class shift_rotate_imm<string opstr, Operand ImmOpnd,
                       RegisterOperand RC, SDPatternOperator OpNode = null_frag,
                       SDPatternOperator PF = null_frag> :
  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
         !strconcat(opstr, "\t$rd, $rt, $shamt"),
         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR, opstr>;

class shift_rotate_reg<string opstr, RegisterOperand RC,
                       SDPatternOperator OpNode = null_frag>:
  InstSE<(outs RC:$rd), (ins RC:$rt, CPURegsOpnd:$rs),
         !strconcat(opstr, "\t$rd, $rt, $rs"),
         [(set RC:$rd, (OpNode RC:$rt, CPURegsOpnd:$rs))], IIAlu, FrmR, opstr>;

// Load Upper Imediate
class LoadUpper<string opstr, RegisterClass RC, Operand Imm>:
  InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
         [], IIAlu, FrmI>, IsAsCheapAsAMove {
  let neverHasSideEffects = 1;
  let isReMaterializable = 1;
}

class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
  bits<21> addr;
  let Inst{25-21} = addr{20-16};
  let Inst{15-0}  = addr{15-0};
  let DecoderMethod = "DecodeMem";
}

// Memory Load/Store
class Load<string opstr, SDPatternOperator OpNode, RegisterClass RC,
           InstrItinClass Itin, Operand MemOpnd, ComplexPattern Addr,
           string ofsuffix> :
  InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
         [(set RC:$rt, (OpNode Addr:$addr))], NoItinerary, FrmI,
         !strconcat(opstr, ofsuffix)> {
  let DecoderMethod = "DecodeMem";
  let canFoldAsLoad = 1;
  let mayLoad = 1;
}

class Store<string opstr, SDPatternOperator OpNode, RegisterClass RC,
            InstrItinClass Itin, Operand MemOpnd, ComplexPattern Addr,
            string ofsuffix> :
  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
         [(OpNode RC:$rt, Addr:$addr)], NoItinerary, FrmI,
         !strconcat(opstr, ofsuffix)> {
  let DecoderMethod = "DecodeMem";
  let mayStore = 1;
}

multiclass LoadM<string opstr, RegisterClass RC,
                 SDPatternOperator OpNode = null_frag,
                 InstrItinClass Itin = NoItinerary,
                 ComplexPattern Addr = addr> {
  def NAME : Load<opstr, OpNode, RC, Itin, mem, Addr, "">,
             Requires<[NotN64, HasStdEnc]>;
  def _P8  : Load<opstr, OpNode, RC, Itin, mem64, Addr, "_p8">,
             Requires<[IsN64, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
    let isCodeGenOnly = 1;
  }
}

multiclass StoreM<string opstr, RegisterClass RC,
                  SDPatternOperator OpNode = null_frag,
                  InstrItinClass Itin = NoItinerary,
                  ComplexPattern Addr = addr> {
  def NAME : Store<opstr, OpNode, RC, Itin, mem, Addr, "">,
             Requires<[NotN64, HasStdEnc]>;
  def _P8  : Store<opstr, OpNode, RC, Itin, mem64, Addr, "_p8">,
             Requires<[IsN64, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
    let isCodeGenOnly = 1;
  }
}

// Load/Store Left/Right
let canFoldAsLoad = 1 in
class LoadLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
                    Operand MemOpnd> :
  InstSE<(outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
         !strconcat(opstr, "\t$rt, $addr"),
         [(set RC:$rt, (OpNode addr:$addr, RC:$src))], NoItinerary, FrmI> {
  let DecoderMethod = "DecodeMem";
  string Constraints = "$src = $rt";
}

class StoreLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
                     Operand MemOpnd>:
  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
  let DecoderMethod = "DecodeMem";
}

multiclass LoadLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
  def NAME : LoadLeftRight<opstr, OpNode, RC, mem>,
             Requires<[NotN64, HasStdEnc]>;
  def _P8  : LoadLeftRight<opstr, OpNode, RC, mem64>,
             Requires<[IsN64, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
    let isCodeGenOnly = 1;
  }
}

multiclass StoreLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
  def NAME : StoreLeftRight<opstr, OpNode, RC, mem>,
             Requires<[NotN64, HasStdEnc]>;
  def _P8  : StoreLeftRight<opstr, OpNode, RC, mem64>,
             Requires<[IsN64, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
    let isCodeGenOnly = 1;
  }
}

