1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
|
//===- MipsInstrInfo.td - Mips Register defs --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "MipsInstrFormats.td"
//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//
def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def SDT_MipsSelectCC : SDTypeProfile<1, 3, [SDTCisSameAs<0, 2>,
SDTCisSameAs<2, 3>, SDTCisInt<1>]>;
def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>,
SDTCisInt<4>]>;
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
// Call
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, [SDNPHasChain,
SDNPOutFlag]>;
// Hi and Lo nodes are used to handle global addresses. Used on
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
// static model. (nothing to do with Mips Registers Hi and Lo)
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
// Return
def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
SDNPOptInFlag]>;
// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
[SDNPHasChain, SDNPOutFlag]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
// Select Condition Code
def MipsSelectCC : SDNode<"MipsISD::SelectCC", SDT_MipsSelectCC>;
// Conditional Move
def MipsCMov : SDNode<"MipsISD::CMov", SDT_MipsCMov>;
//===----------------------------------------------------------------------===//
// Mips Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">;
def HasBitCount : Predicate<"Subtarget.hasBitCount()">;
def HasSwap : Predicate<"Subtarget.hasSwap()">;
def HasCondMov : Predicate<"Subtarget.hasCondMov()">;
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Instruction operand types
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
def simm16 : Operand<i32>;
def shamt : Operand<i32>;
// Unsigned Operand
def uimm16 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
// Address operand
def mem : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops simm16, CPURegs);
}
// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() & 0xFFFF);
}]>;
// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() >> 16);
}]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (int32_t)N->getZExtValue() == (short)N->getZExtValue();
else
return (int64_t)N->getZExtValue() == (short)N->getZExtValue();
}]>;
// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
else
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;
// shamt field must fit in 5 bits.
def immZExt5 : PatLeaf<(imm), [{
return N->getZExtValue() == ((N->getZExtValue()) & 0x1f) ;
}]>;
// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr : ComplexPattern<i32, 2, "SelectAddr", [frameindex], []>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Arithmetic 3 register operands
let isCommutable = 1 in
class ArithR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
InstrItinClass itin>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], itin>;
let isCommutable = 1 in
class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[], IIAlu>;
// Arithmetic 2 register operands
class ArithI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))], IIAlu>;
class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[], IIAlu>;
// Arithmetic Multiply ADD/SUB
let rd=0 in
class MArithR<bits<6> func, string instr_asm> :
FR< 0x1c,
func,
(outs CPURegs:$rs),
(ins CPURegs:$rt),
!strconcat(instr_asm, "\t$rs, $rt"),
[], IIImul>;
// Logical
class LogicR<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;
class LogicI<bits<6> op, string instr_asm, SDNode OpNode>:
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, uimm16:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt16:$c))], IIAlu>;
class LogicNOR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (not (or CPURegs:$b, CPURegs:$c)))], IIAlu>;
// Shifts
let rt = 0 in
