aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
blob: 3ac8e949bbbd32b749f540ec696a6280d0ebe22b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for PowerPC,
// converting from a legalized dag to a PPC dag.
//
//===----------------------------------------------------------------------===//

#include "PPC.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;

#define DEBUG_TYPE "ppc-codegen"

// FIXME: Remove this once the bug has been fixed!
cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);

static cl::opt<bool>
    UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
                       cl::desc("use aggressive ppc isel for bit permutations"),
                       cl::Hidden);
static cl::opt<bool> BPermRewriterNoMasking(
    "ppc-bit-perm-rewriter-stress-rotates",
    cl::desc("stress rotate selection in aggressive ppc isel for "
             "bit permutations"),
    cl::Hidden);

namespace llvm {
  void initializePPCDAGToDAGISelPass(PassRegistry&);
}

namespace {
  //===--------------------------------------------------------------------===//
  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
  /// instructions for SelectionDAG operations.
  ///
  class PPCDAGToDAGISel : public SelectionDAGISel {
    const PPCTargetMachine &TM;
    const PPCSubtarget *PPCSubTarget;
    const PPCTargetLowering *PPCLowering;
    unsigned GlobalBaseReg;
  public:
    explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
        : SelectionDAGISel(tm), TM(tm) {
      initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
    }

    bool runOnMachineFunction(MachineFunction &MF) override {
      // Make sure we re-emit a set of the global base reg if necessary
      GlobalBaseReg = 0;
      PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
      PPCLowering = PPCSubTarget->getTargetLowering();
      SelectionDAGISel::runOnMachineFunction(MF);

      if (!PPCSubTarget->isSVR4ABI())
        InsertVRSaveCode(MF);

      return true;
    }

    void PreprocessISelDAG() override;
    void PostprocessISelDAG() override;

    /// getI32Imm - Return a target constant with the specified value, of type
    /// i32.
    inline SDValue getI32Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
    }

    /// getI64Imm - Return a target constant with the specified value, of type
    /// i64.
    inline SDValue getI64Imm(uint64_t Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i64);
    }

    /// getSmallIPtrImm - Return a target constant of pointer type.
    inline SDValue getSmallIPtrImm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, PPCLowering->getPointerTy());
    }

    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
    /// with any number of 0s on either side.  The 1s are allowed to wrap from
    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
    /// 0x0F0F0000 is not, since all 1s are not contiguous.
    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);


    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
    /// rotate and mask opcode and mask operation.
    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
                                unsigned &SH, unsigned &MB, unsigned &ME);

    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    /// base register.  Return the virtual register that holds this value.
    SDNode *getGlobalBaseReg();

    SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);

    // Select - Convert the specified operand from a target-independent to a
    // target-specific node if it hasn't already been changed.
    SDNode *Select(SDNode *N) override;

    SDNode *SelectBitfieldInsert(SDNode *N);
    SDNode *SelectBitPermutation(SDNode *N);

    /// SelectCC - Select a comparison of the specified values with the
    /// specified condition code, returning the CR# of the expression.
    SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);

    /// SelectAddrImm - Returns true if the address N can be represented by
    /// a base register plus a signed 16-bit displacement [r+imm].
    bool SelectAddrImm(SDValue N, SDValue &Disp,
                       SDValue &Base) {
      return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
    }

    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
    /// immediate field.  Note that the operand at this point is already the
    /// result of a prior SelectAddressRegImm call.
    bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
      if (N.getOpcode() == ISD::TargetConstant ||
          N.getOpcode() == ISD::TargetGlobalAddress) {
        Out = N;
        return true;
      }

      return false;
    }

    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
    /// represented as an indexed [r+r] operation.  Returns false if it can
    /// be represented by [r+imm], which are preferred.
    bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
      return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
    }

    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
    /// represented as an indexed [r+r] operation.
    bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
      return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
    }

    /// SelectAddrImmX4 - Returns true if the address N can be represented by
    /// a base register plus a signed 16-bit displacement that is a multiple of 4.
    /// Suitable for use by STD and friends.
    bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
      return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
    }

    // Select an address into a single register.
    bool SelectAddr(SDValue N, SDValue &Base) {
      Base = N;
      return true;
    }

    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    /// inline asm expressions.  It is always correct to compute the value into
    /// a register.  The case of adding a (possibly relocatable) constant to a
    /// register can be improved, but it is wrong to substitute Reg+Reg for
    /// Reg in an asm, because the load or store opcode would have to change.
    bool SelectInlineAsmMemoryOperand(const SDValue &Op,
                                      unsigned ConstraintID,
                                      std::vector<SDValue> &OutOps) override {

      switch(ConstraintID) {
      default:
        errs() << "ConstraintID: " << ConstraintID << "\n";
        llvm_unreachable("Unexpected asm memory constraint");
      case InlineAsm::Constraint_es:
      case InlineAsm::Constraint_i:
      case InlineAsm::Constraint_m:
      case InlineAsm::Constraint_o:
      case InlineAsm::Constraint_Q:
      case InlineAsm::Constraint_Z:
      case InlineAsm::Constraint_Zy:
        // We need to make sure that this one operand does not end up in r0
        // (because we might end up lowering this as 0(%op)).
        const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
        const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
        SDValue NewOp =
          SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
                                         SDLoc(Op), Op.getValueType(),
                                         Op, RC), 0);

        OutOps.push_back(NewOp);
        return false;
      }
      return true;
    }

    void InsertVRSaveCode(MachineFunction &MF);

    const char *getPassName() const override {
      return "PowerPC DAG->DAG Pattern Instruction Selection";
    }

// Include the pieces autogenerated from the target description.
#include "PPCGenDAGISel.inc"

private:
    SDNode *SelectSETCC(SDNode *N);

    void PeepholePPC64();
    void PeepholePPC64ZExt();
    void PeepholeCROps();

    SDValue combineToCMPB(SDNode *N);
    void foldBoolExts(SDValue &Res, SDNode *&N);

    bool AllUsersSelectZero(SDNode *N);
    void SwapAllSelectUsers(SDNode *N);

    SDNode *transferMemOperands(SDNode *N, SDNode *Result);
  };
}

/// InsertVRSaveCode - Once the entire function has been instruction selected,
/// all virtual registers are created and all machine instructions are built,
/// check to see if we need to save/restore VRSAVE.  If so, do it.
void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
  // Check to see if this function uses vector registers, which means we have to
  // save and restore the VRSAVE register and update it with the regs we use.
  //
  // In this case, there will be virtual registers of vector type created
  // by the scheduler.  Detect them now.
  bool HasVectorVReg = false;
  for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
      HasVectorVReg = true;
      break;
    }
  }
  if (!HasVectorVReg) return;  // nothing to do.

  // If we have a vector register, we want to emit code into the entry and exit
  // blocks to save and restore the VRSAVE register.  We do this here (instead
  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
  //
  // 1. This (trivially) reduces the load on the register allocator, by not
  //    having to represent the live range of the VRSAVE register.
  // 2. This (more significantly) allows us to create a temporary virtual
  //    register to hold the saved VRSAVE value, allowing this temporary to be
  //    register allocated, instead of forcing it to be spilled to the stack.

  // Create two vregs - one to hold the VRSAVE register that is live-in to the
  // function and one for the value after having bits or'd into it.
  unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
  unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);

  const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
  MachineBasicBlock &EntryBB = *Fn.begin();
  DebugLoc dl;
  // Emit the following code into the entry block:
  // InVRSAVE = MFVRSAVE
  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
  // MTVRSAVE UpdatedVRSAVE
  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
  BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
  BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
          UpdatedVRSAVE).addReg(InVRSAVE);
  BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);

  // Find all return blocks, outputting a restore in each epilog.
  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    if (!BB->empty() && BB->back().isReturn()) {
      IP = BB->end(); --IP;

      // Skip over all terminator instructions, which are part of the return
      // sequence.
      MachineBasicBlock::iterator I2 = IP;
      while (I2 != BB->begin() && (--I2)->isTerminator())
        IP = I2;

      // Emit: MTVRSAVE InVRSave
      BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
    }
  }
}


/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
  if (!GlobalBaseReg) {
    const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
    // Insert the set of GlobalBaseReg into the first MBB of the function
    MachineBasicBlock &FirstMBB = MF->front();
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    const Module *M = MF->getFunction()->getParent();
    DebugLoc dl;

    if (PPCLowering->getPointerTy() == MVT::i32) {
      if (PPCSubTarget->isTargetELF()) {
        GlobalBaseReg = PPC::R30;
        if (M->getPICLevel() == PICLevel::Small) {
          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
          MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
        } else {
          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
          unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
          BuildMI(FirstMBB, MBBI, dl,
                  TII.get(PPC::UpdateGBR), GlobalBaseReg)
                  .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
          MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
        }
      } else {
        GlobalBaseReg =
          RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
        BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
        BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
      }
    } else {
      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
    }
  }
  return CurDAG->getRegister(GlobalBaseReg,
                             PPCLowering->getPointerTy()).getNode();
}

/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 16-bit value.  If so, this returns true and the
/// immediate.
static bool isIntS16Immediate(SDNode *N, short &Imm) {
  if (N->getOpcode() != ISD::Constant)
    return false;

  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
  if (N->getValueType(0) == MVT::i32)
    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
  else
    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
}

static bool isIntS16Immediate(SDValue Op, short &Imm) {
  return isIntS16Immediate(Op.getNode(), Imm);
}


/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
/// operand. If so Imm will receive the 32-bit value.
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
    Imm = cast<ConstantSDNode>(N)->getZExtValue();
    return true;
  }
  return false;
}

/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
/// operand.  If so Imm will receive the 64-bit value.
static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
    Imm = cast<ConstantSDNode>(N)->getZExtValue();
    return true;
  }
  return false;
}

// isInt32Immediate - This method tests to see if a constant operand.
// If so Imm will receive the 32 bit value.
static bool isInt32Immediate(SDValue N, unsigned &Imm) {
  return isInt32Immediate(N.getNode(), Imm);
}


// isOpcWithIntImmediate - This method tests to see if the node is a specific
// opcode and that it has a immediate integer right operand.
// If so Imm will receive the 32 bit value.
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
  return N->getOpcode() == Opc
         && isInt32Immediate(N->getOperand(1).getNode(), Imm);
}

SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
  SDLoc dl(SN);
  int FI = cast<FrameIndexSDNode>(N)->getIndex();
  SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
  unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
  if (SN->hasOneUse())
    return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
                                getSmallIPtrImm(Offset));
  return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
                                getSmallIPtrImm(Offset));
}

bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
  if (!Val)
    return false;

  if (isShiftedMask_32(Val)) {
    // look for the first non-zero bit
    MB = countLeadingZeros(Val);
    // look for the first zero bit after the run of ones
    ME = countLeadingZeros((Val - 1) ^ Val);
    return true;
  } else {
    Val = ~Val; // invert mask
    if (isShiftedMask_32(Val)) {
      // effectively look for the first zero bit
      ME = countLeadingZeros(Val) - 1;
      // effectively look for the first one bit after the run of zeros
      MB = countLeadingZeros((Val - 1) ^ Val) + 1;
      return true;
    }
  }
  // no run present
  return false;
}

bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
                                      bool isShiftMask, unsigned &SH,
                                      unsigned &MB, unsigned &ME) {
  // Don't even go down this path for i64, since different logic will be
  // necessary for rldicl/rldicr/rldimi.
  if (N->getValueType(0) != MVT::i32)
    return false;

  unsigned Shift  = 32;
  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
  unsigned Opcode = N->getOpcode();
  if (N->getNumOperands() != 2 ||
      !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
    return false;

  if (Opcode == ISD::SHL) {
    // apply shift left to mask if it comes first
    if (isShiftMask) Mask = Mask << Shift;
    // determine which bits are made indeterminant by shift
    Indeterminant = ~(0xFFFFFFFFu << Shift);
  } else if (Opcode == ISD::SRL) {
    // apply shift right to mask if it comes first
    if (isShiftMask) Mask = Mask >> Shift;
    // determine which bits are made indeterminant by shift
    Indeterminant = ~(0xFFFFFFFFu >> Shift);
    // adjust for the left rotate
    Shift = 32 - Shift;
  } else if (Opcode == ISD::ROTL) {
    Indeterminant = 0;
  } else {
    return false;
  }

  // if the mask doesn't intersect any Indeterminant bits
  if (Mask && !(Mask & Indeterminant)) {
    SH = Shift & 31;
    // make sure the mask is still a mask (wrap arounds may not be)
    return isRunOfOnes(Mask, MB, ME);
  }
  return false;
}

/// SelectBitfieldInsert - turn an or of two masked values into
/// the rotate left word immediate then mask insert (rlwimi) instruction.
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
  SDValue Op0 = N->getOperand(0);
  SDValue Op1 = N->getOperand(1);
  SDLoc dl(N);

  APInt LKZ, LKO, RKZ, RKO;
  CurDAG->computeKnownBits(Op0, LKZ, LKO);
  CurDAG->computeKnownBits(Op1, RKZ, RKO);

  unsigned TargetMask = LKZ.getZExtValue();
  unsigned InsertMask = RKZ.getZExtValue();

  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
    unsigned Op0Opc = Op0.getOpcode();
    unsigned Op1Opc = Op1.getOpcode();
    unsigned Value, SH = 0;
    TargetMask = ~TargetMask;
    InsertMask = ~InsertMask;

