1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
//===-- PTXISelLowering.cpp - PTX DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PTXTargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "PTXISelLowering.h"
#include "PTX.h"
#include "PTXMachineFunctionInfo.h"
#include "PTXRegisterInfo.h"
#include "PTXSubtarget.h"
#include "llvm/Function.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//
PTXTargetLowering::PTXTargetLowering(TargetMachine &TM)
: TargetLowering(TM, new TargetLoweringObjectFileELF()) {
// Set up the register classes.
addRegisterClass(MVT::i1, PTX::RegPredRegisterClass);
addRegisterClass(MVT::i16, PTX::RegI16RegisterClass);
addRegisterClass(MVT::i32, PTX::RegI32RegisterClass);
addRegisterClass(MVT::i64, PTX::RegI64RegisterClass);
addRegisterClass(MVT::f32, PTX::RegF32RegisterClass);
addRegisterClass(MVT::f64, PTX::RegF64RegisterClass);
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
setMinFunctionAlignment(2);
// Let LLVM use loads/stores for all mem* operations
maxStoresPerMemcpy = 4096;
maxStoresPerMemmove = 4096;
maxStoresPerMemset = 4096;
////////////////////////////////////
/////////// Expansion //////////////
////////////////////////////////////
// (any/zero/sign) extload => load + (any/zero/sign) extend
setLoadExtAction(ISD::EXTLOAD, MVT::i16, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand);
// f32 extload => load + fextend
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
// f64 truncstore => trunc + store
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// sign_extend_inreg => sign_extend
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
// br_cc => brcond
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
// select_cc => setcc
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
////////////////////////////////////
//////////// Legal /////////////////
////////////////////////////////////
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
////////////////////////////////////
//////////// Custom ////////////////
////////////////////////////////////
// customise setcc to use bitwise logic if possible
setOperationAction(ISD::SETCC, MVT::i1, Custom);
// customize translation of memory addresses
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
// Compute derived properties from the register classes
computeRegisterProperties();
}
EVT PTXTargetLowering::getSetCCResultType(EVT VT) const {
return MVT::i1;
}
SDValue PTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default:
llvm_unreachable("Unimplemented operand");
case ISD::SETCC:
return LowerSETCC(Op, DAG);
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
}
}
const char *PTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default:
llvm_unreachable("Unknown opcode");
case PTXISD::COPY_ADDRESS:
return "PTXISD::COPY_ADDRESS";
case PTXISD::LOAD_PARAM:
return "PTXISD::LOAD_PARAM";
case PTXISD::STORE_PARAM:
return "PTXISD::STORE_PARAM";
case PTXISD::READ_PARAM:
return "PTXISD::READ_PARAM";
case PTXISD::WRITE_PARAM:
return "PTXISD::WRITE_PARAM";
case PTXISD::EXIT:
return "PTXISD::EXIT";
case PTXISD::RET:
return "PTXISD::RET";
case PTXISD::CALL:
return "PTXISD::CALL";
}
}
//===----------------------------------------------------------------------===//
// Custom Lower Operation
//===----------------------------------------------------------------------===//
SDValue PTXTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::i1 && "SetCC type must be 1-bit integer");
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
DebugLoc dl = Op.getDebugLoc();
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
// Look for X == 0, X == 1, X != 0, or X != 1
// We can simplify these to bitwise logic
if (Op1.getOpcode() == ISD::Constant &&
(cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
cast<ConstantSDNode>(Op1)->isNullValue()) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
return DAG.getNode(ISD::AND, dl, MVT::i1, Op0, Op1);
}
return DAG.getNode(ISD::SETCC, dl, MVT::i1, Op0, Op1, Op2);
}
SDValue PTXTargetLowering::
LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
assert(PtrVT.isSimple() && "Pointer must be to primitive type.");
SDValue targetGlobal = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
SDValue movInstr = DAG.getNode(PTXISD::COPY_ADDRESS,
dl,
PtrVT.getSimpleVT(),
targetGlobal);
return movInstr;
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
SDValue PTXTargetLowering::
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
if (isVarArg) llvm_unreachable("PTX does not support varargs");
MachineFunction &MF = DAG.getMachineFunction();
const PTXSubtarget& ST = getTargetMachine().getSubtarget<PTXSubtarget>();
PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
PTXParamManager &PM = MFI->getParamManager();
switch (CallConv) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::PTX_Kernel:
MFI->setKernel(true);
break;
case CallingConv::PTX_Device:
MFI->setKernel(false);
break;
}
// We do one of two things here:
// IsKernel || SM >= 2.0 -> Use param space for arguments
// SM < 2.0 -> Use registers for arguments
if (MFI->isKernel() || ST.useParamSpaceForDeviceArgs()) {
// We just need to emit the proper LOAD_PARAM ISDs
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
assert((!MFI->isKernel() || Ins[i].VT != MVT::i1) &&
"Kernels cannot take pred operands");
unsigned ParamSize = Ins[i].VT.getStoreSizeInBits();
unsigned Param = PM.addArgumentParam(ParamSize);
const std::string &ParamName = PM.getParamName(Param);
SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(),
MVT::Other);
SDValue ArgValue = DAG.getNode(PTXISD::LOAD_PARAM, dl, Ins[i].VT, Chain,
ParamValue);
InVals.push_back(ArgValue);
}
}
else {
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
EVT RegVT = Ins[i].VT;
const TargetRegisterClass* TRC = getRegClassFor(RegVT);
unsigned RegType;
// Determine which register class we need
if (RegVT == MVT::i1)
RegType = PTXRegisterType::Pred;
else if (RegVT == MVT::i16)
RegType = PTXRegisterType::B16;
else if (RegVT == MVT::i32)
RegType = PTXRegisterType::B32;
else if (RegVT == MVT::i64)
RegType = PTXRegisterType::B64;
else if (RegVT == MVT::f32)
RegType = PTXRegisterType::F32;
else if (RegVT == MVT::f64)
RegType = PTXRegisterType::F64;
else
llvm_unreachable("Unknown parameter type");
// Use a unique index in the instruction to prevent instruction folding.