class LogicR_shift_imm<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, shamt:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))], IIAlu>;
class LogicR_shift_reg<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;
// Load Upper Imediate
class LoadUpper<bits<6> op, string instr_asm>:
FI< op,
(outs CPURegs:$dst),
(ins uimm16:$imm),
!strconcat(instr_asm, "\t$dst, $imm"),
[], IIAlu>;
// Memory Load/Store
let canFoldAsLoad = 1, hasDelaySlot = 1 in
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI< op,
(outs CPURegs:$dst),
(ins mem:$addr),
!strconcat(instr_asm, "\t$dst, $addr"),
[(set CPURegs:$dst, (OpNode addr:$addr))], IILoad>;
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI< op,
(outs),
(ins CPURegs:$dst, mem:$addr),
!strconcat(instr_asm, "\t$dst, $addr"),
[(OpNode CPURegs:$dst, addr:$addr)], IIStore>;
// Conditional Branch
let isBranch = 1, isTerminator=1, hasDelaySlot = 1 in {
class CBranch<bits<6> op, string instr_asm, PatFrag cond_op>:
FI< op,
(outs),
(ins CPURegs:$a, CPURegs:$b, brtarget:$offset),
!strconcat(instr_asm, "\t$a, $b, $offset"),
[(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)],
IIBranch>;
class CBranchZero<bits<6> op, string instr_asm, PatFrag cond_op>:
FI< op,
(outs),
(ins CPURegs:$src, brtarget:$offset),
!strconcat(instr_asm, "\t$src, $offset"),
[(brcond (cond_op CPURegs:$src, 0), bb:$offset)],
IIBranch>;
}
// SetCC
class SetCC_R<bits<6> op, bits<6> func, string instr_asm,
PatFrag cond_op>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, CPURegs:$c))],
IIAlu>;
class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op,
Operand Od, PatLeaf imm_type>:
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, imm_type:$c))],
IIAlu>;
// Unconditional branch
let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
class JumpFJ<bits<6> op, string instr_asm>:
FJ< op,
(outs),
(ins brtarget:$target),
!strconcat(instr_asm, "\t$target"),
[(br bb:$target)], IIBranch>;
let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in
class JumpFR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs),
(ins CPURegs:$target),
!strconcat(instr_asm, "\t$target"),
[(brind CPURegs:$target)], IIBranch>;
// Jump and Link (Call)
let isCall=1, hasDelaySlot=1,
// All calls clobber the non-callee saved registers...
Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
K0, K1, F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
F14, F15, F16, F17, F18, F19], Uses = [GP] in {
class JumpLink<bits<6> op, string instr_asm>:
FJ< op,
(outs),
(ins calltarget:$target),
!strconcat(instr_asm, "\t$target"),
[(MipsJmpLink imm:$target)], IIBranch>;
let rd=31 in
class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs),
(ins CPURegs:$rs),
!strconcat(instr_asm, "\t$rs"),
[(MipsJmpLink CPURegs:$rs)], IIBranch>;
class BranchLink<string instr_asm>:
FI< 0x1,
(outs),
(ins CPURegs:$rs, brtarget:$target),
!strconcat(instr_asm, "\t$rs, $target"),
[], IIBranch>;
}
// Mul, Div
class MulDiv<bits<6> func, string instr_asm, InstrItinClass itin>:
FR< 0x00,
func,
(outs),
(ins CPURegs:$a, CPURegs:$b),
!strconcat(instr_asm, "\t$a, $b"),
[], itin>;
// Move from Hi/Lo
class MoveFromLOHI<bits<6> func, string instr_asm>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins),
!strconcat(instr_asm, "\t$dst"),
[], IIHiLo>;
class MoveToLOHI<bits<6> func, string instr_asm>:
FR< 0x00,
func,
(outs),
(ins CPURegs:$src),
!strconcat(instr_asm, "\t$src"),
[], IIHiLo>;
class EffectiveAddress<string instr_asm> :
FI<0x09,
(outs CPURegs:$dst),
(ins mem:$addr),
instr_asm,
[(set CPURegs:$dst, addr:$addr)], IIAlu>;
// Count Leading Ones/Zeros in Word
class CountLeading<bits<6> func, string instr_asm, SDNode CountOp>:
FR< 0x1c, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"),
[(set CPURegs:$dst, (CountOp CPURegs:$src))], IIAlu>;
// Sign Extend in Register.