    // If the LHS has a foldable shift and the RHS does not, then swap it to the
    // RHS so that we can fold the shift into the insert.
    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
          Op0.getOperand(0).getOpcode() == ISD::SRL) {
        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
            Op1.getOperand(0).getOpcode() != ISD::SRL) {
          std::swap(Op0, Op1);
          std::swap(Op0Opc, Op1Opc);
          std::swap(TargetMask, InsertMask);
        }
      }
    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
          Op1.getOperand(0).getOpcode() != ISD::SRL) {
        std::swap(Op0, Op1);
        std::swap(Op0Opc, Op1Opc);
        std::swap(TargetMask, InsertMask);
      }
    }

    unsigned MB, ME;
    if (isRunOfOnes(InsertMask, MB, ME)) {
      SDValue Tmp1, Tmp2;

      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
          isInt32Immediate(Op1.getOperand(1), Value)) {
        Op1 = Op1.getOperand(0);
        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
      }
      if (Op1Opc == ISD::AND) {
       // The AND mask might not be a constant, and we need to make sure that
       // if we're going to fold the masking with the insert, all bits not
       // know to be zero in the mask are known to be one.
        APInt MKZ, MKO;
        CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
        bool CanFoldMask = InsertMask == MKO.getZExtValue();

        unsigned SHOpc = Op1.getOperand(0).getOpcode();
        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
          // Note that Value must be in range here (less than 32) because
          // otherwise there would not be any bits set in InsertMask.
          Op1 = Op1.getOperand(0).getOperand(0);
          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
        }
      }

      SH &= 31;
      SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
                          getI32Imm(ME) };
      return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
    }
  }
  return nullptr;
}

// Predict the number of instructions that would be generated by calling
// SelectInt64(N).
static unsigned SelectInt64CountDirect(int64_t Imm) {
  // Assume no remaining bits.
  unsigned Remainder = 0;
  // Assume no shift required.
  unsigned Shift = 0;

  // If it can't be represented as a 32 bit value.
  if (!isInt<32>(Imm)) {
    Shift = countTrailingZeros<uint64_t>(Imm);
    int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;

    // If the shifted value fits 32 bits.
    if (isInt<32>(ImmSh)) {
      // Go with the shifted value.
      Imm = ImmSh;
    } else {
      // Still stuck with a 64 bit value.
      Remainder = Imm;
      Shift = 32;
      Imm >>= 32;
    }
  }

  // Intermediate operand.
  unsigned Result = 0;

  // Handle first 32 bits.
  unsigned Lo = Imm & 0xFFFF;
  unsigned Hi = (Imm >> 16) & 0xFFFF;

  // Simple value.
  if (isInt<16>(Imm)) {
    // Just the Lo bits.
    ++Result;
  } else if (Lo) {
    // Handle the Hi bits and Lo bits.
    Result += 2;
  } else {
    // Just the Hi bits.
    ++Result;
  }

  // If no shift, we're done.
  if (!Shift) return Result;

  // Shift for next step if the upper 32-bits were not zero.
  if (Imm)
    ++Result;

  // Add in the last bits as required.
  if ((Hi = (Remainder >> 16) & 0xFFFF))
    ++Result;
  if ((Lo = Remainder & 0xFFFF))
    ++Result;

  return Result;
}

static uint64_t Rot64(uint64_t Imm, unsigned R) {
  return (Imm << R) | (Imm >> (64 - R));
}

static unsigned SelectInt64Count(int64_t Imm) {
  unsigned Count = SelectInt64CountDirect(Imm);
  if (Count == 1)
    return Count;

  for (unsigned r = 1; r < 63; ++r) {
    uint64_t RImm = Rot64(Imm, r);
    unsigned RCount = SelectInt64CountDirect(RImm) + 1;
    Count = std::min(Count, RCount);

    // See comments in SelectInt64 for an explanation of the logic below.
    unsigned LS = findLastSet(RImm);
    if (LS != r-1)
      continue;

    uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
    uint64_t RImmWithOnes = RImm | OnesMask;

    RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
    Count = std::min(Count, RCount);
  }

  return Count;
}

// Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
// (above) needs to be kept in sync with this function.
static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
  // Assume no remaining bits.
  unsigned Remainder = 0;
  // Assume no shift required.
  unsigned Shift = 0;

  // If it can't be represented as a 32 bit value.
  if (!isInt<32>(Imm)) {
    Shift = countTrailingZeros<uint64_t>(Imm);
    int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;

    // If the shifted value fits 32 bits.
    if (isInt<32>(ImmSh)) {
      // Go with the shifted value.
      Imm = ImmSh;
    } else {
      // Still stuck with a 64 bit value.
      Remainder = Imm;
      Shift = 32;
      Imm >>= 32;
    }
  }

  // Intermediate operand.
  SDNode *Result;

  // Handle first 32 bits.
  unsigned Lo = Imm & 0xFFFF;
  unsigned Hi = (Imm >> 16) & 0xFFFF;

  auto getI32Imm = [CurDAG](unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
  };

  // Simple value.
  if (isInt<16>(Imm)) {
    // Just the Lo bits.
    Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
  } else if (Lo) {
    // Handle the Hi bits.
    unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
    Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
    // And Lo bits.
    Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
                                    SDValue(Result, 0), getI32Imm(Lo));
  } else {
    // Just the Hi bits.
    Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
  }

  // If no shift, we're done.
  if (!Shift) return Result;

  // Shift for next step if the upper 32-bits were not zero.
  if (Imm) {
    Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
                                    SDValue(Result, 0),
                                    getI32Imm(Shift),
                                    getI32Imm(63 - Shift));
  }

  // Add in the last bits as required.
  if ((Hi = (Remainder >> 16) & 0xFFFF)) {
    Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
                                    SDValue(Result, 0), getI32Imm(Hi));
  }
  if ((Lo = Remainder & 0xFFFF)) {
    Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
                                    SDValue(Result, 0), getI32Imm(Lo));
  }

  return Result;
}

static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
  unsigned Count = SelectInt64CountDirect(Imm);
  if (Count == 1)
    return SelectInt64Direct(CurDAG, dl, Imm);

  unsigned RMin = 0;

  int64_t MatImm;
  unsigned MaskEnd;

  for (unsigned r = 1; r < 63; ++r) {
    uint64_t RImm = Rot64(Imm, r);
    unsigned RCount = SelectInt64CountDirect(RImm) + 1;
    if (RCount < Count) {
      Count = RCount;
      RMin = r;
      MatImm = RImm;
      MaskEnd = 63;
    }

    // If the immediate to generate has many trailing zeros, it might be
    // worthwhile to generate a rotated value with too many leading ones
    // (because that's free with li/lis's sign-extension semantics), and then
    // mask them off after rotation.

    unsigned LS = findLastSet(RImm);
    // We're adding (63-LS) higher-order ones, and we expect to mask them off
    // after performing the inverse rotation by (64-r). So we need that:
    //   63-LS == 64-r => LS == r-1
    if (LS != r-1)
      continue;

    uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
    uint64_t RImmWithOnes = RImm | OnesMask;

    RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
    if (RCount < Count) {
      Count = RCount;
      RMin = r;
      MatImm = RImmWithOnes;
      MaskEnd = LS;
    }
  }

  if (!RMin)
    return SelectInt64Direct(CurDAG, dl, Imm);

  auto getI32Imm = [CurDAG](unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
  };

  SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
  return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
                                getI32Imm(64 - RMin), getI32Imm(MaskEnd));
}

// Select a 64-bit constant.
static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
  SDLoc dl(N);

  // Get 64 bit value.
  int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
  return SelectInt64(CurDAG, dl, Imm);
}

namespace {
class BitPermutationSelector {
  struct ValueBit {
    SDValue V;

    // The bit number in the value, using a convention where bit 0 is the
    // lowest-order bit.
    unsigned Idx;

    enum Kind {
      ConstZero,
      Variable
    } K;

    ValueBit(SDValue V, unsigned I, Kind K = Variable)
      : V(V), Idx(I), K(K) {}
    ValueBit(Kind K = Variable)
      : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}

    bool isZero() const {
      return K == ConstZero;
    }

    bool hasValue() const {
      return K == Variable;
    }

    SDValue getValue() const {
      assert(hasValue() && "Cannot get the value of a constant bit");
      return V;
    }

    unsigned getValueBitIndex() const {
      assert(hasValue() && "Cannot get the value bit index of a constant bit");
      return Idx;
    }
  };

  // A bit group has the same underlying value and the same rotate factor.
  struct BitGroup {
    SDValue V;
    unsigned RLAmt;
    unsigned StartIdx, EndIdx;

    // This rotation amount assumes that the lower 32 bits of the quantity are
    // replicated in the high 32 bits by the rotation operator (which is done
    // by rlwinm and friends in 64-bit mode).
    bool Repl32;
    // Did converting to Repl32 == true change the rotation factor? If it did,
    // it decreased it by 32.
    bool Repl32CR;
    // Was this group coalesced after setting Repl32 to true?
    bool Repl32Coalesced;

    BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
      : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
        Repl32Coalesced(false) {
      DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
                      " [" << S << ", " << E << "]\n");
    }
  };

  // Information on each (Value, RLAmt) pair (like the number of groups
  // associated with each) used to choose the lowering method.
  struct ValueRotInfo {
    SDValue V;
    unsigned RLAmt;
    unsigned NumGroups;
    unsigned FirstGroupStartIdx;
    bool Repl32;

    ValueRotInfo()
      : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
        Repl32(false) {}

    // For sorting (in reverse order) by NumGroups, and then by
    // FirstGroupStartIdx.
    bool operator < (const ValueRotInfo &Other) const {
      // We need to sort so that the non-Repl32 come first because, when we're
      // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
      // masking operation.
      if (Repl32 < Other.Repl32)
        return true;
      else if (Repl32 > Other.Repl32)
        return false;
      else if (NumGroups > Other.NumGroups)
        return true;
      else if (NumGroups < Other.NumGroups)
        return false;
      else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
        return true;
      return false;
    }
  };

  // Return true if something interesting was deduced, return false if we're
  // providing only a generic representation of V (or something else likewise
  // uninteresting for instruction selection).
  bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
    switch (V.getOpcode()) {
    default: break;
    case ISD::ROTL:
      if (isa<ConstantSDNode>(V.getOperand(1))) {
        unsigned RotAmt = V.getConstantOperandVal(1);

        SmallVector<ValueBit, 64> LHSBits(Bits.size());
        getValueBits(V.getOperand(0), LHSBits);

        for (unsigned i = 0; i < Bits.size(); ++i)
          Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];

        return true;
      }
      break;
    case ISD::SHL:
      if (isa<ConstantSDNode>(V.getOperand(1))) {
        unsigned ShiftAmt = V.getConstantOperandVal(1);

        SmallVector<ValueBit, 64> LHSBits(Bits.size());
        getValueBits(V.getOperand(0), LHSBits);

        for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
          Bits[i] = LHSBits[i - ShiftAmt];

        for (unsigned i = 0; i < ShiftAmt; ++i)
          Bits[i] = ValueBit(ValueBit::ConstZero);

        return true;
      }
      break;
    case ISD::SRL:
      if (isa<ConstantSDNode>(V.getOperand(1))) {
        unsigned ShiftAmt = V.getConstantOperandVal(1);

        SmallVector<ValueBit, 64> LHSBits(Bits.size());
        getValueBits(V.getOperand(0), LHSBits);

        for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
          Bits[i] = LHSBits[i + ShiftAmt];

        for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
          Bits[i] = ValueBit(ValueBit::ConstZero);

        return true;
      }
      break;
    case ISD::AND:
      if (isa<ConstantSDNode>(V.getOperand(1))) {
        uint64_t Mask = V.getConstantOperandVal(1);

        SmallVector<ValueBit, 64> LHSBits(Bits.size());
        bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);

        for (unsigned i = 0; i < Bits.size(); ++i)
          if (((Mask >> i) & 1) == 1)
            Bits[i] = LHSBits[i];
          else
            Bits[i] = ValueBit(ValueBit::ConstZero);

        // Mark this as interesting, only if the LHS was also interesting. This
        // prevents the overall procedure from matching a single immediate 'and'
        // (which is non-optimal because such an and might be folded with other
        // things if we don't select it here).
        return LHSTrivial;
      }
      break;
    case ISD::OR: {
      SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
      getValueBits(V.getOperand(0), LHSBits);
      getValueBits(V.getOperand(1), RHSBits);

      bool AllDisjoint = true;
      for (unsigned i = 0; i < Bits.size(); ++i)
        if (LHSBits[i].isZero())
          Bits[i] = RHSBits[i];
        else if (RHSBits[i].isZero())
          Bits[i] = LHSBits[i];
        else {
          AllDisjoint = false;
          break;
        }

      if (!AllDisjoint)
        break;

      return true;
    }
    }

    for (unsigned i = 0; i < Bits.size(); ++i)
      Bits[i] = ValueBit(V, i);

    return false;
  }

  // For each value (except the constant ones), compute the left-rotate amount
  // to get it from its original to final position.
  void computeRotationAmounts() {
    HasZeros = false;
    RLAmt.resize(Bits.size());
    for (unsigned i = 0; i < Bits.size(); ++i)
      if (Bits[i].hasValue()) {
        unsigned VBI = Bits[i].getValueBitIndex();
        if (i >= VBI)
          RLAmt[i] = i - VBI;
        else
          RLAmt[i] = Bits.size() - (VBI - i);
      } else if (Bits[i].isZero()) {
        HasZeros = true;
        RLAmt[i] = UINT32_MAX;
      } else {
        llvm_unreachable("Unknown value bit type");
      }
  }

  // Collect groups of consecutive bits with the same underlying value and
  // rotation factor. If we're doing late masking, we ignore zeros, otherwise
  // they break up groups.
  void collectBitGroups(bool LateMask) {
    BitGroups.clear();

    unsigned LastRLAmt = RLAmt[0];
    SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
    unsigned LastGroupStartIdx = 0;
    for (unsigned i = 1; i < Bits.size(); ++i) {
      unsigned ThisRLAmt = RLAmt[i];
      SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
      if (LateMask && !ThisValue) {
        ThisValue = LastValue;
        ThisRLAmt = LastRLAmt;
        // If we're doing late masking, then the first bit group always starts
        // at zero (even if the first bits were zero).
        if (BitGroups.empty())
          LastGroupStartIdx = 0;
      }