// Yes, this is a hack.
SDValue Index = DAG.getTargetConstant(i, MVT::i32);
unsigned Reg = MF.getRegInfo().createVirtualRegister(TRC);
SDValue ArgValue = DAG.getNode(PTXISD::READ_PARAM, dl, RegVT, Chain,
Index);
InVals.push_back(ArgValue);
MFI->addRegister(Reg, RegType, PTXRegisterSpace::Argument);
}
}
return Chain;
}
SDValue PTXTargetLowering::
LowerReturn(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl,
SelectionDAG &DAG) const {
if (isVarArg) llvm_unreachable("PTX does not support varargs");
switch (CallConv) {
default:
llvm_unreachable("Unsupported calling convention.");
case CallingConv::PTX_Kernel:
assert(Outs.size() == 0 && "Kernel must return void.");
return DAG.getNode(PTXISD::EXIT, dl, MVT::Other, Chain);
case CallingConv::PTX_Device:
assert(Outs.size() <= 1 && "Can at most return one value.");
break;
}
MachineFunction& MF = DAG.getMachineFunction();
PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
PTXParamManager &PM = MFI->getParamManager();
SDValue Flag;
const PTXSubtarget& ST = getTargetMachine().getSubtarget<PTXSubtarget>();
if (ST.useParamSpaceForDeviceArgs()) {
assert(Outs.size() < 2 && "Device functions can return at most one value");
if (Outs.size() == 1) {
unsigned ParamSize = OutVals[0].getValueType().getSizeInBits();
unsigned Param = PM.addReturnParam(ParamSize);
const std::string &ParamName = PM.getParamName(Param);
SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(),
MVT::Other);
Chain = DAG.getNode(PTXISD::STORE_PARAM, dl, MVT::Other, Chain,
ParamValue, OutVals[0]);
}
} else {
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
EVT RegVT = Outs[i].VT;
const TargetRegisterClass* TRC;
unsigned RegType;
// Determine which register class we need
if (RegVT == MVT::i1) {
TRC = PTX::RegPredRegisterClass;
RegType = PTXRegisterType::Pred;
}
else if (RegVT == MVT::i16) {
TRC = PTX::RegI16RegisterClass;
RegType = PTXRegisterType::B16;
}
else if (RegVT == MVT::i32) {
TRC = PTX::RegI32RegisterClass;
RegType = PTXRegisterType::B32;
}
else if (RegVT == MVT::i64) {
TRC = PTX::RegI64RegisterClass;
RegType = PTXRegisterType::B64;
}
else if (RegVT == MVT::f32) {
TRC = PTX::RegF32RegisterClass;
RegType = PTXRegisterType::F32;
}
else if (RegVT == MVT::f64) {
TRC = PTX::RegF64RegisterClass;
RegType = PTXRegisterType::F64;
}
else {
llvm_unreachable("Unknown parameter type");
}
unsigned Reg = MF.getRegInfo().createVirtualRegister(TRC);
SDValue Copy = DAG.getCopyToReg(Chain, dl, Reg, OutVals[i]/*, Flag*/);
SDValue OutReg = DAG.getRegister(Reg, RegVT);
Chain = DAG.getNode(PTXISD::WRITE_PARAM, dl, MVT::Other, Copy, OutReg);
MFI->addRegister(Reg, RegType, PTXRegisterSpace::Return);
}
}
if (Flag.getNode() == 0) {
return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain);
}
else {
return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain, Flag);
}
}
SDValue
PTXTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool doesNotRet, bool &isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction& MF = DAG.getMachineFunction();
PTXMachineFunctionInfo *PTXMFI = MF.getInfo<PTXMachineFunctionInfo>();
PTXParamManager &PM = PTXMFI->getParamManager();
MachineFrameInfo *MFI = MF.getFrameInfo();
assert(getTargetMachine().getSubtarget<PTXSubtarget>().callsAreHandled() &&
"Calls are not handled for the target device");
// Identify the callee function
const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
const Function *function = cast<Function>(GV);
// allow non-device calls only for printf
bool isPrintf = function->getName() == "printf" || function->getName() == "puts";
assert((isPrintf || function->getCallingConv() == CallingConv::PTX_Device) &&
"PTX function calls must be to PTX device functions");
unsigned outSize = isPrintf ? 2 : Outs.size();
std::vector<SDValue> Ops;