class SignExtInReg<bits<6> func, string instr_asm, ValueType vt>:
FR< 0x3f, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"),
[(set CPURegs:$dst, (sext_inreg CPURegs:$src, vt))], NoItinerary>;
// Byte Swap
class ByteSwap<bits<6> func, string instr_asm>:
FR< 0x1f, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"),
[(set CPURegs:$dst, (bswap CPURegs:$src))], NoItinerary>;
// Conditional Move
class CondMov<bits<6> func, string instr_asm, PatLeaf MovCode>:
FR< 0x00, func, (outs CPURegs:$dst), (ins CPURegs:$F, CPURegs:$T,
CPURegs:$cond), !strconcat(instr_asm, "\t$dst, $T, $cond"),
[(set CPURegs:$dst, (MipsCMov CPURegs:$F, CPURegs:$T,
CPURegs:$cond, MovCode))], NoItinerary>;
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
// As stack alignment is always done with addiu, we need a 16-bit immediate
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt),
"!ADJCALLSTACKDOWN $amt",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2),
"!ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
// Some assembly macros need to avoid pseudoinstructions and assembler
// automatic reodering, we should reorder ourselves.
def MACRO : MipsPseudo<(outs), (ins), ".set\tmacro", []>;
def REORDER : MipsPseudo<(outs), (ins), ".set\treorder", []>;
def NOMACRO : MipsPseudo<(outs), (ins), ".set\tnomacro", []>;
def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>;
// When handling PIC code the assembler needs .cpload and .cprestore
// directives. If the real instructions corresponding these directives
// are used, we have the same behavior, but get also a bunch of warnings
// from the assembler.
def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>;
def CPRESTORE : MipsPseudo<(outs), (ins uimm16:$loc), ".cprestore\t$loc\n", []>;
// The supported Mips ISAs dont have any instruction close to the SELECT_CC
// operation. The solution is to create a Mips pseudo SELECT_CC instruction
// (MipsSelectCC), use LowerSELECT_CC to generate this instruction and finally
// replace it for real supported nodes into EmitInstrWithCustomInserter
let usesCustomDAGSchedInserter = 1 in {
class PseudoSelCC<RegisterClass RC, string asmstr>:
MipsPseudo<(outs RC:$dst), (ins CPURegs:$CmpRes, RC:$T, RC:$F), asmstr,
[(set RC:$dst, (MipsSelectCC CPURegs:$CmpRes, RC:$T, RC:$F))]>;
}
def Select_CC : PseudoSelCC<CPURegs, "# MipsSelect_CC_i32">;
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MipsI Instructions
//===----------------------------------------------------------------------===//
/// Arithmetic Instructions (ALU Immediate)
def ADDiu : ArithI<0x09, "addiu", add, simm16, immSExt16>;
def ADDi : ArithOverflowI<0x08, "addi", add, simm16, immSExt16>;
def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>;
def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16>;
def ANDi : LogicI<0x0c, "andi", and>;
def ORi : LogicI<0x0d, "ori", or>;
def XORi : LogicI<0x0e, "xori", xor>;
def LUi : LoadUpper<0x0f, "lui">;
/// Arithmetic Instructions (3-Operand, R-Type)
def ADDu : ArithR<0x00, 0x21, "addu", add, IIAlu>;
def SUBu : ArithR<0x00, 0x23, "subu", sub, IIAlu>;
def ADD : ArithOverflowR<0x00, 0x20, "add">;
def SUB : ArithOverflowR<0x00, 0x22, "sub">;
def SLT : SetCC_R<0x00, 0x2a, "slt", setlt>;
def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult>;