      // If this bit has the same underlying value and the same rotate factor as
      // the last one, then they're part of the same group.
      if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
        continue;

      if (LastValue.getNode())
        BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
                                     i-1));
      LastRLAmt = ThisRLAmt;
      LastValue = ThisValue;
      LastGroupStartIdx = i;
    }
    if (LastValue.getNode())
      BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
                                   Bits.size()-1));

    if (BitGroups.empty())
      return;

    // We might be able to combine the first and last groups.
    if (BitGroups.size() > 1) {
      // If the first and last groups are the same, then remove the first group
      // in favor of the last group, making the ending index of the last group
      // equal to the ending index of the to-be-removed first group.
      if (BitGroups[0].StartIdx == 0 &&
          BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
          BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
          BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
        DEBUG(dbgs() << "\tcombining final bit group with inital one\n");
        BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
        BitGroups.erase(BitGroups.begin());
      }
    }
  }

  // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
  // associated with each. If there is a degeneracy, pick the one that occurs
  // first (in the final value).
  void collectValueRotInfo() {
    ValueRots.clear();

    for (auto &BG : BitGroups) {
      unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
      ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
      VRI.V = BG.V;
      VRI.RLAmt = BG.RLAmt;
      VRI.Repl32 = BG.Repl32;
      VRI.NumGroups += 1;
      VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
    }

    // Now that we've collected the various ValueRotInfo instances, we need to
    // sort them.
    ValueRotsVec.clear();
    for (auto &I : ValueRots) {
      ValueRotsVec.push_back(I.second);
    }
    std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
  }

  // In 64-bit mode, rlwinm and friends have a rotation operator that
  // replicates the low-order 32 bits into the high-order 32-bits. The mask
  // indices of these instructions can only be in the lower 32 bits, so they
  // can only represent some 64-bit bit groups. However, when they can be used,
  // the 32-bit replication can be used to represent, as a single bit group,
  // otherwise separate bit groups. We'll convert to replicated-32-bit bit
  // groups when possible. Returns true if any of the bit groups were
  // converted.
  void assignRepl32BitGroups() {
    // If we have bits like this:
    //
    // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
    // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
    // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
    //
    // But, making use of a 32-bit operation that replicates the low-order 32
    // bits into the high-order 32 bits, this can be one bit group with a RLAmt
    // of 8.

    auto IsAllLow32 = [this](BitGroup & BG) {
      if (BG.StartIdx <= BG.EndIdx) {
        for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
          if (!Bits[i].hasValue())
            continue;
          if (Bits[i].getValueBitIndex() >= 32)
            return false;
        }
      } else {
        for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
          if (!Bits[i].hasValue())
            continue;
          if (Bits[i].getValueBitIndex() >= 32)
            return false;
        }
        for (unsigned i = 0; i <= BG.EndIdx; ++i) {
          if (!Bits[i].hasValue())
            continue;
          if (Bits[i].getValueBitIndex() >= 32)
            return false;
        }
      }

      return true;
    };

    for (auto &BG : BitGroups) {
      if (BG.StartIdx < 32 && BG.EndIdx < 32) {
        if (IsAllLow32(BG)) {
          if (BG.RLAmt >= 32) {
            BG.RLAmt -= 32;
            BG.Repl32CR = true;
          }

          BG.Repl32 = true;

          DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
                          BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
                          " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
        }
      }
    }

    // Now walk through the bit groups, consolidating where possible.
    for (auto I = BitGroups.begin(); I != BitGroups.end();) {
      // We might want to remove this bit group by merging it with the previous
      // group (which might be the ending group).
      auto IP = (I == BitGroups.begin()) ?
                std::prev(BitGroups.end()) : std::prev(I);
      if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
          I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {

        DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
                        I->V.getNode() << " RLAmt = " << I->RLAmt <<
                        " [" << I->StartIdx << ", " << I->EndIdx <<
                        "] with group with range [" <<
                        IP->StartIdx << ", " << IP->EndIdx << "]\n");

        IP->EndIdx = I->EndIdx;
        IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
        IP->Repl32Coalesced = true;
        I = BitGroups.erase(I);
        continue;
      } else {
        // There is a special case worth handling: If there is a single group
        // covering the entire upper 32 bits, and it can be merged with both
        // the next and previous groups (which might be the same group), then
        // do so. If it is the same group (so there will be only one group in
        // total), then we need to reverse the order of the range so that it
        // covers the entire 64 bits.
        if (I->StartIdx == 32 && I->EndIdx == 63) {
          assert(std::next(I) == BitGroups.end() &&
                 "bit group ends at index 63 but there is another?");
          auto IN = BitGroups.begin();

          if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 
              (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
              IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
              IsAllLow32(*I)) {

            DEBUG(dbgs() << "\tcombining bit group for " <<
                            I->V.getNode() << " RLAmt = " << I->RLAmt <<
                            " [" << I->StartIdx << ", " << I->EndIdx <<
                            "] with 32-bit replicated groups with ranges [" <<
                            IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
                            IN->StartIdx << ", " << IN->EndIdx << "]\n");

            if (IP == IN) {
              // There is only one other group; change it to cover the whole
              // range (backward, so that it can still be Repl32 but cover the
              // whole 64-bit range).
              IP->StartIdx = 31;
              IP->EndIdx = 30;
              IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
              IP->Repl32Coalesced = true;
              I = BitGroups.erase(I);
            } else {
              // There are two separate groups, one before this group and one
              // after us (at the beginning). We're going to remove this group,
              // but also the group at the very beginning.
              IP->EndIdx = IN->EndIdx;
              IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
              IP->Repl32Coalesced = true;
              I = BitGroups.erase(I);
              BitGroups.erase(BitGroups.begin());
            }

            // This must be the last group in the vector (and we might have
            // just invalidated the iterator above), so break here.
            break;
          }
        }
      }

      ++I;
    }
  }

  SDValue getI32Imm(unsigned Imm) {
    return CurDAG->getTargetConstant(Imm, MVT::i32);
  }

  uint64_t getZerosMask() {
    uint64_t Mask = 0;
    for (unsigned i = 0; i < Bits.size(); ++i) {
      if (Bits[i].hasValue())
        continue;
      Mask |= (UINT64_C(1) << i);
    }

    return ~Mask;
  }

  // Depending on the number of groups for a particular value, it might be
  // better to rotate, mask explicitly (using andi/andis), and then or the
  // result. Select this part of the result first.
  void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
    if (BPermRewriterNoMasking)
      return;

    for (ValueRotInfo &VRI : ValueRotsVec) {
      unsigned Mask = 0;
      for (unsigned i = 0; i < Bits.size(); ++i) {
        if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
          continue;
        if (RLAmt[i] != VRI.RLAmt)
          continue;
        Mask |= (1u << i);
      }

      // Compute the masks for andi/andis that would be necessary.
      unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
      assert((ANDIMask != 0 || ANDISMask != 0) &&
             "No set bits in mask for value bit groups");
      bool NeedsRotate = VRI.RLAmt != 0;

      // We're trying to minimize the number of instructions. If we have one
      // group, using one of andi/andis can break even.  If we have three
      // groups, we can use both andi and andis and break even (to use both
      // andi and andis we also need to or the results together). We need four
      // groups if we also need to rotate. To use andi/andis we need to do more
      // than break even because rotate-and-mask instructions tend to be easier
      // to schedule.

      // FIXME: We've biased here against using andi/andis, which is right for
      // POWER cores, but not optimal everywhere. For example, on the A2,
      // andi/andis have single-cycle latency whereas the rotate-and-mask
      // instructions take two cycles, and it would be better to bias toward
      // andi/andis in break-even cases.

      unsigned NumAndInsts = (unsigned) NeedsRotate +
                             (unsigned) (ANDIMask != 0) +
                             (unsigned) (ANDISMask != 0) +
                             (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
                             (unsigned) (bool) Res;

      DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
                      " RL: " << VRI.RLAmt << ":" <<
                      "\n\t\t\tisel using masking: " << NumAndInsts <<
                      " using rotates: " << VRI.NumGroups << "\n");

      if (NumAndInsts >= VRI.NumGroups)
        continue;

      DEBUG(dbgs() << "\t\t\t\tusing masking\n");

      if (InstCnt) *InstCnt += NumAndInsts;

      SDValue VRot;
      if (VRI.RLAmt) {
        SDValue Ops[] =
          { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
        VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
                                              Ops), 0);
      } else {
        VRot = VRI.V;
      }

      SDValue ANDIVal, ANDISVal;
      if (ANDIMask != 0)
        ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
                            VRot, getI32Imm(ANDIMask)), 0);
      if (ANDISMask != 0)
        ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
                             VRot, getI32Imm(ANDISMask)), 0);

      SDValue TotalVal;
      if (!ANDIVal)
        TotalVal = ANDISVal;
      else if (!ANDISVal)
        TotalVal = ANDIVal;
      else
        TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
                             ANDIVal, ANDISVal), 0);

      if (!Res)
        Res = TotalVal;
      else
        Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
                        Res, TotalVal), 0);

      // Now, remove all groups with this underlying value and rotation
      // factor.
      for (auto I = BitGroups.begin(); I != BitGroups.end();) {
        if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
          I = BitGroups.erase(I);
        else
          ++I;
      }
    }
  }

  // Instruction selection for the 32-bit case.
  SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
    SDLoc dl(N);
    SDValue Res;

    if (InstCnt) *InstCnt = 0;

    // Take care of cases that should use andi/andis first.
    SelectAndParts32(dl, Res, InstCnt);

    // If we've not yet selected a 'starting' instruction, and we have no zeros
    // to fill in, select the (Value, RLAmt) with the highest priority (largest
    // number of groups), and start with this rotated value.
    if ((!HasZeros || LateMask) && !Res) {
      ValueRotInfo &VRI = ValueRotsVec[0];
      if (VRI.RLAmt) {
        if (InstCnt) *InstCnt += 1;
        SDValue Ops[] =
          { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
        Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
      } else {
        Res = VRI.V;
      }

      // Now, remove all groups with this underlying value and rotation factor.
      for (auto I = BitGroups.begin(); I != BitGroups.end();) {
        if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
          I = BitGroups.erase(I);
        else
          ++I;
      }
    }

    if (InstCnt) *InstCnt += BitGroups.size();

    // Insert the other groups (one at a time).
    for (auto &BG : BitGroups) {
      if (!Res) {
        SDValue Ops[] =
          { BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
            getI32Imm(Bits.size() - BG.StartIdx - 1) };
        Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
      } else {
        SDValue Ops[] =
          { Res, BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
            getI32Imm(Bits.size() - BG.StartIdx - 1) };
        Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
      }
    }

    if (LateMask) {
      unsigned Mask = (unsigned) getZerosMask();

      unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
      assert((ANDIMask != 0 || ANDISMask != 0) &&
             "No set bits in zeros mask?");

      if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
                               (unsigned) (ANDISMask != 0) +
                               (unsigned) (ANDIMask != 0 && ANDISMask != 0);

      SDValue ANDIVal, ANDISVal;
      if (ANDIMask != 0)
        ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
                            Res, getI32Imm(ANDIMask)), 0);
      if (ANDISMask != 0)
        ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
                             Res, getI32Imm(ANDISMask)), 0);

      if (!ANDIVal)
        Res = ANDISVal;
      else if (!ANDISVal)
        Res = ANDIVal;
      else
        Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
                        ANDIVal, ANDISVal), 0);
    }

    return Res.getNode();
  }

  unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
                                unsigned MaskStart, unsigned MaskEnd,
                                bool IsIns) {
    // In the notation used by the instructions, 'start' and 'end' are reversed
    // because bits are counted from high to low order.
    unsigned InstMaskStart = 64 - MaskEnd - 1,
             InstMaskEnd   = 64 - MaskStart - 1;

    if (Repl32)
      return 1;

    if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
        InstMaskEnd == 63 - RLAmt)
      return 1;

    return 2;
  }

  // For 64-bit values, not all combinations of rotates and masks are
  // available. Produce one if it is available.
  SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
                          unsigned MaskStart, unsigned MaskEnd,
                          unsigned *InstCnt = nullptr) {
    // In the notation used by the instructions, 'start' and 'end' are reversed
    // because bits are counted from high to low order.
    unsigned InstMaskStart = 64 - MaskEnd - 1,
             InstMaskEnd   = 64 - MaskStart - 1;

    if (InstCnt) *InstCnt += 1;

    if (Repl32) {
      // This rotation amount assumes that the lower 32 bits of the quantity
      // are replicated in the high 32 bits by the rotation operator (which is
      // done by rlwinm and friends).
      assert(InstMaskStart >= 32 && "Mask cannot start out of range");
      assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
      SDValue Ops[] =
        { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
          getI32Imm(InstMaskEnd - 32) };
      return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
                                            Ops), 0);
    }

    if (InstMaskEnd == 63) {
      SDValue Ops[] =
        { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
      return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
    }

    if (InstMaskStart == 0) {
      SDValue Ops[] =
        { V, getI32Imm(RLAmt), getI32Imm(InstMaskEnd) };
      return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
    }

    if (InstMaskEnd == 63 - RLAmt) {
      SDValue Ops[] =
        { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
      return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
    }

    // We cannot do this with a single instruction, so we'll use two. The
    // problem is that we're not free to choose both a rotation amount and mask
    // start and end independently. We can choose an arbitrary mask start and
    // end, but then the rotation amount is fixed. Rotation, however, can be
    // inverted, and so by applying an "inverse" rotation first, we can get the
    // desired result.
    if (InstCnt) *InstCnt += 1;

