aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/PowerPC/PPCCodeEmitter.cpp
blob: 51ed6d41e11c74f483358677845669ef17951a43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
//===-- PPC32CodeEmitter.cpp - JIT Code Emitter for PowerPC32 -----*- C++ -*-=//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
// 
// This file defines the PowerPC 32-bit CodeEmitter and associated machinery to
// JIT-compile bytecode to native PowerPC.
//
//===----------------------------------------------------------------------===//

#include "PPC32JITInfo.h"
#include "PPC32TargetMachine.h"
#include "PowerPC.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"

namespace llvm {

namespace {
  class JITResolver {
    MachineCodeEmitter &MCE;

    // LazyCodeGenMap - Keep track of call sites for functions that are to be
    // lazily resolved.
    std::map<unsigned, Function*> LazyCodeGenMap;

    // LazyResolverMap - Keep track of the lazy resolver created for a
    // particular function so that we can reuse them if necessary.
    std::map<Function*, unsigned> LazyResolverMap;

  public:
    JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
    unsigned getLazyResolver(Function *F);
    unsigned addFunctionReference(unsigned Address, Function *F);
    
  private:
    unsigned emitStubForFunction(Function *F);
    static void CompilationCallback();
    unsigned resolveFunctionReference(unsigned RetAddr);
  };

  static JITResolver &getResolver(MachineCodeEmitter &MCE) {
    static JITResolver *TheJITResolver = 0;
    if (TheJITResolver == 0)
      TheJITResolver = new JITResolver(MCE);
    return *TheJITResolver;
  }
}

unsigned JITResolver::getLazyResolver(Function *F) {
  std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
  if (I != LazyResolverMap.end() && I->first == F) return I->second;

  unsigned Stub = emitStubForFunction(F);
  LazyResolverMap.insert(I, std::make_pair(F, Stub));
  return Stub;
}

/// addFunctionReference - This method is called when we need to emit the
/// address of a function that has not yet been emitted, so we don't know the
/// address.  Instead, we emit a call to the CompilationCallback method, and
/// keep track of where we are.
///
unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
  LazyCodeGenMap[Address] = F;
  return (intptr_t)&JITResolver::CompilationCallback;
}

unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
  std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
  assert(I != LazyCodeGenMap.end() && "Not in map!");
  Function *F = I->second;
  LazyCodeGenMap.erase(I);
  return MCE.forceCompilationOf(F);
}

/// emitStubForFunction - This method is used by the JIT when it needs to emit
/// the address of a function for a function whose code has not yet been
/// generated.  In order to do this, it generates a stub which jumps to the lazy
/// function compiler, which will eventually get fixed to call the function
/// directly.
///
unsigned JITResolver::emitStubForFunction(Function *F) {
  std::cerr << "PPC32CodeEmitter::emitStubForFunction() unimplemented!\n";
  abort();
  return 0;
}

void JITResolver::CompilationCallback() {
  std::cerr << "PPC32CodeEmitter: CompilationCallback() unimplemented!";
  abort();
}

namespace {
  class PPC32CodeEmitter : public MachineFunctionPass {
    TargetMachine &TM;
    MachineCodeEmitter &MCE;

    // Tracks which instruction references which BasicBlock
    std::vector<std::pair<const BasicBlock*,
                          std::pair<unsigned*,MachineInstr*> > > BBRefs;
    // Tracks where each BasicBlock starts
    std::map<const BasicBlock*, long> BBLocations;

    /// getMachineOpValue - evaluates the MachineOperand of a given MachineInstr
    ///
    int64_t getMachineOpValue(MachineInstr &MI, MachineOperand &MO);

    unsigned getAddressOfExternalFunction(Function *F);

  public:
    PPC32CodeEmitter(TargetMachine &T, MachineCodeEmitter &M) 
      : TM(T), MCE(M) {}

    const char *getPassName() const { return "PowerPC Machine Code Emitter"; }

    /// runOnMachineFunction - emits the given MachineFunction to memory
    ///
    bool runOnMachineFunction(MachineFunction &MF);

    /// emitBasicBlock - emits the given MachineBasicBlock to memory
    ///
    void emitBasicBlock(MachineBasicBlock &MBB);