// Conditional Branch
class CBranch<string opstr, PatFrag cond_op, RegisterOperand RC> :
  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
         !strconcat(opstr, "\t$rs, $rt, $offset"),
         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
         FrmI> {
  let isBranch = 1;
  let isTerminator = 1;
  let hasDelaySlot = 1;
  let Defs = [AT];
}

class CBranchZero<string opstr, PatFrag cond_op, RegisterOperand RC> :
  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
         !strconcat(opstr, "\t$rs, $offset"),
         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
  let isBranch = 1;
  let isTerminator = 1;
  let hasDelaySlot = 1;
  let Defs = [AT];
}

// SetCC
class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
  InstSE<(outs CPURegsOpnd:$rd), (ins RC:$rs, RC:$rt),
         !strconcat(opstr, "\t$rd, $rs, $rt"),
         [(set CPURegsOpnd:$rd, (cond_op RC:$rs, RC:$rt))],
         IIAlu, FrmR, opstr>;

class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
              RegisterClass RC>:
  InstSE<(outs CPURegsOpnd:$rt), (ins RC:$rs, Od:$imm16),
         !strconcat(opstr, "\t$rt, $rs, $imm16"),
         [(set CPURegsOpnd:$rt, (cond_op RC:$rs, imm_type:$imm16))],
         IIAlu, FrmI, opstr>;

// Jump
class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
             SDPatternOperator targetoperator> :
  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
         [(operator targetoperator:$target)], IIBranch, FrmJ> {
  let isTerminator=1;
  let isBarrier=1;
  let hasDelaySlot = 1;
  let DecoderMethod = "DecodeJumpTarget";
  let Defs = [AT];
}

// Unconditional branch
class UncondBranch<string opstr> :
  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
         [(br bb:$offset)], IIBranch, FrmI> {
  let isBranch = 1;
  let isTerminator = 1;
  let isBarrier = 1;
  let hasDelaySlot = 1;
  let Predicates = [RelocPIC, HasStdEnc];
  let Defs = [AT];
}

// Base class for indirect branch and return instruction classes.
let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
  InstSE<(outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch, FrmR>;

// Indirect branch
class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
  let isBranch = 1;
  let isIndirectBranch = 1;
}

// Return instruction
class RetBase<RegisterClass RC>: JumpFR<RC> {
  let isReturn = 1;
  let isCodeGenOnly = 1;
  let hasCtrlDep = 1;
  let hasExtraSrcRegAllocReq = 1;
}

// Jump and Link (Call)
let isCall=1, hasDelaySlot=1, Defs = [RA] in {
  class JumpLink<string opstr> :
    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
    let DecoderMethod = "DecodeJumpTarget";
  }

  class JumpLinkRegPseudo<RegisterClass RC, Instruction JALRInst,
                          Register RetReg>:
    PseudoSE<(outs), (ins RC:$rs), [(MipsJmpLink RC:$rs)], IIBranch>,
    PseudoInstExpansion<(JALRInst RetReg, RC:$rs)>;

  class JumpLinkReg<string opstr, RegisterClass RC>:
    InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
           [], IIBranch, FrmR>;

  class BGEZAL_FT<string opstr, RegisterOperand RO> :
    InstSE<(outs), (ins RO:$rs, brtarget:$offset),
           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;

}

class BAL_FT :
  InstSE<(outs), (ins brtarget:$offset), "bal\t$offset", [], IIBranch, FrmI> {
  let isBranch = 1;
  let isTerminator = 1;
  let isBarrier = 1;
  let hasDelaySlot = 1;
  let Defs = [RA];
}
// Syscall
class SYS_FT<string opstr> :
  InstSE<(outs), (ins uimm20:$code_),
         !strconcat(opstr, "\t$code_"), [], NoItinerary, FrmI>;
// Break
class BRK_FT<string opstr> :
  InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2),
         !strconcat(opstr, "\t$code_1, $code_2"), [], NoItinerary, FrmOther>;

// Sync
let hasSideEffects = 1 in
class SYNC_FT :
  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
         NoItinerary, FrmOther>;

let hasSideEffects = 1 in
class TEQ_FT<string opstr, RegisterOperand RO> :
  InstSE<(outs), (ins RO:$rs, RO:$rt, uimm16:$code_),
         !strconcat(opstr, "\t$rs, $rt, $code_"), [], NoItinerary, FrmI>;