    // The rotation mask for the second instruction must be MaskStart.
    unsigned RLAmt2 = MaskStart;
    // The first instruction must rotate V so that the overall rotation amount
    // is RLAmt.
    unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
    if (RLAmt1)
      V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
    return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
  }

  // For 64-bit values, not all combinations of rotates and masks are
  // available. Produce a rotate-mask-and-insert if one is available.
  SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
                             bool Repl32, unsigned MaskStart,
                             unsigned MaskEnd, unsigned *InstCnt = nullptr) {
    // In the notation used by the instructions, 'start' and 'end' are reversed
    // because bits are counted from high to low order.
    unsigned InstMaskStart = 64 - MaskEnd - 1,
             InstMaskEnd   = 64 - MaskStart - 1;

    if (InstCnt) *InstCnt += 1;

    if (Repl32) {
      // This rotation amount assumes that the lower 32 bits of the quantity
      // are replicated in the high 32 bits by the rotation operator (which is
      // done by rlwinm and friends).
      assert(InstMaskStart >= 32 && "Mask cannot start out of range");
      assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
      SDValue Ops[] =
        { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
          getI32Imm(InstMaskEnd - 32) };
      return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
                                            Ops), 0);
    }

    if (InstMaskEnd == 63 - RLAmt) {
      SDValue Ops[] =
        { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
      return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
    }

    // We cannot do this with a single instruction, so we'll use two. The
    // problem is that we're not free to choose both a rotation amount and mask
    // start and end independently. We can choose an arbitrary mask start and
    // end, but then the rotation amount is fixed. Rotation, however, can be
    // inverted, and so by applying an "inverse" rotation first, we can get the
    // desired result.
    if (InstCnt) *InstCnt += 1;

    // The rotation mask for the second instruction must be MaskStart.
    unsigned RLAmt2 = MaskStart;
    // The first instruction must rotate V so that the overall rotation amount
    // is RLAmt.
    unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
    if (RLAmt1)
      V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
    return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
  }

  void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
    if (BPermRewriterNoMasking)
      return;

    // The idea here is the same as in the 32-bit version, but with additional
    // complications from the fact that Repl32 might be true. Because we
    // aggressively convert bit groups to Repl32 form (which, for small
    // rotation factors, involves no other change), and then coalesce, it might
    // be the case that a single 64-bit masking operation could handle both
    // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
    // form allowed coalescing, then we must use a 32-bit rotaton in order to
    // completely capture the new combined bit group.

    for (ValueRotInfo &VRI : ValueRotsVec) {
      uint64_t Mask = 0;

      // We need to add to the mask all bits from the associated bit groups.
      // If Repl32 is false, we need to add bits from bit groups that have
      // Repl32 true, but are trivially convertable to Repl32 false. Such a
      // group is trivially convertable if it overlaps only with the lower 32
      // bits, and the group has not been coalesced.
      auto MatchingBG = [VRI](BitGroup &BG) {
        if (VRI.V != BG.V)
          return false;

        unsigned EffRLAmt = BG.RLAmt;
        if (!VRI.Repl32 && BG.Repl32) {
          if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
              !BG.Repl32Coalesced) {
            if (BG.Repl32CR)
              EffRLAmt += 32;
          } else {
            return false;
          }
        } else if (VRI.Repl32 != BG.Repl32) {
          return false;
        }

        if (VRI.RLAmt != EffRLAmt)
          return false;

        return true;
      };

      for (auto &BG : BitGroups) {
        if (!MatchingBG(BG))
          continue;

        if (BG.StartIdx <= BG.EndIdx) {
          for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
            Mask |= (UINT64_C(1) << i);
        } else {
          for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
            Mask |= (UINT64_C(1) << i);
          for (unsigned i = 0; i <= BG.EndIdx; ++i)
            Mask |= (UINT64_C(1) << i);
        }
      }

      // We can use the 32-bit andi/andis technique if the mask does not
      // require any higher-order bits. This can save an instruction compared
      // to always using the general 64-bit technique.
      bool Use32BitInsts = isUInt<32>(Mask);
      // Compute the masks for andi/andis that would be necessary.
      unsigned ANDIMask = (Mask & UINT16_MAX),
               ANDISMask = (Mask >> 16) & UINT16_MAX;

      bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));

      unsigned NumAndInsts = (unsigned) NeedsRotate +
                             (unsigned) (bool) Res;
      if (Use32BitInsts)
        NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
                       (unsigned) (ANDIMask != 0 && ANDISMask != 0);
      else
        NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;

      unsigned NumRLInsts = 0;
      bool FirstBG = true;
      for (auto &BG : BitGroups) {
        if (!MatchingBG(BG))
          continue;
        NumRLInsts +=
          SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
                               !FirstBG);
        FirstBG = false;
      }

      DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
                      " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
                      "\n\t\t\tisel using masking: " << NumAndInsts <<
                      " using rotates: " << NumRLInsts << "\n");

      // When we'd use andi/andis, we bias toward using the rotates (andi only
      // has a record form, and is cracked on POWER cores). However, when using
      // general 64-bit constant formation, bias toward the constant form,
      // because that exposes more opportunities for CSE.
      if (NumAndInsts > NumRLInsts)
        continue;
      if (Use32BitInsts && NumAndInsts == NumRLInsts)
        continue;

      DEBUG(dbgs() << "\t\t\t\tusing masking\n");

      if (InstCnt) *InstCnt += NumAndInsts;

      SDValue VRot;
      // We actually need to generate a rotation if we have a non-zero rotation
      // factor or, in the Repl32 case, if we care about any of the
      // higher-order replicated bits. In the latter case, we generate a mask
      // backward so that it actually includes the entire 64 bits.
      if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
        VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
      else
        VRot = VRI.V;

      SDValue TotalVal;
      if (Use32BitInsts) {
        assert((ANDIMask != 0 || ANDISMask != 0) &&
               "No set bits in mask when using 32-bit ands for 64-bit value");

        SDValue ANDIVal, ANDISVal;
        if (ANDIMask != 0)
          ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
                              VRot, getI32Imm(ANDIMask)), 0);
        if (ANDISMask != 0)
          ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
                               VRot, getI32Imm(ANDISMask)), 0);

        if (!ANDIVal)
          TotalVal = ANDISVal;
        else if (!ANDISVal)
          TotalVal = ANDIVal;
        else
          TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
                               ANDIVal, ANDISVal), 0);
      } else {
        TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
        TotalVal =
          SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
                                         VRot, TotalVal), 0);
     }

      if (!Res)
        Res = TotalVal;
      else
        Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
                                             Res, TotalVal), 0);

      // Now, remove all groups with this underlying value and rotation
      // factor.
      for (auto I = BitGroups.begin(); I != BitGroups.end();) {
        if (MatchingBG(*I))
          I = BitGroups.erase(I);
        else
          ++I;
      }
    }
  }

  // Instruction selection for the 64-bit case.
  SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
    SDLoc dl(N);
    SDValue Res;

    if (InstCnt) *InstCnt = 0;

    // Take care of cases that should use andi/andis first.
    SelectAndParts64(dl, Res, InstCnt);

    // If we've not yet selected a 'starting' instruction, and we have no zeros
    // to fill in, select the (Value, RLAmt) with the highest priority (largest
    // number of groups), and start with this rotated value.
    if ((!HasZeros || LateMask) && !Res) {
      // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
      // groups will come first, and so the VRI representing the largest number
      // of groups might not be first (it might be the first Repl32 groups).
      unsigned MaxGroupsIdx = 0;
      if (!ValueRotsVec[0].Repl32) {
        for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
          if (ValueRotsVec[i].Repl32) {
            if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
              MaxGroupsIdx = i;
            break;
          }
      }

      ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
      bool NeedsRotate = false;
      if (VRI.RLAmt) {
        NeedsRotate = true;
      } else if (VRI.Repl32) {
        for (auto &BG : BitGroups) {
          if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
              BG.Repl32 != VRI.Repl32)
            continue;

          // We don't need a rotate if the bit group is confined to the lower
          // 32 bits.
          if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
            continue;

          NeedsRotate = true;
          break;
        }
      }

      if (NeedsRotate)
        Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
                              VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
                              InstCnt);
      else
        Res = VRI.V;

      // Now, remove all groups with this underlying value and rotation factor.
      if (Res)
        for (auto I = BitGroups.begin(); I != BitGroups.end();) {
          if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32)
            I = BitGroups.erase(I);
          else
            ++I;
        }
    }

    // Because 64-bit rotates are more flexible than inserts, we might have a
    // preference regarding which one we do first (to save one instruction).
    if (!Res)
      for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
        if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
                                false) <
            SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
                                true)) {
          if (I != BitGroups.begin()) {
            BitGroup BG = *I;
            BitGroups.erase(I);
            BitGroups.insert(BitGroups.begin(), BG);
          }

          break;
        }
      }

    // Insert the other groups (one at a time).
    for (auto &BG : BitGroups) {
      if (!Res)
        Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
                              BG.EndIdx, InstCnt);
      else
        Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
                                 BG.StartIdx, BG.EndIdx, InstCnt);
    }

    if (LateMask) {
      uint64_t Mask = getZerosMask();

      // We can use the 32-bit andi/andis technique if the mask does not
      // require any higher-order bits. This can save an instruction compared
      // to always using the general 64-bit technique.
      bool Use32BitInsts = isUInt<32>(Mask);
      // Compute the masks for andi/andis that would be necessary.
      unsigned ANDIMask = (Mask & UINT16_MAX),
               ANDISMask = (Mask >> 16) & UINT16_MAX;

      if (Use32BitInsts) {
        assert((ANDIMask != 0 || ANDISMask != 0) &&
               "No set bits in mask when using 32-bit ands for 64-bit value");

        if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
                                 (unsigned) (ANDISMask != 0) +
                                 (unsigned) (ANDIMask != 0 && ANDISMask != 0);

        SDValue ANDIVal, ANDISVal;
        if (ANDIMask != 0)
          ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
                              Res, getI32Imm(ANDIMask)), 0);
        if (ANDISMask != 0)
          ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
                               Res, getI32Imm(ANDISMask)), 0);

        if (!ANDIVal)
          Res = ANDISVal;
        else if (!ANDISVal)
          Res = ANDIVal;
        else
          Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
                          ANDIVal, ANDISVal), 0);
      } else {
        if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;

        SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
        Res =
          SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
                                         Res, MaskVal), 0);
      }
    }

    return Res.getNode();
  }

  SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
    // Fill in BitGroups.
    collectBitGroups(LateMask);
    if (BitGroups.empty())
      return nullptr;

    // For 64-bit values, figure out when we can use 32-bit instructions.
    if (Bits.size() == 64)
      assignRepl32BitGroups();

    // Fill in ValueRotsVec.
    collectValueRotInfo();

    if (Bits.size() == 32) {
      return Select32(N, LateMask, InstCnt);
    } else {
      assert(Bits.size() == 64 && "Not 64 bits here?");
      return Select64(N, LateMask, InstCnt);
    }

    return nullptr;
  }

  SmallVector<ValueBit, 64> Bits;

  bool HasZeros;
  SmallVector<unsigned, 64> RLAmt;

  SmallVector<BitGroup, 16> BitGroups;

  DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
  SmallVector<ValueRotInfo, 16> ValueRotsVec;

  SelectionDAG *CurDAG;

public:
  BitPermutationSelector(SelectionDAG *DAG)
    : CurDAG(DAG) {}

  // Here we try to match complex bit permutations into a set of
  // rotate-and-shift/shift/and/or instructions, using a set of heuristics
  // known to produce optimial code for common cases (like i32 byte swapping).
  SDNode *Select(SDNode *N) {
    Bits.resize(N->getValueType(0).getSizeInBits());
    if (!getValueBits(SDValue(N, 0), Bits))
      return nullptr;

    DEBUG(dbgs() << "Considering bit-permutation-based instruction"
                    " selection for:    ");
    DEBUG(N->dump(CurDAG));

    // Fill it RLAmt and set HasZeros.
    computeRotationAmounts();

    if (!HasZeros)
      return Select(N, false);

    // We currently have two techniques for handling results with zeros: early
    // masking (the default) and late masking. Late masking is sometimes more
    // efficient, but because the structure of the bit groups is different, it
    // is hard to tell without generating both and comparing the results. With
    // late masking, we ignore zeros in the resulting value when inserting each
    // set of bit groups, and then mask in the zeros at the end. With early
    // masking, we only insert the non-zero parts of the result at every step.

    unsigned InstCnt, InstCntLateMask;
    DEBUG(dbgs() << "\tEarly masking:\n");
    SDNode *RN = Select(N, false, &InstCnt);
    DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");

    DEBUG(dbgs() << "\tLate masking:\n");
    SDNode *RNLM = Select(N, true, &InstCntLateMask);
    DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
                    " instructions\n");

    if (InstCnt <= InstCntLateMask) {
      DEBUG(dbgs() << "\tUsing early-masking for isel\n");
      return RN;
    }

    DEBUG(dbgs() << "\tUsing late-masking for isel\n");
    return RNLM;
  }
};
} // anonymous namespace

SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
  if (N->getValueType(0) != MVT::i32 &&
      N->getValueType(0) != MVT::i64)
    return nullptr;

  if (!UseBitPermRewriter)
    return nullptr;

  switch (N->getOpcode()) {
  default: break;
  case ISD::ROTL:
  case ISD::SHL:
  case ISD::SRL:
  case ISD::AND:
  case ISD::OR: {
    BitPermutationSelector BPS(CurDAG);
    return BPS.Select(N);
  }
  }

  return nullptr;
}

/// SelectCC - Select a comparison of the specified values with the specified
/// condition code, returning the CR# of the expression.
SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
                                    ISD::CondCode CC, SDLoc dl) {
  // Always select the LHS.
  unsigned Opc;

  if (LHS.getValueType() == MVT::i32) {
    unsigned Imm;
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
      if (isInt32Immediate(RHS, Imm)) {
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
        if (isUInt<16>(Imm))
          return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
                                                getI32Imm(Imm & 0xFFFF)), 0);
        // If this is a 16-bit signed immediate, fold it.
        if (isInt<16>((int)Imm))
          return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
                                                getI32Imm(Imm & 0xFFFF)), 0);

        // For non-equality comparisons, the default code would materialize the
        // constant, then compare against it, like this:
        //   lis r2, 4660
        //   ori r2, r2, 22136
        //   cmpw cr0, r3, r2
        // Since we are just comparing for equality, we can emit this instead:
        //   xoris r0,r3,0x1234
        //   cmplwi cr0,r0,0x5678
        //   beq cr0,L6
        SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
                                           getI32Imm(Imm >> 16)), 0);
        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
                                              getI32Imm(Imm & 0xFFFF)), 0);
      }
      Opc = PPC::CMPLW;
    } else if (ISD::isUnsignedIntSetCC(CC)) {
      if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
                                              getI32Imm(Imm & 0xFFFF)), 0);
      Opc = PPC::CMPLW;
    } else {
      short SImm;
      if (isIntS16Immediate(RHS, SImm))
        return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
                                              getI32Imm((int)SImm & 0xFFFF)),
                         0);
      Opc = PPC::CMPW;
    }
  } else if (LHS.getValueType() == MVT::i64) {
    uint64_t Imm;
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
      if (isInt64Immediate(RHS.getNode(), Imm)) {
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
        if (isUInt<16>(Imm))
          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
                                                getI32Imm(Imm & 0xFFFF)), 0);
        // If this is a 16-bit signed immediate, fold it.
        if (isInt<16>(Imm))
          return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
                                                getI32Imm(Imm & 0xFFFF)), 0);

        // For non-equality comparisons, the default code would materialize the
        // constant, then compare against it, like this:
        //   lis r2, 4660
        //   ori r2, r2, 22136
        //   cmpd cr0, r3, r2
        // Since we are just comparing for equality, we can emit this instead:
        //   xoris r0,r3,0x1234
        //   cmpldi cr0,r0,0x5678
        //   beq cr0,L6
        if (isUInt<32>(Imm)) {
          SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
                                             getI64Imm(Imm >> 16)), 0);
          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
                                                getI64Imm(Imm & 0xFFFF)), 0);
        }
      }
      Opc = PPC::CMPLD;
    } else if (ISD::isUnsignedIntSetCC(CC)) {
      if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
        return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
                                              getI64Imm(Imm & 0xFFFF)), 0);
      Opc = PPC::CMPLD;
    } else {
      short SImm;
      if (isIntS16Immediate(RHS, SImm))
        return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
                                              getI64Imm(SImm & 0xFFFF)),
                         0);
      Opc = PPC::CMPD;
    }
  } else if (LHS.getValueType() == MVT::f32) {
    Opc = PPC::FCMPUS;
  } else {
    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
    Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
  }
  return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
}

static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
  switch (CC) {
  case ISD::SETUEQ:
  case ISD::SETONE:
  case ISD::SETOLE:
  case ISD::SETOGE:
    llvm_unreachable("Should be lowered by legalize!");
  default: llvm_unreachable("Unknown condition!");
  case ISD::SETOEQ:
  case ISD::SETEQ:  return PPC::PRED_EQ;
  case ISD::SETUNE:
  case ISD::SETNE:  return PPC::PRED_NE;
  case ISD::SETOLT:
  case ISD::SETLT:  return PPC::PRED_LT;
  case ISD::SETULE:
  case ISD::SETLE:  return PPC::PRED_LE;
  case ISD::SETOGT:
  case ISD::SETGT:  return PPC::PRED_GT;
  case ISD::SETUGE:
  case ISD::SETGE:  return PPC::PRED_GE;
  case ISD::SETO:   return PPC::PRED_NU;
  case ISD::SETUO:  return PPC::PRED_UN;
    // These two are invalid for floating point.  Assume we have int.
  case ISD::SETULT: return PPC::PRED_LT;
  case ISD::SETUGT: return PPC::PRED_GT;
  }
}

/// getCRIdxForSetCC - Return the index of the condition register field
/// associated with the SetCC condition, and whether or not the field is
/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
  Invert = false;
  switch (CC) {
  default: llvm_unreachable("Unknown condition!");
  case ISD::SETOLT:
  case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
  case ISD::SETOGT:
  case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
  case ISD::SETOEQ:
  case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
  case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
  case ISD::SETUGE:
  case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
  case ISD::SETULE:
  case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
  case ISD::SETUNE:
  case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
  case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
  case ISD::SETUEQ:
  case ISD::SETOGE:
  case ISD::SETOLE:
  case ISD::SETONE:
    llvm_unreachable("Invalid branch code: should be expanded by legalize");
  // These are invalid for floating point.  Assume integer.
  case ISD::SETULT: return 0;
  case ISD::SETUGT: return 1;
  }
}

// getVCmpInst: return the vector compare instruction for the specified
// vector type and condition code. Since this is for altivec specific code,
// only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
                                bool HasVSX, bool &Swap, bool &Negate) {
  Swap = false;
  Negate = false;

  if (VecVT.isFloatingPoint()) {
    /* Handle some cases by swapping input operands.  */
    switch (CC) {
      case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
      case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
      case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
      case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
      case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
      case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
      default: break;
    }
    /* Handle some cases by negating the result.  */
    switch (CC) {
      case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
      case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
      case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
      case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
      default: break;
    }
    /* We have instructions implementing the remaining cases.  */
    switch (CC) {
      case ISD::SETEQ:
      case ISD::SETOEQ:
        if (VecVT == MVT::v4f32)
          return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
        else if (VecVT == MVT::v2f64)
          return PPC::XVCMPEQDP;
        break;
      case ISD::SETGT:
      case ISD::SETOGT:
        if (VecVT == MVT::v4f32)
          return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
        else if (VecVT == MVT::v2f64)
          return PPC::XVCMPGTDP;
        break;
      case ISD::SETGE:
      case ISD::SETOGE:
        if (VecVT == MVT::v4f32)
          return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
        else if (VecVT == MVT::v2f64)
          return PPC::XVCMPGEDP;
        break;
      default:
        break;
    }
    llvm_unreachable("Invalid floating-point vector compare condition");
  } else {
    /* Handle some cases by swapping input operands.  */
    switch (CC) {
      case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
      case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
      case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
      case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
      default: break;
    }
    /* Handle some cases by negating the result.  */
    switch (CC) {
      case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
      case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
      case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
      case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
      default: break;
    }
    /* We have instructions implementing the remaining cases.  */
    switch (CC) {
      case ISD::SETEQ:
      case ISD::SETUEQ:
        if (VecVT == MVT::v16i8)
          return PPC::VCMPEQUB;
        else if (VecVT == MVT::v8i16)
          return PPC::VCMPEQUH;
        else if (VecVT == MVT::v4i32)
          return PPC::VCMPEQUW;
        else if (VecVT == MVT::v2i64)
          return PPC::VCMPEQUD;
        break;
      case ISD::SETGT:
        if (VecVT == MVT::v16i8)
          return PPC::VCMPGTSB;
        else if (VecVT == MVT::v8i16)
          return PPC::VCMPGTSH;
        else if (VecVT == MVT::v4i32)
          return PPC::VCMPGTSW;
        else if (VecVT == MVT::v2i64)
          return PPC::VCMPGTSD;
        break;
      case ISD::SETUGT:
        if (VecVT == MVT::v16i8)
          return PPC::VCMPGTUB;
        else if (VecVT == MVT::v8i16)
          return PPC::VCMPGTUH;
        else if (VecVT == MVT::v4i32)
          return PPC::VCMPGTUW;
        else if (VecVT == MVT::v2i64)
          return PPC::VCMPGTUD;
        break;
      default:
        break;
    }
    llvm_unreachable("Invalid integer vector compare condition");
  }
}

SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
  SDLoc dl(N);
  unsigned Imm;
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
  EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
  bool isPPC64 = (PtrVT == MVT::i64);

  if (!PPCSubTarget->useCRBits() &&
      isInt32Immediate(N->getOperand(1), Imm)) {
    // We can codegen setcc op, imm very efficiently compared to a brcond.
    // Check for those cases here.
    // setcc op, 0
    if (Imm == 0) {
      SDValue Op = N->getOperand(0);
      switch (CC) {
      default: break;
      case ISD::SETEQ: {
        Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
        SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
      }
      case ISD::SETNE: {
        if (isPPC64) break;
        SDValue AD =
          SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
                                         Op, getI32Imm(~0U)), 0);
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
                                    AD.getValue(1));
      }
      case ISD::SETLT: {
        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
      }
      case ISD::SETGT: {
        SDValue T =
          SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
        T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
        SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
      }
      }
    } else if (Imm == ~0U) {        // setcc op, -1
      SDValue Op = N->getOperand(0);
      switch (CC) {
      default: break;
      case ISD::SETEQ:
        if (isPPC64) break;
        Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
                                            Op, getI32Imm(1)), 0);
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
                                                             MVT::i32,
                                                             getI32Imm(0)), 0),
                                      Op.getValue(1));
      case ISD::SETNE: {
        if (isPPC64) break;
        Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
        SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
                                            Op, getI32Imm(~0U));
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
                                    Op, SDValue(AD, 1));
      }
      case ISD::SETLT: {
        SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
                                                    getI32Imm(1)), 0);
        SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
                                                    Op), 0);
        SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
      }
      case ISD::SETGT: {
        SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
                     0);
        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
                                    getI32Imm(1));
      }
      }
    }
  }

  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  // Altivec Vector compare instructions do not set any CR register by default and
  // vector compare operations return the same type as the operands.
  if (LHS.getValueType().isVector()) {
    if (PPCSubTarget->hasQPX())
      return nullptr;

    EVT VecVT = LHS.getValueType();
    bool Swap, Negate;
    unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
                                        PPCSubTarget->hasVSX(), Swap, Negate);
    if (Swap)
      std::swap(LHS, RHS);

    if (Negate) {
      SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
      return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
                                                              PPC::VNOR,
                                  VecVT, VCmp, VCmp);
    }

    return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
  }

  if (PPCSubTarget->useCRBits())
    return nullptr;

  bool Inv;
  unsigned Idx = getCRIdxForSetCC(CC, Inv);
  SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
  SDValue IntCR;

  // Force the ccreg into CR7.
  SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);

  SDValue InFlag(nullptr, 0);  // Null incoming flag value.
  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
                               InFlag).getValue(1);

  IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
                                         CCReg), 0);

  SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
                      getI32Imm(31), getI32Imm(31) };
  if (!Inv)
    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);

  // Get the specified bit.
  SDValue Tmp =
    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
  return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
}

SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
  // Transfer memoperands.
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
  MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
  cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
  return Result;
}


// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
  SDLoc dl(N);
  if (N->isMachineOpcode()) {
    N->setNodeId(-1);
    return nullptr;   // Already selected.
  }

  // In case any misguided DAG-level optimizations form an ADD with a
  // TargetConstant operand, crash here instead of miscompiling (by selecting
  // an r+r add instead of some kind of r+i add).
  if (N->getOpcode() == ISD::ADD &&
      N->getOperand(1).getOpcode() == ISD::TargetConstant)
    llvm_unreachable("Invalid ADD with TargetConstant operand");

  // Try matching complex bit permutations before doing anything else.
  if (SDNode *NN = SelectBitPermutation(N))
    return NN;

  switch (N->getOpcode()) {
  default: break;

  case ISD::Constant: {
    if (N->getValueType(0) == MVT::i64)
      return SelectInt64(CurDAG, N);
    break;
  }

  case ISD::SETCC: {
    SDNode *SN = SelectSETCC(N);
    if (SN)
      return SN;
    break;
  }
  case PPCISD::GlobalBaseReg:
    return getGlobalBaseReg();

  case ISD::FrameIndex:
    return getFrameIndex(N, N);

  case PPCISD::MFOCRF: {
    SDValue InFlag = N->getOperand(1);
    return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
                                  N->getOperand(0), InFlag);
  }

  case PPCISD::READ_TIME_BASE: {
    return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
                                  MVT::Other, N->getOperand(0));
  }

  case PPCISD::SRA_ADDZE: {
    SDValue N0 = N->getOperand(0);
    SDValue ShiftAmt =
      CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
                                  getConstantIntValue(), N->getValueType(0));
    if (N->getValueType(0) == MVT::i64) {
      SDNode *Op =
        CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
                               N0, ShiftAmt);
      return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
                                  SDValue(Op, 0), SDValue(Op, 1));
    } else {
      assert(N->getValueType(0) == MVT::i32 &&
             "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
      SDNode *Op =
        CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
                               N0, ShiftAmt);
      return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
                                  SDValue(Op, 0), SDValue(Op, 1));
    }
  }

  case ISD::LOAD: {
    // Handle preincrement loads.
    LoadSDNode *LD = cast<LoadSDNode>(N);
    EVT LoadedVT = LD->getMemoryVT();

    // Normal loads are handled by code generated from the .td file.
    if (LD->getAddressingMode() != ISD::PRE_INC)
      break;