def AND : LogicR<0x24, "and", and>;
def OR : LogicR<0x25, "or", or>;
def XOR : LogicR<0x26, "xor", xor>;
def NOR : LogicNOR<0x00, 0x27, "nor">;
/// Shift Instructions
def SLL : LogicR_shift_imm<0x00, "sll", shl>;
def SRL : LogicR_shift_imm<0x02, "srl", srl>;
def SRA : LogicR_shift_imm<0x03, "sra", sra>;
def SLLV : LogicR_shift_reg<0x04, "sllv", shl>;
def SRLV : LogicR_shift_reg<0x06, "srlv", srl>;
def SRAV : LogicR_shift_reg<0x07, "srav", sra>;
/// Load and Store Instructions
def LB : LoadM<0x20, "lb", sextloadi8>;
def LBu : LoadM<0x24, "lbu", zextloadi8>;
def LH : LoadM<0x21, "lh", sextloadi16>;
def LHu : LoadM<0x25, "lhu", zextloadi16>;
def LW : LoadM<0x23, "lw", load>;
def SB : StoreM<0x28, "sb", truncstorei8>;
def SH : StoreM<0x29, "sh", truncstorei16>;
def SW : StoreM<0x2b, "sw", store>;
/// Jump and Branch Instructions
def J : JumpFJ<0x02, "j">;
def JR : JumpFR<0x00, 0x08, "jr">;
def JAL : JumpLink<0x03, "jal">;
def JALR : JumpLinkReg<0x00, 0x09, "jalr">;
def BEQ : CBranch<0x04, "beq", seteq>;
def BNE : CBranch<0x05, "bne", setne>;
let rt=1 in
def BGEZ : CBranchZero<0x01, "bgez", setge>;
let rt=0 in {
def BGTZ : CBranchZero<0x07, "bgtz", setgt>;
def BLEZ : CBranchZero<0x07, "blez", setle>;
def BLTZ : CBranchZero<0x01, "bltz", setlt>;
}
def BGEZAL : BranchLink<"bgezal">;
def BLTZAL : BranchLink<"bltzal">;
let isReturn=1, isTerminator=1, hasDelaySlot=1,
isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in
def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target),
"jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>;
/// Multiply and Divide Instructions.
let Defs = [HI, LO] in {
def MULT : MulDiv<0x18, "mult", IIImul>;
def MULTu : MulDiv<0x19, "multu", IIImul>;
def DIV : MulDiv<0x1a, "div", IIIdiv>;
def DIVu : MulDiv<0x1b, "divu", IIIdiv>;
}
let Defs = [HI] in
def MTHI : MoveToLOHI<0x11, "mthi">;
let Defs = [LO] in
def MTLO : MoveToLOHI<0x13, "mtlo">;
let Uses = [HI] in
def MFHI : MoveFromLOHI<0x10, "mfhi">;
let Uses = [LO] in
def MFLO : MoveFromLOHI<0x12, "mflo">;
/// Sign Ext In Register Instructions.
let Predicates = [HasSEInReg] in {
let shamt = 0x10, rs = 0 in
def SEB : SignExtInReg<0x21, "seb", i8>;
let shamt = 0x18, rs = 0 in
def SEH : SignExtInReg<0x20, "seh", i16>;
}
/// Count Leading
let Predicates = [HasBitCount] in {
let rt = 0 in
def CLZ : CountLeading<0b010110, "clz", ctlz>;
}
/// Byte Swap
let Predicates = [HasSwap] in {
let shamt = 0x3, rs = 0 in
def WSBW : ByteSwap<0x20, "wsbw">;
}
/// Conditional Move
def MIPS_CMOV_ZERO : PatLeaf<(i32 0)>;
def MIPS_CMOV_NZERO : PatLeaf<(i32 1)>;
let Predicates = [HasCondMov], isTwoAddress = 1 in {
def MOVN : CondMov<0x0a, "movn", MIPS_CMOV_NZERO>;
def MOVZ : CondMov<0x0b, "movz", MIPS_CMOV_ZERO>;
}
/// No operation
let addr=0 in
def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>;
// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched. It's similar to Sparc LEA_ADDRi
def LEA_ADDiu : EffectiveAddress<"addiu\t$dst, ${addr:stackloc}">;
// MADD*/MSUB* are not part of MipsI either.
//def MADD : MArithR<0x00, "madd">;
//def MADDU : MArithR<0x01, "maddu">;
//def MSUB : MArithR<0x04, "msub">;
//def MSUBU : MArithR<0x05, "msubu">;
// MUL is a assembly macro in the current used ISAs. In recent ISA's
// it is a real instruction.