// Mul, Div
class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
           list<Register> DefRegs> :
  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
         itin, FrmR, opstr> {
  let isCommutable = 1;
  let Defs = DefRegs;
  let neverHasSideEffects = 1;
}

// Pseudo multiply/divide instruction with explicit accumulator register
// operands.
class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
                    SDPatternOperator OpNode, InstrItinClass Itin,
                    bit IsComm = 1, bit HasSideEffects = 0,
                    bit UsesCustomInserter = 0> :
  PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
           [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
  PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
  let isCommutable = IsComm;
  let hasSideEffects = HasSideEffects;
  let usesCustomInserter = UsesCustomInserter;
}

// Pseudo multiply add/sub instruction with explicit accumulator register
// operands.
class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode>
  : PseudoSE<(outs ACRegs:$ac),
             (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin),
             [(set ACRegs:$ac,
              (OpNode CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin))],
             IIImul>,
    PseudoInstExpansion<(RealInst CPURegsOpnd:$rs, CPURegsOpnd:$rt)> {
  string Constraints = "$acin = $ac";
}

class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
          list<Register> DefRegs> :
  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
         [], itin, FrmR> {
  let Defs = DefRegs;
}

// Move from Hi/Lo
class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
  let Uses = UseRegs;
  let neverHasSideEffects = 1;
}

class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
  let Defs = DefRegs;
  let neverHasSideEffects = 1;
}

class EffectiveAddress<string opstr, RegisterClass RC, Operand Mem> :
  InstSE<(outs RC:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
         [(set RC:$rt, addr:$addr)], NoItinerary, FrmI> {
  let isCodeGenOnly = 1;
  let DecoderMethod = "DecodeMem";
}

// Count Leading Ones/Zeros in Word
class CountLeading0<string opstr, RegisterOperand RO>:
  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
         [(set RO:$rd, (ctlz RO:$rs))], IIAlu, FrmR>,
  Requires<[HasBitCount, HasStdEnc]>;

class CountLeading1<string opstr, RegisterOperand RO>:
  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
         [(set RO:$rd, (ctlz (not RO:$rs)))], IIAlu, FrmR>,
  Requires<[HasBitCount, HasStdEnc]>;


// Sign Extend in Register.
class SignExtInReg<string opstr, ValueType vt, RegisterClass RC> :
  InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"),
         [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary, FrmR> {
  let Predicates = [HasSEInReg, HasStdEnc];
}

// Subword Swap
class SubwordSwap<string opstr, RegisterOperand RO>:
  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
         NoItinerary, FrmR> {
  let Predicates = [HasSwap, HasStdEnc];
  let neverHasSideEffects = 1;
}

// Read Hardware
class ReadHardware<RegisterClass CPURegClass, RegisterOperand RO> :
  InstSE<(outs CPURegClass:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
         IIAlu, FrmR>;

// Ext and Ins
class ExtBase<string opstr, RegisterOperand RO>:
  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ext:$size),
         !strconcat(opstr, " $rt, $rs, $pos, $size"),
         [(set RO:$rt, (MipsExt RO:$rs, imm:$pos, imm:$size))], NoItinerary,
         FrmR> {
  let Predicates = [HasMips32r2, HasStdEnc];
}

class InsBase<string opstr, RegisterOperand RO>:
  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ins:$size, RO:$src),
         !strconcat(opstr, " $rt, $rs, $pos, $size"),
         [(set RO:$rt, (MipsIns RO:$rs, imm:$pos, imm:$size, RO:$src))],
         NoItinerary, FrmR> {
  let Predicates = [HasMips32r2, HasStdEnc];
  let Constraints = "$src = $rt";
}

// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;

multiclass Atomic2Ops32<PatFrag Op> {
  def NAME : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
  def _P8  : Atomic2Ops<Op, CPURegs, CPU64Regs>,
             Requires<[IsN64, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
  }
}