    SDValue Offset = LD->getOffset();
    if (Offset.getOpcode() == ISD::TargetConstant ||
        Offset.getOpcode() == ISD::TargetGlobalAddress) {

      unsigned Opcode;
      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
      if (LD->getValueType(0) != MVT::i64) {
        // Handle PPC32 integer and normal FP loads.
        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
        switch (LoadedVT.getSimpleVT().SimpleTy) {
          default: llvm_unreachable("Invalid PPC load type!");
          case MVT::f64: Opcode = PPC::LFDU; break;
          case MVT::f32: Opcode = PPC::LFSU; break;
          case MVT::i32: Opcode = PPC::LWZU; break;
          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
          case MVT::i1:
          case MVT::i8:  Opcode = PPC::LBZU; break;
        }
      } else {
        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
        switch (LoadedVT.getSimpleVT().SimpleTy) {
          default: llvm_unreachable("Invalid PPC load type!");
          case MVT::i64: Opcode = PPC::LDU; break;
          case MVT::i32: Opcode = PPC::LWZU8; break;
          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
          case MVT::i1:
          case MVT::i8:  Opcode = PPC::LBZU8; break;
        }
      }

      SDValue Chain = LD->getChain();
      SDValue Base = LD->getBasePtr();
      SDValue Ops[] = { Offset, Base, Chain };
      return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl,
                                      LD->getValueType(0),
                                      PPCLowering->getPointerTy(),
                                      MVT::Other, Ops));
    } else {
      unsigned Opcode;
      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
      if (LD->getValueType(0) != MVT::i64) {
        // Handle PPC32 integer and normal FP loads.
        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
        switch (LoadedVT.getSimpleVT().SimpleTy) {
          default: llvm_unreachable("Invalid PPC load type!");
          case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
          case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
          case MVT::f64: Opcode = PPC::LFDUX; break;
          case MVT::f32: Opcode = PPC::LFSUX; break;
          case MVT::i32: Opcode = PPC::LWZUX; break;
          case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
          case MVT::i1:
          case MVT::i8:  Opcode = PPC::LBZUX; break;
        }
      } else {
        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
        assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
               "Invalid sext update load");
        switch (LoadedVT.getSimpleVT().SimpleTy) {
          default: llvm_unreachable("Invalid PPC load type!");
          case MVT::i64: Opcode = PPC::LDUX; break;
          case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
          case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
          case MVT::i1:
          case MVT::i8:  Opcode = PPC::LBZUX8; break;
        }
      }

      SDValue Chain = LD->getChain();
      SDValue Base = LD->getBasePtr();
      SDValue Ops[] = { Base, Offset, Chain };
      return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl,
                                      LD->getValueType(0),
                                      PPCLowering->getPointerTy(),
                                      MVT::Other, Ops));
    }
  }

  case ISD::AND: {
    unsigned Imm, Imm2, SH, MB, ME;
    uint64_t Imm64;

    // If this is an and of a value rotated between 0 and 31 bits and then and'd
    // with a mask, emit rlwinm
    if (isInt32Immediate(N->getOperand(1), Imm) &&
        isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
      SDValue Val = N->getOperand(0).getOperand(0);
      SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
    }
    // If this is just a masked value where the input is not handled above, and
    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
    if (isInt32Immediate(N->getOperand(1), Imm) &&
        isRunOfOnes(Imm, MB, ME) &&
        N->getOperand(0).getOpcode() != ISD::ROTL) {
      SDValue Val = N->getOperand(0);
      SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
    }
    // If this is a 64-bit zero-extension mask, emit rldicl.
    if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
        isMask_64(Imm64)) {
      SDValue Val = N->getOperand(0);
      MB = 64 - countTrailingOnes(Imm64);
      SH = 0;

      // If the operand is a logical right shift, we can fold it into this
      // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
      // for n <= mb. The right shift is really a left rotate followed by a
      // mask, and this mask is a more-restrictive sub-mask of the mask implied
      // by the shift.
      if (Val.getOpcode() == ISD::SRL &&
          isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
        assert(Imm < 64 && "Illegal shift amount");
        Val = Val.getOperand(0);
        SH = 64 - Imm;
      }

      SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) };
      return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
    }
    // AND X, 0 -> 0, not "rlwinm 32".
    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
      ReplaceUses(SDValue(N, 0), N->getOperand(1));
      return nullptr;
    }
    // ISD::OR doesn't get all the bitfield insertion fun.
    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
    if (isInt32Immediate(N->getOperand(1), Imm) &&
        N->getOperand(0).getOpcode() == ISD::OR &&
        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
      unsigned MB, ME;
      Imm = ~(Imm^Imm2);
      if (isRunOfOnes(Imm, MB, ME)) {
        SDValue Ops[] = { N->getOperand(0).getOperand(0),
                            N->getOperand(0).getOperand(1),
                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
        return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
      }
    }

    // Other cases are autogenerated.
    break;
  }
  case ISD::OR: {
    if (N->getValueType(0) == MVT::i32)
      if (SDNode *I = SelectBitfieldInsert(N))
        return I;

    short Imm;
    if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
        isIntS16Immediate(N->getOperand(1), Imm)) {
      APInt LHSKnownZero, LHSKnownOne;
      CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);

      // If this is equivalent to an add, then we can fold it with the
      // FrameIndex calculation.
      if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
        return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
    }

    // Other cases are autogenerated.
    break;
  }
  case ISD::ADD: {
    short Imm;
    if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
        isIntS16Immediate(N->getOperand(1), Imm))
      return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);

    break;
  }
  case ISD::SHL: {
    unsigned Imm, SH, MB, ME;
    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
      SDValue Ops[] = { N->getOperand(0).getOperand(0),
                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
    }

    // Other cases are autogenerated.
    break;
  }
  case ISD::SRL: {
    unsigned Imm, SH, MB, ME;
    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
      SDValue Ops[] = { N->getOperand(0).getOperand(0),
                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
    }

    // Other cases are autogenerated.
    break;
  }
  // FIXME: Remove this once the ANDI glue bug is fixed:
  case PPCISD::ANDIo_1_EQ_BIT:
  case PPCISD::ANDIo_1_GT_BIT: {
    if (!ANDIGlueBug)
      break;

    EVT InVT = N->getOperand(0).getValueType();
    assert((InVT == MVT::i64 || InVT == MVT::i32) &&
           "Invalid input type for ANDIo_1_EQ_BIT");

    unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
    SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
                                        N->getOperand(0),
                                        CurDAG->getTargetConstant(1, InVT)), 0);
    SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
    SDValue SRIdxVal =
      CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
                                PPC::sub_eq : PPC::sub_gt, MVT::i32);

    return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
                                CR0Reg, SRIdxVal,
                                SDValue(AndI.getNode(), 1) /* glue */);
  }
  case ISD::SELECT_CC: {
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
    EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
    bool isPPC64 = (PtrVT == MVT::i64);

    // If this is a select of i1 operands, we'll pattern match it.
    if (PPCSubTarget->useCRBits() &&
        N->getOperand(0).getValueType() == MVT::i1)
      break;

    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
    if (!isPPC64)
      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
        if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
          if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
            if (N1C->isNullValue() && N3C->isNullValue() &&
                N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
                // FIXME: Implement this optzn for PPC64.
                N->getValueType(0) == MVT::i32) {
              SDNode *Tmp =
                CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
                                       N->getOperand(0), getI32Imm(~0U));
              return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
                                          SDValue(Tmp, 0), N->getOperand(0),
                                          SDValue(Tmp, 1));
            }

    SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);

    if (N->getValueType(0) == MVT::i1) {
      // An i1 select is: (c & t) | (!c & f).
      bool Inv;
      unsigned Idx = getCRIdxForSetCC(CC, Inv);

      unsigned SRI;
      switch (Idx) {
      default: llvm_unreachable("Invalid CC index");
      case 0: SRI = PPC::sub_lt; break;
      case 1: SRI = PPC::sub_gt; break;
      case 2: SRI = PPC::sub_eq; break;
      case 3: SRI = PPC::sub_un; break;
      }

      SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);

      SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
                                              CCBit, CCBit), 0);
      SDValue C =    Inv ? NotCCBit : CCBit,
              NotC = Inv ? CCBit    : NotCCBit;

      SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
                                           C, N->getOperand(2)), 0);
      SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
                                              NotC, N->getOperand(3)), 0);

      return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
    }

    unsigned BROpc = getPredicateForSetCC(CC);

    unsigned SelectCCOp;
    if (N->getValueType(0) == MVT::i32)
      SelectCCOp = PPC::SELECT_CC_I4;
    else if (N->getValueType(0) == MVT::i64)
      SelectCCOp = PPC::SELECT_CC_I8;
    else if (N->getValueType(0) == MVT::f32)
      SelectCCOp = PPC::SELECT_CC_F4;
    else if (N->getValueType(0) == MVT::f64)
      if (PPCSubTarget->hasVSX())
        SelectCCOp = PPC::SELECT_CC_VSFRC;
      else
        SelectCCOp = PPC::SELECT_CC_F8;
    else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
      SelectCCOp = PPC::SELECT_CC_QFRC;
    else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
      SelectCCOp = PPC::SELECT_CC_QSRC;
    else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
      SelectCCOp = PPC::SELECT_CC_QBRC;
    else if (N->getValueType(0) == MVT::v2f64 ||
             N->getValueType(0) == MVT::v2i64)
      SelectCCOp = PPC::SELECT_CC_VSRC;
    else
      SelectCCOp = PPC::SELECT_CC_VRRC;

    SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
                        getI32Imm(BROpc) };
    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
  }
  case ISD::VSELECT:
    if (PPCSubTarget->hasVSX()) {
      SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
      return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
    }

    break;
  case ISD::VECTOR_SHUFFLE:
    if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
                                  N->getValueType(0) == MVT::v2i64)) {
      ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
      
      SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
              Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
      unsigned DM[2];

      for (int i = 0; i < 2; ++i)
        if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
          DM[i] = 0;
        else
          DM[i] = 1;

      // For little endian, we must swap the input operands and adjust
      // the mask elements (reverse and invert them).
      if (PPCSubTarget->isLittleEndian()) {
        std::swap(Op1, Op2);
        unsigned tmp = DM[0];
        DM[0] = 1 - DM[1];
        DM[1] = 1 - tmp;
      }

      SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32);

      if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
          Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
          isa<LoadSDNode>(Op1.getOperand(0))) {
        LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
        SDValue Base, Offset;

        if (LD->isUnindexed() &&
            SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
          SDValue Chain = LD->getChain();
          SDValue Ops[] = { Base, Offset, Chain };
          return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
                                      N->getValueType(0), Ops);
        }
      }

      SDValue Ops[] = { Op1, Op2, DMV };
      return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
    }

    break;
  case PPCISD::BDNZ:
  case PPCISD::BDZ: {
    bool IsPPC64 = PPCSubTarget->isPPC64();
    SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
    return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
                                   (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
                                   (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
                                MVT::Other, Ops);
  }
  case PPCISD::COND_BRANCH: {
    // Op #0 is the Chain.
    // Op #1 is the PPC::PRED_* number.
    // Op #2 is the CR#
    // Op #3 is the Dest MBB
    // Op #4 is the Flag.
    // Prevent PPC::PRED_* from being selected into LI.
    SDValue Pred =
      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
    SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
      N->getOperand(0), N->getOperand(4) };
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
  }
  case ISD::BR_CC: {
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
    unsigned PCC = getPredicateForSetCC(CC);

    if (N->getOperand(2).getValueType() == MVT::i1) {
      unsigned Opc;
      bool Swap;
      switch (PCC) {
      default: llvm_unreachable("Unexpected Boolean-operand predicate");
      case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
      case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
      case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
      case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
      case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
      case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
      }

      SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
                                             N->getOperand(Swap ? 3 : 2),
                                             N->getOperand(Swap ? 2 : 3)), 0);
      return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
                                  BitComp, N->getOperand(4), N->getOperand(0));
    }

    SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
    SDValue Ops[] = { getI32Imm(PCC), CondCode,
                        N->getOperand(4), N->getOperand(0) };
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
  }
  case ISD::BRIND: {
    // FIXME: Should custom lower this.
    SDValue Chain = N->getOperand(0);
    SDValue Target = N->getOperand(1);
    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
    unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
    Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
                                           Chain), 0);
    return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
  }
  case PPCISD::TOC_ENTRY: {
    assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
            "Only supported for 64-bit ABI and 32-bit SVR4");
    if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
      SDValue GA = N->getOperand(0);
      return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl,
                                      MVT::i32, GA, N->getOperand(1)));
    }

    // For medium and large code model, we generate two instructions as
    // described below.  Otherwise we allow SelectCodeCommon to handle this,
    // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
    CodeModel::Model CModel = TM.getCodeModel();
    if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
      break;

    // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
    // If it is an externally defined symbol, a symbol with common linkage,
    // a non-local function address, or a jump table address, or if we are
    // generating code for large code model, we generate:
    //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
    // Otherwise we generate:
    //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
    SDValue GA = N->getOperand(0);
    SDValue TOCbase = N->getOperand(1);
    SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
                                         TOCbase, GA);

    if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
        CModel == CodeModel::Large)
      return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
                                      MVT::i64, GA, SDValue(Tmp, 0)));