// The layout of the ops will be [Chain, #Ins, Ins, Callee, #Outs, Outs]
Ops.resize(outSize + Ins.size() + 4);
Ops[0] = Chain;
// Identify the callee function
Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
Ops[Ins.size()+2] = Callee;
// #Outs
Ops[Ins.size()+3] = DAG.getTargetConstant(outSize, MVT::i32);
if (isPrintf) {
// first argument is the address of the global string variable in memory
unsigned Param0 = PM.addLocalParam(getPointerTy().getSizeInBits());
SDValue ParamValue0 = DAG.getTargetExternalSymbol(PM.getParamName(Param0).c_str(),
MVT::Other);
Chain = DAG.getNode(PTXISD::STORE_PARAM, dl, MVT::Other, Chain,
ParamValue0, OutVals[0]);
Ops[Ins.size()+4] = ParamValue0;
// alignment is the maximum size of all the arguments
unsigned alignment = 0;
for (unsigned i = 1; i < OutVals.size(); ++i) {
alignment = std::max(alignment,
OutVals[i].getValueType().getSizeInBits());
}
// size is the alignment multiplied by the number of arguments
unsigned size = alignment * (OutVals.size() - 1);
// second argument is the address of the stack object (unless no arguments)
unsigned Param1 = PM.addLocalParam(getPointerTy().getSizeInBits());
SDValue ParamValue1 = DAG.getTargetExternalSymbol(PM.getParamName(Param1).c_str(),
MVT::Other);
Ops[Ins.size()+5] = ParamValue1;
if (size > 0)
{
// create a local stack object to store the arguments
unsigned StackObject = MFI->CreateStackObject(size / 8, alignment / 8, false);
SDValue FrameIndex = DAG.getFrameIndex(StackObject, getPointerTy());
// store each of the arguments to the stack in turn
for (unsigned int i = 1; i != OutVals.size(); i++) {
SDValue FrameAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FrameIndex, DAG.getTargetConstant((i - 1) * 8, getPointerTy()));
Chain = DAG.getStore(Chain, dl, OutVals[i], FrameAddr,
MachinePointerInfo(),
false, false, 0);
}
// copy the address of the local frame index to get the address in non-local space
SDValue genericAddr = DAG.getNode(PTXISD::COPY_ADDRESS, dl, getPointerTy(), FrameIndex);
// store this address in the second argument
Chain = DAG.getNode(PTXISD::STORE_PARAM, dl, MVT::Other, Chain, ParamValue1, genericAddr);
}
}
else
{
// Generate STORE_PARAM nodes for each function argument. In PTX, function
// arguments are explicitly stored into .param variables and passed as
// arguments. There is no register/stack-based calling convention in PTX.
for (unsigned i = 0; i != OutVals.size(); ++i) {
unsigned Size = OutVals[i].getValueType().getSizeInBits();
unsigned Param = PM.addLocalParam(Size);
const std::string &ParamName = PM.getParamName(Param);
SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(),
MVT::Other);
Chain = DAG.getNode(PTXISD::STORE_PARAM, dl, MVT::Other, Chain,
ParamValue, OutVals[i]);
Ops[i+Ins.size()+4] = ParamValue;
}
}
std::vector<SDValue> InParams;
// Generate list of .param variables to hold the return value(s).
Ops[1] = DAG.getTargetConstant(Ins.size(), MVT::i32);
for (unsigned i = 0; i < Ins.size(); ++i) {
unsigned Size = Ins[i].VT.getStoreSizeInBits();
unsigned Param = PM.addLocalParam(Size);
const std::string &ParamName = PM.getParamName(Param);
SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(),
MVT::Other);
Ops[i+2] = ParamValue;
InParams.push_back(ParamValue);
}
Ops[0] = Chain;
// Create the CALL node.
Chain = DAG.getNode(PTXISD::CALL, dl, MVT::Other, &Ops[0], Ops.size());
// Create the LOAD_PARAM nodes that retrieve the function return value(s).
for (unsigned i = 0; i < Ins.size(); ++i) {
SDValue Load = DAG.getNode(PTXISD::LOAD_PARAM, dl, Ins[i].VT, Chain,
InParams[i]);
InVals.push_back(Load);
}
return Chain;
}
unsigned PTXTargetLowering::getNumRegisters(LLVMContext &Context, EVT VT) {
// All arguments consist of one "register," regardless of the type.
return 1;
}
|