// Atomic Compare & Swap.
class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;

multiclass AtomicCmpSwap32<PatFrag Op>  {
  def NAME : AtomicCmpSwap<Op, CPURegs, CPURegs>,
             Requires<[NotN64, HasStdEnc]>;
  def _P8  : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
             Requires<[IsN64, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
  }
}

class LLBase<string opstr, RegisterOperand RO, Operand Mem> :
  InstSE<(outs RO:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
         [], NoItinerary, FrmI> {
  let DecoderMethod = "DecodeMem";
  let mayLoad = 1;
}

class SCBase<string opstr, RegisterOperand RO, Operand Mem> :
  InstSE<(outs RO:$dst), (ins RO:$rt, Mem:$addr),
         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
  let DecoderMethod = "DecodeMem";
  let mayStore = 1;
  let Constraints = "$rt = $dst";
}

class MFC3OP<dag outs, dag ins, string asmstr> :
  InstSE<outs, ins, asmstr, [], NoItinerary, FrmFR>;

//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//

// Return RA.
let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;

let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
                                  [(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
}

let usesCustomInserter = 1 in {
  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;

  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;

  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
}

/// Pseudo instructions for loading and storing accumulator registers.
let isPseudo = 1 in {
  defm LOAD_AC64  : LoadM<"load_ac64", ACRegs>;
  defm STORE_AC64 : StoreM<"store_ac64", ACRegs>;
}

//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MipsI Instructions
//===----------------------------------------------------------------------===//

/// Arithmetic Instructions (ALU Immediate)
def ADDiu : MMRel, ArithLogicI<"addiu", simm16, CPURegsOpnd, immSExt16, add>,
            ADDI_FM<0x9>, IsAsCheapAsAMove;
def ADDi  : MMRel, ArithLogicI<"addi", simm16, CPURegsOpnd>, ADDI_FM<0x8>;
def SLTi  : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>,
            SLTI_FM<0xa>;
def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>,
            SLTI_FM<0xb>;
def ANDi  : MMRel, ArithLogicI<"andi", uimm16, CPURegsOpnd, immZExt16, and>,
            ADDI_FM<0xc>;
def ORi   : MMRel, ArithLogicI<"ori", uimm16, CPURegsOpnd, immZExt16, or>,
            ADDI_FM<0xd>;
def XORi  : MMRel, ArithLogicI<"xori", uimm16, CPURegsOpnd, immZExt16, xor>,
            ADDI_FM<0xe>;
def LUi   : MMRel, LoadUpper<"lui", CPURegs, uimm16>, LUI_FM;

/// Arithmetic Instructions (3-Operand, R-Type)
def ADDu  : MMRel, ArithLogicR<"addu", CPURegsOpnd, 1, IIAlu, add>,
            ADD_FM<0, 0x21>;
def SUBu  : MMRel, ArithLogicR<"subu", CPURegsOpnd, 0, IIAlu, sub>,
            ADD_FM<0, 0x23>;
def MUL   : MMRel, ArithLogicR<"mul", CPURegsOpnd, 1, IIImul, mul>,
            ADD_FM<0x1c, 2>;
def ADD   : MMRel, ArithLogicR<"add", CPURegsOpnd>, ADD_FM<0, 0x20>;
def SUB   : MMRel, ArithLogicR<"sub", CPURegsOpnd>, ADD_FM<0, 0x22>;
def SLT   : MMRel, SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
def SLTu  : MMRel, SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
def AND   : MMRel, ArithLogicR<"and", CPURegsOpnd, 1, IIAlu, and>,
            ADD_FM<0, 0x24>;
def OR    : MMRel, ArithLogicR<"or", CPURegsOpnd, 1, IIAlu, or>,
            ADD_FM<0, 0x25>;
def XOR   : MMRel, ArithLogicR<"xor", CPURegsOpnd, 1, IIAlu, xor>,
            ADD_FM<0, 0x26>;
def NOR   : MMRel, LogicNOR<"nor", CPURegsOpnd>, ADD_FM<0, 0x27>;