    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
      const GlobalValue *GValue = G->getGlobal();
      if ((GValue->getType()->getElementType()->isFunctionTy() &&
           (GValue->isDeclaration() || GValue->isWeakForLinker())) ||
          GValue->isDeclaration() || GValue->hasCommonLinkage() ||
          GValue->hasAvailableExternallyLinkage())
        return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
                                        MVT::i64, GA, SDValue(Tmp, 0)));
    }

    return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
                                  SDValue(Tmp, 0), GA);
  }
  case PPCISD::PPC32_PICGOT: {
    // Generate a PIC-safe GOT reference.
    assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
      "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
    return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(),  MVT::i32);
  }
  case PPCISD::VADD_SPLAT: {
    // This expands into one of three sequences, depending on whether
    // the first operand is odd or even, positive or negative.
    assert(isa<ConstantSDNode>(N->getOperand(0)) &&
           isa<ConstantSDNode>(N->getOperand(1)) &&
           "Invalid operand on VADD_SPLAT!");

    int Elt     = N->getConstantOperandVal(0);
    int EltSize = N->getConstantOperandVal(1);
    unsigned Opc1, Opc2, Opc3;
    EVT VT;

    if (EltSize == 1) {
      Opc1 = PPC::VSPLTISB;
      Opc2 = PPC::VADDUBM;
      Opc3 = PPC::VSUBUBM;
      VT = MVT::v16i8;
    } else if (EltSize == 2) {
      Opc1 = PPC::VSPLTISH;
      Opc2 = PPC::VADDUHM;
      Opc3 = PPC::VSUBUHM;
      VT = MVT::v8i16;
    } else {
      assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
      Opc1 = PPC::VSPLTISW;
      Opc2 = PPC::VADDUWM;
      Opc3 = PPC::VSUBUWM;
      VT = MVT::v4i32;
    }

    if ((Elt & 1) == 0) {
      // Elt is even, in the range [-32,-18] + [16,30].
      //
      // Convert: VADD_SPLAT elt, size
      // Into:    tmp = VSPLTIS[BHW] elt
      //          VADDU[BHW]M tmp, tmp
      // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
      SDValue EltVal = getI32Imm(Elt >> 1);
      SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
      SDValue TmpVal = SDValue(Tmp, 0);
      return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);

    } else if (Elt > 0) {
      // Elt is odd and positive, in the range [17,31].
      //
      // Convert: VADD_SPLAT elt, size
      // Into:    tmp1 = VSPLTIS[BHW] elt-16
      //          tmp2 = VSPLTIS[BHW] -16
      //          VSUBU[BHW]M tmp1, tmp2
      SDValue EltVal = getI32Imm(Elt - 16);
      SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
      EltVal = getI32Imm(-16);
      SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
      return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
                                    SDValue(Tmp2, 0));

    } else {
      // Elt is odd and negative, in the range [-31,-17].
      //
      // Convert: VADD_SPLAT elt, size
      // Into:    tmp1 = VSPLTIS[BHW] elt+16
      //          tmp2 = VSPLTIS[BHW] -16
      //          VADDU[BHW]M tmp1, tmp2
      SDValue EltVal = getI32Imm(Elt + 16);
      SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
      EltVal = getI32Imm(-16);
      SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
      return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
                                    SDValue(Tmp2, 0));
    }
  }
  }

  return SelectCode(N);
}

// If the target supports the cmpb instruction, do the idiom recognition here.
// We don't do this as a DAG combine because we don't want to do it as nodes
// are being combined (because we might miss part of the eventual idiom). We
// don't want to do it during instruction selection because we want to reuse
// the logic for lowering the masking operations already part of the
// instruction selector.
SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
  SDLoc dl(N);

  assert(N->getOpcode() == ISD::OR &&
         "Only OR nodes are supported for CMPB");

  SDValue Res;
  if (!PPCSubTarget->hasCMPB())
    return Res;

  if (N->getValueType(0) != MVT::i32 &&
      N->getValueType(0) != MVT::i64)
    return Res;

  EVT VT = N->getValueType(0);

  SDValue RHS, LHS;
  bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
  uint64_t Mask = 0, Alt = 0;

  auto IsByteSelectCC = [this](SDValue O, unsigned &b,
                               uint64_t &Mask, uint64_t &Alt,
                               SDValue &LHS, SDValue &RHS) {
    if (O.getOpcode() != ISD::SELECT_CC)
      return false;
    ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();

    if (!isa<ConstantSDNode>(O.getOperand(2)) ||
        !isa<ConstantSDNode>(O.getOperand(3)))
      return false;

    uint64_t PM = O.getConstantOperandVal(2);
    uint64_t PAlt = O.getConstantOperandVal(3);
    for (b = 0; b < 8; ++b) {
      uint64_t Mask = UINT64_C(0xFF) << (8*b);
      if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
        break;
    }

    if (b == 8)
      return false;
    Mask |= PM;
    Alt  |= PAlt;

    if (!isa<ConstantSDNode>(O.getOperand(1)) ||
        O.getConstantOperandVal(1) != 0) {
      SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
      if (Op0.getOpcode() == ISD::TRUNCATE)
        Op0 = Op0.getOperand(0);
      if (Op1.getOpcode() == ISD::TRUNCATE)
        Op1 = Op1.getOperand(0);

      if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
          Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
          isa<ConstantSDNode>(Op0.getOperand(1))) {

        unsigned Bits = Op0.getValueType().getSizeInBits();
        if (b != Bits/8-1)
          return false;
        if (Op0.getConstantOperandVal(1) != Bits-8)
          return false;

        LHS = Op0.getOperand(0);
        RHS = Op1.getOperand(0);
        return true;
      }

      // When we have small integers (i16 to be specific), the form present
      // post-legalization uses SETULT in the SELECT_CC for the
      // higher-order byte, depending on the fact that the
      // even-higher-order bytes are known to all be zero, for example:
      //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
      // (so when the second byte is the same, because all higher-order
      // bits from bytes 3 and 4 are known to be zero, the result of the
      // xor can be at most 255)
      if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
          isa<ConstantSDNode>(O.getOperand(1))) {

        uint64_t ULim = O.getConstantOperandVal(1);
        if (ULim != (UINT64_C(1) << b*8))
          return false;

        // Now we need to make sure that the upper bytes are known to be
        // zero.
        unsigned Bits = Op0.getValueType().getSizeInBits();
        if (!CurDAG->MaskedValueIsZero(Op0,
              APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
          return false;
        
        LHS = Op0.getOperand(0);
        RHS = Op0.getOperand(1);
        return true;
      }

      return false;
    }

    if (CC != ISD::SETEQ)
      return false;

    SDValue Op = O.getOperand(0);
    if (Op.getOpcode() == ISD::AND) {
      if (!isa<ConstantSDNode>(Op.getOperand(1)))
        return false;
      if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
        return false;

      SDValue XOR = Op.getOperand(0);
      if (XOR.getOpcode() == ISD::TRUNCATE)
        XOR = XOR.getOperand(0);
      if (XOR.getOpcode() != ISD::XOR)
        return false;

      LHS = XOR.getOperand(0);
      RHS = XOR.getOperand(1);
      return true;
    } else if (Op.getOpcode() == ISD::SRL) {
      if (!isa<ConstantSDNode>(Op.getOperand(1)))
        return false;
      unsigned Bits = Op.getValueType().getSizeInBits();
      if (b != Bits/8-1)
        return false;
      if (Op.getConstantOperandVal(1) != Bits-8)
        return false;

      SDValue XOR = Op.getOperand(0);
      if (XOR.getOpcode() == ISD::TRUNCATE)
        XOR = XOR.getOperand(0);
      if (XOR.getOpcode() != ISD::XOR)
        return false;

      LHS = XOR.getOperand(0);
      RHS = XOR.getOperand(1);
      return true;
    }

    return false;
  };

  SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
  while (!Queue.empty()) {
    SDValue V = Queue.pop_back_val();

    for (const SDValue &O : V.getNode()->ops()) {
      unsigned b;
      uint64_t M = 0, A = 0;
      SDValue OLHS, ORHS;
      if (O.getOpcode() == ISD::OR) {
        Queue.push_back(O);
      } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
        if (!LHS) {
          LHS = OLHS;
          RHS = ORHS;
          BytesFound[b] = true;
          Mask |= M;
          Alt  |= A;
        } else if ((LHS == ORHS && RHS == OLHS) ||
                   (RHS == ORHS && LHS == OLHS)) {
          BytesFound[b] = true;
          Mask |= M;
          Alt  |= A;
        } else {
          return Res;
        }
      } else {
        return Res;
      }
    }
  }

  unsigned LastB = 0, BCnt = 0;
  for (unsigned i = 0; i < 8; ++i)
    if (BytesFound[LastB]) {
      ++BCnt;
      LastB = i;
    }

  if (!LastB || BCnt < 2)
    return Res;

  // Because we'll be zero-extending the output anyway if don't have a specific
  // value for each input byte (via the Mask), we can 'anyext' the inputs.
  if (LHS.getValueType() != VT) {
    LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
    RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
  }

  Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);

  bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
  if (NonTrivialMask && !Alt) {
    // Res = Mask & CMPB
    Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask, VT));
  } else if (Alt) {
    // Res = (CMPB & Mask) | (~CMPB & Alt)
    // Which, as suggested here:
    //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
    // can be written as:
    // Res = Alt ^ ((Alt ^ Mask) & CMPB)
    // useful because the (Alt ^ Mask) can be pre-computed.
    Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
                          CurDAG->getConstant(Mask ^ Alt, VT));
    Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, CurDAG->getConstant(Alt, VT));
  }

  return Res;
}

// When CR bit registers are enabled, an extension of an i1 variable to a i32
// or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
// involves constant materialization of a 0 or a 1 or both. If the result of
// the extension is then operated upon by some operator that can be constant
// folded with a constant 0 or 1, and that constant can be materialized using
// only one instruction (like a zero or one), then we should fold in those
// operations with the select.
void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
  if (!PPCSubTarget->useCRBits())
    return;

  if (N->getOpcode() != ISD::ZERO_EXTEND &&
      N->getOpcode() != ISD::SIGN_EXTEND &&
      N->getOpcode() != ISD::ANY_EXTEND)
    return;

  if (N->getOperand(0).getValueType() != MVT::i1)
    return;

  if (!N->hasOneUse())
    return;

  SDLoc dl(N);
  EVT VT = N->getValueType(0);
  SDValue Cond = N->getOperand(0);
  SDValue ConstTrue =
    CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, VT);
  SDValue ConstFalse = CurDAG->getConstant(0, VT);

  do {
    SDNode *User = *N->use_begin();
    if (User->getNumOperands() != 2)
      break;

    auto TryFold = [this, N, User](SDValue Val) {
      SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
      SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
      SDValue O1 = UserO1.getNode() == N ? Val : UserO1;

      return CurDAG->FoldConstantArithmetic(User->getOpcode(),
                                            User->getValueType(0),
                                            O0.getNode(), O1.getNode());
    };

    SDValue TrueRes = TryFold(ConstTrue);
    if (!TrueRes)
      break;
    SDValue FalseRes = TryFold(ConstFalse);
    if (!FalseRes)
      break;

    // For us to materialize these using one instruction, we must be able to
    // represent them as signed 16-bit integers.
    uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
             False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
    if (!isInt<16>(True) || !isInt<16>(False))
      break;

    // We can replace User with a new SELECT node, and try again to see if we
    // can fold the select with its user.
    Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
    N = User;
    ConstTrue = TrueRes;
    ConstFalse = FalseRes;
  } while (N->hasOneUse());
}

void PPCDAGToDAGISel::PreprocessISelDAG() {
  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
  ++Position;

  bool MadeChange = false;
  while (Position != CurDAG->allnodes_begin()) {
    SDNode *N = --Position;
    if (N->use_empty())
      continue;

    SDValue Res;
    switch (N->getOpcode()) {
    default: break;
    case ISD::OR:
      Res = combineToCMPB(N);
      break;
    }

    if (!Res)
      foldBoolExts(Res, N);

    if (Res) {
      DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
      DEBUG(N->dump(CurDAG));
      DEBUG(dbgs() << "\nNew: ");
      DEBUG(Res.getNode()->dump(CurDAG));
      DEBUG(dbgs() << "\n");

      CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
      MadeChange = true;
    }
  }

  if (MadeChange)
    CurDAG->RemoveDeadNodes();
}

/// PostprocessISelDAG - Perform some late peephole optimizations
/// on the DAG representation.
void PPCDAGToDAGISel::PostprocessISelDAG() {

  // Skip peepholes at -O0.
  if (TM.getOptLevel() == CodeGenOpt::None)
    return;

  PeepholePPC64();
  PeepholeCROps();
  PeepholePPC64ZExt();
}

// Check if all users of this node will become isel where the second operand
// is the constant zero. If this is so, and if we can negate the condition,
// then we can flip the true and false operands. This will allow the zero to
// be folded with the isel so that we don't need to materialize a register
// containing zero.
bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
  // If we're not using isel, then this does not matter.
  if (!PPCSubTarget->hasISEL())
    return false;

  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
       UI != UE; ++UI) {
    SDNode *User = *UI;
    if (!User->isMachineOpcode())
      return false;
    if (User->getMachineOpcode() != PPC::SELECT_I4 &&
        User->getMachineOpcode() != PPC::SELECT_I8)
      return false;

    SDNode *Op2 = User->getOperand(2).getNode();
    if (!Op2->isMachineOpcode())
      return false;

    if (Op2->getMachineOpcode() != PPC::LI &&
        Op2->getMachineOpcode() != PPC::LI8)
      return false;

    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
    if (!C)
      return false;

    if (!C->isNullValue())
      return false;
  }

  return true;
}

void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
  SmallVector<SDNode *, 4> ToReplace;
  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
       UI != UE; ++UI) {
    SDNode *User = *UI;
    assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
            User->getMachineOpcode() == PPC::SELECT_I8) &&
           "Must have all select users");
    ToReplace.push_back(User);
  }

  for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
       UE = ToReplace.end(); UI != UE; ++UI) {
    SDNode *User = *UI;
    SDNode *ResNode =
      CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
                             User->getValueType(0), User->getOperand(0),
                             User->getOperand(2),
                             User->getOperand(1));

      DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
      DEBUG(User->dump(CurDAG));
      DEBUG(dbgs() << "\nNew: ");
      DEBUG(ResNode->dump(CurDAG));
      DEBUG(dbgs() << "\n");