//def MUL : ArithR<0x1c, 0x02, "mul", mul, IIImul>;
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Small immediates
def : Pat<(i32 immSExt16:$in),
(ADDiu ZERO, imm:$in)>;
def : Pat<(i32 immZExt16:$in),
(ORi ZERO, imm:$in)>;
// Arbitrary immediates
def : Pat<(i32 imm:$imm),
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Carry patterns
def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs),
(SUBu CPURegs:$lhs, CPURegs:$rhs)>;
def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs),
(ADDu CPURegs:$lhs, CPURegs:$rhs)>;
def : Pat<(addc CPURegs:$src, imm:$imm),
(ADDiu CPURegs:$src, imm:$imm)>;
// Call
def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
(JAL tglobaladdr:$dst)>;
def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
(JAL texternalsym:$dst)>;
def : Pat<(MipsJmpLink CPURegs:$dst),
(JALR CPURegs:$dst)>;
// hi/lo relocs
def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
(ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
(ADDiu CPURegs:$hi, tjumptable:$lo)>;
def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
(ADDiu CPURegs:$hi, tconstpool:$lo)>;
// gp_rel relocs
def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
(ADDiu CPURegs:$gp, tglobaladdr:$in)>;
def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
(ADDiu CPURegs:$gp, tconstpool:$in)>;
// Mips does not have "not", so we expand our way
def : Pat<(not CPURegs:$in),
(NOR CPURegs:$in, ZERO)>;
// extended load and stores
def : Pat<(extloadi1 addr:$src), (LBu addr:$src)>;
def : Pat<(extloadi8 addr:$src), (LBu addr:$src)>;
def : Pat<(extloadi16 addr:$src), (LHu addr:$src)>;
// peepholes
def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
// brcond patterns
def : Pat<(brcond (setne CPURegs:$lhs, 0), bb:$dst),
(BNE CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (seteq CPURegs:$lhs, 0), bb:$dst),
(BEQ CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BEQ (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BEQ (SLTiu CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLT CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLTu CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond CPURegs:$cond, bb:$dst),
(BNE CPURegs:$cond, ZERO, bb:$dst)>;
// select patterns
def : Pat<(select (setge CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLT CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(select (setuge CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLTu CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(select (setge CPURegs:$lhs, immSExt16:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLTi CPURegs:$lhs, immSExt16:$rhs))>;
def : Pat<(select (setuge CPURegs:$lh, immSExt16:$rh), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLTiu CPURegs:$lh, immSExt16:$rh))>;
def : Pat<(select (setle CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLT CPURegs:$rhs, CPURegs:$lhs))>;
def : Pat<(select (setule CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLTu CPURegs:$rhs, CPURegs:$lhs))>;
def : Pat<(select (seteq CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (XOR CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(select (setne CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVN CPURegs:$F, CPURegs:$T, (XOR CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(select CPURegs:$cond, CPURegs:$T, CPURegs:$F),
(MOVN CPURegs:$F, CPURegs:$T, CPURegs:$cond)>;
// setcc patterns
def : Pat<(seteq CPURegs:$lhs, CPURegs:$rhs),
(SLTu (XOR CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setne CPURegs:$lhs, CPURegs:$rhs),
(SLTu ZERO, (XOR CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(setle CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setule CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLTu CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setgt CPURegs:$lhs, CPURegs:$rhs),
(SLT CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setugt CPURegs:$lhs, CPURegs:$rhs),
(SLTu CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLTu CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setge CPURegs:$lhs, immSExt16:$rhs),
(XORi (SLTi CPURegs:$lhs, immSExt16:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, immSExt16:$rhs),
(XORi (SLTiu CPURegs:$lhs, immSExt16:$rhs), 1)>;
//===----------------------------------------------------------------------===//
// Floating Point Support
//===----------------------------------------------------------------------===//
include "MipsInstrFPU.td"
|