/// Shift Instructions
def SLL  : MMRel, shift_rotate_imm<"sll", shamt, CPURegsOpnd, shl, immZExt5>,
           SRA_FM<0, 0>;
def SRL  : MMRel, shift_rotate_imm<"srl", shamt, CPURegsOpnd, srl, immZExt5>,
           SRA_FM<2, 0>;
def SRA  : MMRel, shift_rotate_imm<"sra", shamt, CPURegsOpnd, sra, immZExt5>,
           SRA_FM<3, 0>;
def SLLV : MMRel, shift_rotate_reg<"sllv", CPURegsOpnd, shl>, SRLV_FM<4, 0>;
def SRLV : MMRel, shift_rotate_reg<"srlv", CPURegsOpnd, srl>, SRLV_FM<6, 0>;
def SRAV : MMRel, shift_rotate_reg<"srav", CPURegsOpnd, sra>, SRLV_FM<7, 0>;

// Rotate Instructions
let Predicates = [HasMips32r2, HasStdEnc] in {
  def ROTR  : MMRel, shift_rotate_imm<"rotr", shamt, CPURegsOpnd, rotr,
                                      immZExt5>,
              SRA_FM<2, 1>;
  def ROTRV : MMRel, shift_rotate_reg<"rotrv", CPURegsOpnd, rotr>,
              SRLV_FM<6, 1>;
}

/// Load and Store Instructions
///  aligned
defm LB  : LoadM<"lb", CPURegs, sextloadi8, IILoad>, MMRel, LW_FM<0x20>;
defm LBu : LoadM<"lbu", CPURegs, zextloadi8, IILoad, addrDefault>, MMRel,
           LW_FM<0x24>;
defm LH  : LoadM<"lh", CPURegs, sextloadi16, IILoad, addrDefault>, MMRel,
           LW_FM<0x21>;
defm LHu : LoadM<"lhu", CPURegs, zextloadi16, IILoad>, MMRel, LW_FM<0x25>;
defm LW  : LoadM<"lw", CPURegs, load, IILoad, addrDefault>, MMRel, LW_FM<0x23>;
defm SB  : StoreM<"sb", CPURegs, truncstorei8, IIStore>, MMRel, LW_FM<0x28>;
defm SH  : StoreM<"sh", CPURegs, truncstorei16, IIStore>, MMRel, LW_FM<0x29>;
defm SW  : StoreM<"sw", CPURegs, store, IIStore>, MMRel, LW_FM<0x2b>;

/// load/store left/right
defm LWL : LoadLeftRightM<"lwl", MipsLWL, CPURegs>, LW_FM<0x22>;
defm LWR : LoadLeftRightM<"lwr", MipsLWR, CPURegs>, LW_FM<0x26>;
defm SWL : StoreLeftRightM<"swl", MipsSWL, CPURegs>, LW_FM<0x2a>;
defm SWR : StoreLeftRightM<"swr", MipsSWR, CPURegs>, LW_FM<0x2e>;

def SYNC : SYNC_FT, SYNC_FM;
def TEQ : TEQ_FT<"teq", CPURegsOpnd>, TEQ_FM<0x34>;

def BREAK : BRK_FT<"break">, BRK_FM<0xd>;
def SYSCALL : SYS_FT<"syscall">, SYS_FM<0xc>;

/// Load-linked, Store-conditional
let Predicates = [NotN64, HasStdEnc] in {
  def LL : LLBase<"ll", CPURegsOpnd, mem>, LW_FM<0x30>;
  def SC : SCBase<"sc", CPURegsOpnd, mem>, LW_FM<0x38>;
}

let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
  def LL_P8 : LLBase<"ll", CPURegsOpnd, mem64>, LW_FM<0x30>;
  def SC_P8 : SCBase<"sc", CPURegsOpnd, mem64>, LW_FM<0x38>;
}

/// Jump and Branch Instructions
def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
def JR      : IndirectBranch<CPURegs>, MTLO_FM<8>;
def B       : UncondBranch<"b">, B_FM;
def BEQ     : CBranch<"beq", seteq, CPURegsOpnd>, BEQ_FM<4>;
def BNE     : CBranch<"bne", setne, CPURegsOpnd>, BEQ_FM<5>;
def BGEZ    : CBranchZero<"bgez", setge, CPURegsOpnd>, BGEZ_FM<1, 1>;
def BGTZ    : CBranchZero<"bgtz", setgt, CPURegsOpnd>, BGEZ_FM<7, 0>;
def BLEZ    : CBranchZero<"blez", setle, CPURegsOpnd>, BGEZ_FM<6, 0>;
def BLTZ    : CBranchZero<"bltz", setlt, CPURegsOpnd>, BGEZ_FM<1, 0>;

