1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
//===-- NVPTXISelDAGToDAG.h - A dag to dag inst selector for NVPTX --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the NVPTX target.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "nvptx-isel"
#include "NVPTX.h"
#include "NVPTXISelLowering.h"
#include "NVPTXRegisterInfo.h"
#include "NVPTXTargetMachine.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;
namespace {
class LLVM_LIBRARY_VISIBILITY NVPTXDAGToDAGISel : public SelectionDAGISel {
// If true, generate corresponding FPCONTRACT. This is
// language dependent (i.e. CUDA and OpenCL works differently).
bool doFMADF32;
bool doFMAF64;
bool doFMAF32;
bool doFMAF64AGG;
bool doFMAF32AGG;
bool allowFMA;
// 0: use div.approx
// 1: use div.full
// 2: For sm_20 and later, ieee-compliant div.rnd.f32 can be generated;
// Otherwise, use div.full
int do_DIVF32_PREC;
// If true, add .ftz to f32 instructions.
// This is only meaningful for sm_20 and later, as the default
// is not ftz.
// For sm earlier than sm_20, f32 denorms are always ftz by the
// hardware.
// We always add the .ftz modifier regardless of the sm value
// when Use32FTZ is true.
bool UseF32FTZ;
// If true, generate mul.wide from sext and mul
bool doMulWide;
public:
explicit NVPTXDAGToDAGISel(NVPTXTargetMachine &tm,
CodeGenOpt::Level OptLevel);
// Pass Name
virtual const char *getPassName() const {
return "NVPTX DAG->DAG Pattern Instruction Selection";
}
const NVPTXSubtarget &Subtarget;
virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps);
private:
// Include the pieces autogenerated from the target description.
#include "NVPTXGenDAGISel.inc"
SDNode *Select(SDNode *N);
SDNode* SelectLoad(SDNode *N);
SDNode* SelectStore(SDNode *N);
inline SDValue getI32Imm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
// Match direct address complex pattern.
bool SelectDirectAddr(SDValue N, SDValue &Address);
bool SelectADDRri_imp(SDNode *OpNode, SDValue Addr, SDValue &Base,
SDValue &Offset, MVT mvt);
bool SelectADDRri(SDNode *OpNode, SDValue Addr, SDValue &Base,
SDValue &Offset);
bool SelectADDRri64(SDNode *OpNode, SDValue Addr, SDValue &Base,
SDValue &Offset);
bool SelectADDRsi_imp(SDNode *OpNode, SDValue Addr, SDValue &Base,
SDValue &Offset, MVT mvt);
bool SelectADDRsi(SDNode *OpNode, SDValue Addr, SDValue &Base,
SDValue &Offset);
bool SelectADDRsi64(SDNode *OpNode, SDValue Addr, SDValue &Base,
SDValue &Offset);
bool ChkMemSDNodeAddressSpace(SDNode *N, unsigned int spN) const;
bool UndefOrImm(SDValue Op, SDValue N, SDValue &Retval);
};
}
|