    /// emitWord - write a 32-bit word to memory at the current PC
    ///
    void emitWord(unsigned w) { MCE.emitWord(w); }
    
    /// getValueBit - return the particular bit of Val
    ///
    unsigned getValueBit(int64_t Val, unsigned bit) { return (Val >> bit) & 1; }

    /// getBinaryCodeForInstr - This function, generated by the
    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
    /// machine instructions.
    ///
    unsigned getBinaryCodeForInstr(MachineInstr &MI);
  };
}

/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
/// machine code emitted.  This uses a MachineCodeEmitter object to handle
/// actually outputting the machine code and resolving things like the address
/// of functions.  This method should returns true if machine code emission is
/// not supported.
///
bool PPC32TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
                                                    MachineCodeEmitter &MCE) {
  // Keep as `true' until this is a functional JIT to allow llvm-gcc to build
  return true;

  // Machine code emitter pass for PowerPC
  PM.add(new PPC32CodeEmitter(*this, MCE)); 
  // Delete machine code for this function after emitting it
  PM.add(createMachineCodeDeleter());
  return false;
}

bool PPC32CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
  MCE.startFunction(MF);
  MCE.emitConstantPool(MF.getConstantPool());
  for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
    emitBasicBlock(*BB);
  MCE.finishFunction(MF);

  // Resolve branches to BasicBlocks for the entire function
  for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
    long Location = BBLocations[BBRefs[i].first];
    unsigned *Ref = BBRefs[i].second.first;
    MachineInstr *MI = BBRefs[i].second.second;
    DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location
                    << " in instr: " << std::dec << *MI);
    for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
      MachineOperand &op = MI->getOperand(ii);
      if (op.isPCRelativeDisp()) {
        // the instruction's branch target is made such that it branches to
        // PC + (branchTarget * 4), so undo that arithmetic here:
        // Location is the target of the branch
        // Ref is the location of the instruction, and hence the PC
        int64_t branchTarget = (Location - (long)Ref) >> 2;
        MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
                                   branchTarget);
        unsigned fixedInstr = PPC32CodeEmitter::getBinaryCodeForInstr(*MI);
        MCE.emitWordAt(fixedInstr, Ref);
        break;
      }
    }
  }
  BBRefs.clear();
  BBLocations.clear();

  return false;
}

void PPC32CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
  BBLocations[MBB.getBasicBlock()] = MCE.getCurrentPCValue();
  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
    MachineInstr &MI = *I;
    unsigned Opcode = MI.getOpcode();
    if (Opcode == PPC::IMPLICIT_DEF) continue;

    emitWord(getBinaryCodeForInstr(*I));
  }
}

unsigned PPC32CodeEmitter::getAddressOfExternalFunction(Function *F) {
  static std::map<Function*, unsigned> ExternalFn2Addr;
  std::map<Function*, unsigned>::iterator Addr = ExternalFn2Addr.find(F);

  if (Addr == ExternalFn2Addr.end())
    ExternalFn2Addr[F] = MCE.forceCompilationOf(F);
  return ExternalFn2Addr[F];
}

static unsigned enumRegToMachineReg(unsigned enumReg) {
  switch (enumReg) {
  case PPC::R0 :  case PPC::F0 :  return  0;  
  case PPC::R1 :  case PPC::F1 :  return  1; 
  case PPC::R2 :  case PPC::F2 :  return  2;
  case PPC::R3 :  case PPC::F3 :  return  3; 
  case PPC::R4 :  case PPC::F4 :  return  4; 
  case PPC::R5 :  case PPC::F5 :  return  5;
  case PPC::R6 :  case PPC::F6 :  return  6; 
  case PPC::R7 :  case PPC::F7 :  return  7; 
  case PPC::R8 :  case PPC::F8 :  return  8;
  case PPC::R9 :  case PPC::F9 :  return  9; 
  case PPC::R10:  case PPC::F10:  return 10; 
  case PPC::R11:  case PPC::F11:  return 11;
  case PPC::R12:  case PPC::F12:  return 12; 
  case PPC::R13:  case PPC::F13:  return 13; 
  case PPC::R14:  case PPC::F14:  return 14;
  case PPC::R15:  case PPC::F15:  return 15; 
  case PPC::R16:  case PPC::F16:  return 16; 
  case PPC::R17:  case PPC::F17:  return 17;
  case PPC::R18:  case PPC::F18:  return 18; 
  case PPC::R19:  case PPC::F19:  return 19; 
  case PPC::R20:  case PPC::F20:  return 20;
  case PPC::R21:  case PPC::F21:  return 21;
  case PPC::R22:  case PPC::F22:  return 22; 
  case PPC::R23:  case PPC::F23:  return 23; 
  case PPC::R24:  case PPC::F24:  return 24;
  case PPC::R25:  case PPC::F25:  return 25; 
  case PPC::R26:  case PPC::F26:  return 26; 
  case PPC::R27:  case PPC::F27:  return 27;
  case PPC::R28:  case PPC::F28:  return 28; 
  case PPC::R29:  case PPC::F29:  return 29; 
  case PPC::R30:  case PPC::F30:  return 30;
  case PPC::R31:  case PPC::F31:  return 31;
  default:
    std::cerr << "Unhandled reg in enumRegToRealReg!\n";
    abort();
  }
}