def BAL_BR: BAL_FT, BAL_FM;

def JAL  : JumpLink<"jal">, FJ<3>;
def JALR : JumpLinkReg<"jalr", CPURegs>, JALR_FM;
def JALRPseudo : JumpLinkRegPseudo<CPURegs, JALR, RA>;
def BGEZAL : BGEZAL_FT<"bgezal", CPURegsOpnd>, BGEZAL_FM<0x11>;
def BLTZAL : BGEZAL_FT<"bltzal", CPURegsOpnd>, BGEZAL_FM<0x10>;
def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, MTLO_FM<8>, IsTailCall;

def RET : RetBase<CPURegs>, MTLO_FM<8>;

// Exception handling related node and instructions.
// The conversion sequence is:
// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
// MIPSeh_return -> (stack change + indirect branch)
//
// MIPSeh_return takes the place of regular return instruction
// but takes two arguments (V1, V0) which are used for storing
// the offset and return address respectively.
def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;

def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
  def MIPSeh_return32 : MipsPseudo<(outs), (ins CPURegs:$spoff, CPURegs:$dst),
                                [(MIPSehret CPURegs:$spoff, CPURegs:$dst)]>;
  def MIPSeh_return64 : MipsPseudo<(outs), (ins CPU64Regs:$spoff,
                                                CPU64Regs:$dst),
                                [(MIPSehret CPU64Regs:$spoff, CPU64Regs:$dst)]>;
}

/// Multiply and Divide Instructions.
def MULT  : MMRel, Mult<"mult", IIImul, CPURegsOpnd, [HI, LO]>,
            MULT_FM<0, 0x18>;
def MULTu : MMRel, Mult<"multu", IIImul, CPURegsOpnd, [HI, LO]>,
            MULT_FM<0, 0x19>;
def PseudoMULT  : MultDivPseudo<MULT, ACRegs, CPURegsOpnd, MipsMult, IIImul>;
def PseudoMULTu : MultDivPseudo<MULTu, ACRegs, CPURegsOpnd, MipsMultu, IIImul>;
def SDIV  : Div<"div", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1a>;
def UDIV  : Div<"divu", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1b>;
def PseudoSDIV : MultDivPseudo<SDIV, ACRegs, CPURegsOpnd, MipsDivRem, IIIdiv,
                               0, 1, 1>;
def PseudoUDIV : MultDivPseudo<UDIV, ACRegs, CPURegsOpnd, MipsDivRemU, IIIdiv,
                               0, 1, 1>;

def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;

/// Sign Ext In Register Instructions.
def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10, 0x20>;
def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18, 0x20>;

/// Count Leading
def CLZ : CountLeading0<"clz", CPURegsOpnd>, CLO_FM<0x20>;
def CLO : CountLeading1<"clo", CPURegsOpnd>, CLO_FM<0x21>;

/// Word Swap Bytes Within Halfwords
def WSBH : SubwordSwap<"wsbh", CPURegsOpnd>, SEB_FM<2, 0x20>;

/// No operation.
def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;

// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched. It's similar to Sparc LEA_ADDRi
def LEA_ADDiu : EffectiveAddress<"addiu", CPURegs, mem_ea>, LW_FM<9>;

// MADD*/MSUB*
def MADD  : MArithR<"madd", 1>, MULT_FM<0x1c, 0>;
def MADDU : MArithR<"maddu", 1>, MULT_FM<0x1c, 1>;
def MSUB  : MArithR<"msub">, MULT_FM<0x1c, 4>;
def MSUBU : MArithR<"msubu">, MULT_FM<0x1c, 5>;
def PseudoMADD  : MAddSubPseudo<MADD, MipsMAdd>;
def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu>;
def PseudoMSUB  : MAddSubPseudo<MSUB, MipsMSub>;
def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu>;

def RDHWR : ReadHardware<CPURegs, HWRegsOpnd>, RDHWR_FM;

def EXT : ExtBase<"ext", CPURegsOpnd>, EXT_FM<0>;
def INS : InsBase<"ins", CPURegsOpnd>, EXT_FM<4>;