int64_t PPC32CodeEmitter::getMachineOpValue(MachineInstr &MI, 
                                            MachineOperand &MO) {
  int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
                  // or things that get fixed up later by the JIT.
  if (MO.isRegister()) {
    rv = enumRegToMachineReg(MO.getReg());
  } else if (MO.isImmediate()) {
    rv = MO.getImmedValue();
  } else if (MO.isGlobalAddress()) {
    GlobalValue *GV = MO.getGlobal();
    intptr_t Addr = (intptr_t)MCE.getGlobalValueAddress(GV);
    if (Addr == 0) {
      if (Function *F = dyn_cast<Function>(GV)) {
        if (F->isExternal())
          rv = getAddressOfExternalFunction(F);
        else {
          // Function has not yet been code generated!
          getResolver(MCE).addFunctionReference(MCE.getCurrentPCValue(), F);
          // Delayed resolution...
          return (intptr_t)getResolver(MCE).getLazyResolver(F);
        }
      } else if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
        if (GVar->isExternal()) {
          rv = MCE.getGlobalValueAddress(MO.getSymbolName());
          if (!rv) {
            std::cerr << "PPC32CodeEmitter: External global addr not found: " 
                      << *GVar;
            abort();
          }
        } else {
          std::cerr << "PPC32CodeEmitter: global addr not found: " << *GVar;
          abort();
        }
      }
    }
    if (MO.isPCRelative()) { // Global variable reference
      rv = (Addr - MCE.getCurrentPCValue()) >> 2;
    }
  } else if (MO.isMachineBasicBlock()) {
    const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
    unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
    BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
  } else if (MO.isConstantPoolIndex()) {
    unsigned index = MO.getConstantPoolIndex();
    rv = MCE.getConstantPoolEntryAddress(index);
  } else if (MO.isFrameIndex()) {
    std::cerr << "PPC32CodeEmitter: error: Frame index unhandled!\n";
    abort();
  } else {
    std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
    abort();
  }

  // Special treatment for global symbols: constants and vars
  if (MO.isConstantPoolIndex() || MO.isGlobalAddress()) {
    unsigned Opcode = MI.getOpcode();
    int64_t MBBLoc = BBLocations[MI.getParent()->getBasicBlock()];
    if (Opcode == PPC::LOADHiAddr) {
      // LoadHiAddr wants hi16(addr - mbb)
      rv = (rv - MBBLoc) >> 16;
    } else if (Opcode == PPC::LWZ || Opcode == PPC::LA ||
               Opcode == PPC::LFS || Opcode == PPC::LFD) {
      // These load opcodes want lo16(addr - mbb)
      rv = (rv - MBBLoc) & 0xffff;
    }
  }

  return rv;
}


void *PPC32JITInfo::getJITStubForFunction(Function *F, MachineCodeEmitter &MCE){
  return (void*)((unsigned long)getResolver(MCE).getLazyResolver(F));
}

void PPC32JITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
  std::cerr << "PPC32JITInfo::replaceMachineCodeForFunction not implemented\n";
  abort();
}

#include "PPC32GenCodeEmitter.inc"

} // end llvm namespace