/// Move Control Registers From/To CPU Registers
def MFC0_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
                      (ins CPURegsOpnd:$rd, uimm16:$sel),
                      "mfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 0>;

def MTC0_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
                      (ins CPURegsOpnd:$rt),
                      "mtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 4>;

def MFC2_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
                      (ins CPURegsOpnd:$rd, uimm16:$sel),
                      "mfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 0>;

def MTC2_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
                      (ins CPURegsOpnd:$rt),
                      "mtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 4>;

//===----------------------------------------------------------------------===//
// Instruction aliases
//===----------------------------------------------------------------------===//
def : InstAlias<"move $dst, $src",
                (ADDu CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
      Requires<[NotMips64]>;
def : InstAlias<"move $dst, $src",
                (OR CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
      Requires<[NotMips64]>;
def : InstAlias<"bal $offset", (BGEZAL RA, brtarget:$offset), 1>;
def : InstAlias<"addu $rs, $rt, $imm",
                (ADDiu CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
def : InstAlias<"add $rs, $rt, $imm",
                (ADDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
def : InstAlias<"and $rs, $rt, $imm",
                (ANDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
def : InstAlias<"j $rs", (JR CPURegs:$rs), 0>,
      Requires<[NotMips64]>;
def : InstAlias<"jalr $rs", (JALR RA, CPURegs:$rs)>, Requires<[NotMips64]>;
def : InstAlias<"jal $rs", (JALR RA, CPURegs:$rs), 0>, Requires<[NotMips64]>;
def : InstAlias<"jal $rd,$rs", (JALR CPURegs:$rd, CPURegs:$rs), 0>,
                 Requires<[NotMips64]>;
def : InstAlias<"not $rt, $rs",
                (NOR CPURegsOpnd:$rt, CPURegsOpnd:$rs, ZERO), 1>;
def : InstAlias<"neg $rt, $rs",
                (SUB CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
def : InstAlias<"negu $rt, $rs",
                (SUBu CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
def : InstAlias<"slt $rs, $rt, $imm",
                (SLTi CPURegsOpnd:$rs, CPURegs:$rt, simm16:$imm), 0>;
def : InstAlias<"xor $rs, $rt, $imm",
                (XORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, uimm16:$imm), 1>,
      Requires<[NotMips64]>;
def : InstAlias<"or $rs, $rt, $imm",
                (ORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, uimm16:$imm), 1>,
                 Requires<[NotMips64]>;
def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
def : InstAlias<"mfc0 $rt, $rd",
                (MFC0_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
def : InstAlias<"mtc0 $rt, $rd",
                (MTC0_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
def : InstAlias<"mfc2 $rt, $rd",
                (MFC2_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
def : InstAlias<"mtc2 $rt, $rd",
                (MTC2_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
def : InstAlias<"bnez $rs,$offset",
                 (BNE CPURegsOpnd:$rs, ZERO, brtarget:$offset), 1>,
                 Requires<[NotMips64]>;
def : InstAlias<"beqz $rs,$offset",
                 (BEQ CPURegsOpnd:$rs, ZERO, brtarget:$offset), 1>,
                 Requires<[NotMips64]>;
def : InstAlias<"syscall", (SYSCALL 0), 1>;

def : InstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>;
def : InstAlias<"break", (BREAK 0, 0), 1>;
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions
//===----------------------------------------------------------------------===//

class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
def LoadImm32Reg : LoadImm32<"li", shamt,CPURegsOpnd>;

class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
                     !strconcat(instr_asm, "\t$rt, $addr")> ;
def LoadAddr32Reg : LoadAddress<"la", mem, CPURegsOpnd>;

class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegsOpnd>;



//===----------------------------------------------------------------------===//
//  Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//

// Load/store pattern templates.
class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
  MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;

class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
  MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;

// Small immediates
def : MipsPat<(i32 immSExt16:$in),
              (ADDiu ZERO, imm:$in)>;
def : MipsPat<(i32 immZExt16:$in),
              (ORi ZERO, imm:$in)>;
def : MipsPat<(i32 immLow16Zero:$in),
              (LUi (HI16 imm:$in))>;

// Arbitrary immediates
def : MipsPat<(i32 imm:$imm),
          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;

// Carry MipsPatterns
def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
let Predicates = [HasStdEnc, NotDSP] in {
  def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
                (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
  def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
                (ADDiu CPURegs:$src, imm:$imm)>;
}

// Call
def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
              (JAL tglobaladdr:$dst)>;
def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
              (JAL texternalsym:$dst)>;
//def : MipsPat<(MipsJmpLink CPURegs:$dst),
//              (JALR CPURegs:$dst)>;

// Tail call
def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
              (TAILCALL tglobaladdr:$dst)>;
def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
              (TAILCALL texternalsym:$dst)>;
// hi/lo relocs
def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;

def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;

def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;

// gp_rel relocs
def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
              (ADDiu CPURegs:$gp, tconstpool:$in)>;

// wrapper_pic
class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
      MipsPat<(MipsWrapper RC:$gp, node:$in),
              (ADDiuOp RC:$gp, node:$in)>;

def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
def : WrapperPat<tconstpool, ADDiu, CPURegs>;
def : WrapperPat<texternalsym, ADDiu, CPURegs>;
def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
def : WrapperPat<tjumptable, ADDiu, CPURegs>;
def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;

// Mips does not have "not", so we expand our way
def : MipsPat<(not CPURegs:$in),
              (NOR CPURegsOpnd:$in, ZERO)>;

// extended loads
let Predicates = [NotN64, HasStdEnc] in {
  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
}
let Predicates = [IsN64, HasStdEnc] in {
  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
}

// peepholes
let Predicates = [NotN64, HasStdEnc] in {
  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
}
let Predicates = [IsN64, HasStdEnc] in {
  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
}

// brcond patterns
multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
                      Instruction SLTiuOp, Register ZEROReg> {
def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;

def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
              (BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
              (BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;

def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;

def : MipsPat<(brcond RC:$cond, bb:$dst),
              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
}

defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;

def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst),
              (BLEZ i32:$lhs, bb:$dst)>;
def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst),
              (BGEZ i32:$lhs, bb:$dst)>;

// setcc patterns
multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
                     Instruction SLTuOp, Register ZEROReg> {
  def : MipsPat<(seteq RC:$lhs, 0),
                (SLTiuOp RC:$lhs, 1)>;
  def : MipsPat<(setne RC:$lhs, 0),
                (SLTuOp ZEROReg, RC:$lhs)>;
  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
  def : MipsPat<(setne RC:$lhs, RC:$rhs),
                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
}

multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
  def : MipsPat<(setle RC:$lhs, RC:$rhs),
                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
  def : MipsPat<(setule RC:$lhs, RC:$rhs),
                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
}

multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
                (SLTOp RC:$rhs, RC:$lhs)>;
  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
                (SLTuOp RC:$rhs, RC:$lhs)>;
}

multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
  def : MipsPat<(setge RC:$lhs, RC:$rhs),
                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
}

multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
                        Instruction SLTiuOp> {
  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
}

defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
defm : SetlePats<CPURegs, SLT, SLTu>;
defm : SetgtPats<CPURegs, SLT, SLTu>;
defm : SetgePats<CPURegs, SLT, SLTu>;
defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;

// bswap pattern
def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;

// mflo/hi patterns.
def : MipsPat<(i32 (ExtractLOHI ACRegs:$ac, imm:$lohi_idx)),
              (EXTRACT_SUBREG ACRegs:$ac, imm:$lohi_idx)>;

// Load halfword/word patterns.
let AddedComplexity = 40 in {
  let Predicates = [NotN64, HasStdEnc] in {
    def : LoadRegImmPat<LBu, i32, zextloadi8>;
    def : LoadRegImmPat<LH, i32, sextloadi16>;
    def : LoadRegImmPat<LW, i32, load>;
  }
  let Predicates = [IsN64, HasStdEnc] in {
    def : LoadRegImmPat<LBu_P8, i32, zextloadi8>;
    def : LoadRegImmPat<LH_P8, i32, sextloadi16>;
    def : LoadRegImmPat<LW_P8, i32, load>;
  }
}

//===----------------------------------------------------------------------===//
// Floating Point Support
//===----------------------------------------------------------------------===//

include "MipsInstrFPU.td"
include "Mips64InstrInfo.td"
include "MipsCondMov.td"

//
// Mips16

include "Mips16InstrFormats.td"
include "Mips16InstrInfo.td"

// DSP
include "MipsDSPInstrFormats.td"
include "MipsDSPInstrInfo.td"

// Micromips
include "MicroMipsInstrFormats.td"
include "MicroMipsInstrInfo.td"