      ReplaceUses(User, ResNode);
  }
}

void PPCDAGToDAGISel::PeepholeCROps() {
  bool IsModified;
  do {
    IsModified = false;
    for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
         E = CurDAG->allnodes_end(); I != E; ++I) {
      MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
      if (!MachineNode || MachineNode->use_empty())
        continue;
      SDNode *ResNode = MachineNode;

      bool Op1Set   = false, Op1Unset = false,
           Op1Not   = false,
           Op2Set   = false, Op2Unset = false,
           Op2Not   = false;

      unsigned Opcode = MachineNode->getMachineOpcode();
      switch (Opcode) {
      default: break;
      case PPC::CRAND:
      case PPC::CRNAND:
      case PPC::CROR:
      case PPC::CRXOR:
      case PPC::CRNOR:
      case PPC::CREQV:
      case PPC::CRANDC:
      case PPC::CRORC: {
        SDValue Op = MachineNode->getOperand(1);
        if (Op.isMachineOpcode()) {
          if (Op.getMachineOpcode() == PPC::CRSET)
            Op2Set = true;
          else if (Op.getMachineOpcode() == PPC::CRUNSET)
            Op2Unset = true;
          else if (Op.getMachineOpcode() == PPC::CRNOR &&
                   Op.getOperand(0) == Op.getOperand(1))
            Op2Not = true;
        }
        }  // fallthrough
      case PPC::BC:
      case PPC::BCn:
      case PPC::SELECT_I4:
      case PPC::SELECT_I8:
      case PPC::SELECT_F4:
      case PPC::SELECT_F8:
      case PPC::SELECT_QFRC:
      case PPC::SELECT_QSRC:
      case PPC::SELECT_QBRC:
      case PPC::SELECT_VRRC:
      case PPC::SELECT_VSFRC:
      case PPC::SELECT_VSRC: {
        SDValue Op = MachineNode->getOperand(0);
        if (Op.isMachineOpcode()) {
          if (Op.getMachineOpcode() == PPC::CRSET)
            Op1Set = true;
          else if (Op.getMachineOpcode() == PPC::CRUNSET)
            Op1Unset = true;
          else if (Op.getMachineOpcode() == PPC::CRNOR &&
                   Op.getOperand(0) == Op.getOperand(1))
            Op1Not = true;
        }
        }
        break;
      }

      bool SelectSwap = false;
      switch (Opcode) {
      default: break;
      case PPC::CRAND:
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
          // x & x = x
          ResNode = MachineNode->getOperand(0).getNode();
        else if (Op1Set)
          // 1 & y = y
          ResNode = MachineNode->getOperand(1).getNode();
        else if (Op2Set)
          // x & 1 = x
          ResNode = MachineNode->getOperand(0).getNode();
        else if (Op1Unset || Op2Unset)
          // x & 0 = 0 & y = 0
          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
                                           MVT::i1);
        else if (Op1Not)
          // ~x & y = andc(y, x)
          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1),
                                           MachineNode->getOperand(0).
                                             getOperand(0));
        else if (Op2Not)
          // x & ~y = andc(x, y)
          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1).
                                             getOperand(0));
        else if (AllUsersSelectZero(MachineNode))
          ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1)),
          SelectSwap = true;
        break;
      case PPC::CRNAND:
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
          // nand(x, x) -> nor(x, x)
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(0));
        else if (Op1Set)
          // nand(1, y) -> nor(y, y)
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1),
                                           MachineNode->getOperand(1));
        else if (Op2Set)
          // nand(x, 1) -> nor(x, x)
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(0));
        else if (Op1Unset || Op2Unset)
          // nand(x, 0) = nand(0, y) = 1
          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
                                           MVT::i1);
        else if (Op1Not)
          // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0).
                                                      getOperand(0),
                                           MachineNode->getOperand(1));
        else if (Op2Not)
          // nand(x, ~y) = ~x | y = orc(y, x)
          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1).
                                                      getOperand(0),
                                           MachineNode->getOperand(0));
        else if (AllUsersSelectZero(MachineNode))
          ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1)),
          SelectSwap = true;
        break;
      case PPC::CROR:
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
          // x | x = x
          ResNode = MachineNode->getOperand(0).getNode();
        else if (Op1Set || Op2Set)
          // x | 1 = 1 | y = 1
          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
                                           MVT::i1);
        else if (Op1Unset)
          // 0 | y = y
          ResNode = MachineNode->getOperand(1).getNode();
        else if (Op2Unset)
          // x | 0 = x
          ResNode = MachineNode->getOperand(0).getNode();
        else if (Op1Not)
          // ~x | y = orc(y, x)
          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1),
                                           MachineNode->getOperand(0).
                                             getOperand(0));
        else if (Op2Not)
          // x | ~y = orc(x, y)
          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1).
                                             getOperand(0));
        else if (AllUsersSelectZero(MachineNode))
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1)),
          SelectSwap = true;
        break;
      case PPC::CRXOR:
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
          // xor(x, x) = 0
          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
                                           MVT::i1);
        else if (Op1Set)
          // xor(1, y) -> nor(y, y)
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1),
                                           MachineNode->getOperand(1));
        else if (Op2Set)
          // xor(x, 1) -> nor(x, x)
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(0));
        else if (Op1Unset)
          // xor(0, y) = y
          ResNode = MachineNode->getOperand(1).getNode();
        else if (Op2Unset)
          // xor(x, 0) = x
          ResNode = MachineNode->getOperand(0).getNode();
        else if (Op1Not)
          // xor(~x, y) = eqv(x, y)
          ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0).
                                                      getOperand(0),
                                           MachineNode->getOperand(1));
        else if (Op2Not)
          // xor(x, ~y) = eqv(x, y)
          ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1).
                                             getOperand(0));
        else if (AllUsersSelectZero(MachineNode))
          ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1)),
          SelectSwap = true;
        break;
      case PPC::CRNOR:
        if (Op1Set || Op2Set)
          // nor(1, y) -> 0
          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
                                           MVT::i1);
        else if (Op1Unset)
          // nor(0, y) = ~y -> nor(y, y)
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1),
                                           MachineNode->getOperand(1));
        else if (Op2Unset)
          // nor(x, 0) = ~x
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(0));
        else if (Op1Not)
          // nor(~x, y) = andc(x, y)
          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0).
                                                      getOperand(0),
                                           MachineNode->getOperand(1));
        else if (Op2Not)
          // nor(x, ~y) = andc(y, x)
          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1).
                                                      getOperand(0),
                                           MachineNode->getOperand(0));
        else if (AllUsersSelectZero(MachineNode))
          ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1)),
          SelectSwap = true;
        break;
      case PPC::CREQV:
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
          // eqv(x, x) = 1
          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
                                           MVT::i1);
        else if (Op1Set)
          // eqv(1, y) = y
          ResNode = MachineNode->getOperand(1).getNode();
        else if (Op2Set)
          // eqv(x, 1) = x
          ResNode = MachineNode->getOperand(0).getNode();
        else if (Op1Unset)
          // eqv(0, y) = ~y -> nor(y, y)
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1),
                                           MachineNode->getOperand(1));
        else if (Op2Unset)
          // eqv(x, 0) = ~x
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(0));
        else if (Op1Not)
          // eqv(~x, y) = xor(x, y)
          ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0).
                                                      getOperand(0),
                                           MachineNode->getOperand(1));
        else if (Op2Not)
          // eqv(x, ~y) = xor(x, y)
          ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1).
                                             getOperand(0));
        else if (AllUsersSelectZero(MachineNode))
          ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1)),
          SelectSwap = true;
        break;
      case PPC::CRANDC:
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
          // andc(x, x) = 0
          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
                                           MVT::i1);
        else if (Op1Set)
          // andc(1, y) = ~y
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1),
                                           MachineNode->getOperand(1));
        else if (Op1Unset || Op2Set)
          // andc(0, y) = andc(x, 1) = 0
          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
                                           MVT::i1);
        else if (Op2Unset)
          // andc(x, 0) = x
          ResNode = MachineNode->getOperand(0).getNode();
        else if (Op1Not)
          // andc(~x, y) = ~(x | y) = nor(x, y)
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0).
                                                      getOperand(0),
                                           MachineNode->getOperand(1));
        else if (Op2Not)
          // andc(x, ~y) = x & y
          ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1).
                                             getOperand(0));
        else if (AllUsersSelectZero(MachineNode))
          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1),
                                           MachineNode->getOperand(0)),
          SelectSwap = true;
        break;
      case PPC::CRORC:
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
          // orc(x, x) = 1
          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
                                           MVT::i1);
        else if (Op1Set || Op2Unset)
          // orc(1, y) = orc(x, 0) = 1
          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
                                           MVT::i1);
        else if (Op2Set)
          // orc(x, 1) = x
          ResNode = MachineNode->getOperand(0).getNode();
        else if (Op1Unset)
          // orc(0, y) = ~y
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1),
                                           MachineNode->getOperand(1));
        else if (Op1Not)
          // orc(~x, y) = ~(x & y) = nand(x, y)
          ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0).
                                                      getOperand(0),
                                           MachineNode->getOperand(1));
        else if (Op2Not)
          // orc(x, ~y) = x | y
          ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(0),
                                           MachineNode->getOperand(1).
                                             getOperand(0));
        else if (AllUsersSelectZero(MachineNode))
          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
                                           MVT::i1, MachineNode->getOperand(1),
                                           MachineNode->getOperand(0)),
          SelectSwap = true;
        break;
      case PPC::SELECT_I4:
      case PPC::SELECT_I8:
      case PPC::SELECT_F4:
      case PPC::SELECT_F8:
      case PPC::SELECT_QFRC:
      case PPC::SELECT_QSRC:
      case PPC::SELECT_QBRC:
      case PPC::SELECT_VRRC:
      case PPC::SELECT_VSFRC:
      case PPC::SELECT_VSRC:
        if (Op1Set)
          ResNode = MachineNode->getOperand(1).getNode();
        else if (Op1Unset)
          ResNode = MachineNode->getOperand(2).getNode();
        else if (Op1Not)
          ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
                                           SDLoc(MachineNode),
                                           MachineNode->getValueType(0),
                                           MachineNode->getOperand(0).
                                             getOperand(0),
                                           MachineNode->getOperand(2),
                                           MachineNode->getOperand(1));
        break;
      case PPC::BC:
      case PPC::BCn:
        if (Op1Not)
          ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
                                                               PPC::BC,
                                           SDLoc(MachineNode),
                                           MVT::Other,
                                           MachineNode->getOperand(0).
                                             getOperand(0),
                                           MachineNode->getOperand(1),
                                           MachineNode->getOperand(2));
        // FIXME: Handle Op1Set, Op1Unset here too.
        break;
      }

      // If we're inverting this node because it is used only by selects that
      // we'd like to swap, then swap the selects before the node replacement.
      if (SelectSwap)
        SwapAllSelectUsers(MachineNode);

      if (ResNode != MachineNode) {
        DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
        DEBUG(MachineNode->dump(CurDAG));
        DEBUG(dbgs() << "\nNew: ");
        DEBUG(ResNode->dump(CurDAG));
        DEBUG(dbgs() << "\n");

        ReplaceUses(MachineNode, ResNode);
        IsModified = true;
      }
    }
    if (IsModified)
      CurDAG->RemoveDeadNodes();
  } while (IsModified);
}

// Gather the set of 32-bit operations that are known to have their
// higher-order 32 bits zero, where ToPromote contains all such operations.
static bool PeepholePPC64ZExtGather(SDValue Op32,
                                    SmallPtrSetImpl<SDNode *> &ToPromote) {
  if (!Op32.isMachineOpcode())
    return false;

  // First, check for the "frontier" instructions (those that will clear the
  // higher-order 32 bits.

  // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
  // around. If it does not, then these instructions will clear the
  // higher-order bits.
  if ((Op32.getMachineOpcode() == PPC::RLWINM ||
       Op32.getMachineOpcode() == PPC::RLWNM) &&
      Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
    ToPromote.insert(Op32.getNode());
    return true;
  }

  // SLW and SRW always clear the higher-order bits.
  if (Op32.getMachineOpcode() == PPC::SLW ||
      Op32.getMachineOpcode() == PPC::SRW) {
    ToPromote.insert(Op32.getNode());
    return true;
  }

  // For LI and LIS, we need the immediate to be positive (so that it is not
  // sign extended).
  if (Op32.getMachineOpcode() == PPC::LI ||
      Op32.getMachineOpcode() == PPC::LIS) {
    if (!isUInt<15>(Op32.getConstantOperandVal(0)))
      return false;

    ToPromote.insert(Op32.getNode());
    return true;
  }

  // LHBRX and LWBRX always clear the higher-order bits.
  if (Op32.getMachineOpcode() == PPC::LHBRX ||
      Op32.getMachineOpcode() == PPC::LWBRX) {
    ToPromote.insert(Op32.getNode());
    return true;
  }

  // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
  if (Op32.getMachineOpcode() == PPC::CNTLZW) {
    ToPromote.insert(Op32.getNode());
    return true;
  }

  // Next, check for those instructions we can look through.

  // Assuming the mask does not wrap around, then the higher-order bits are
  // taken directly from the first operand.
  if (Op32.getMachineOpcode() == PPC::RLWIMI &&
      Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
    SmallPtrSet<SDNode *, 16> ToPromote1;
    if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
      return false;

    ToPromote.insert(Op32.getNode());
    ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
    return true;
  }

  // For OR, the higher-order bits are zero if that is true for both operands.
  // For SELECT_I4, the same is true (but the relevant operand numbers are
  // shifted by 1).
  if (Op32.getMachineOpcode() == PPC::OR ||
      Op32.getMachineOpcode() == PPC::SELECT_I4) {
    unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
    SmallPtrSet<SDNode *, 16> ToPromote1;
    if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
      return false;
    if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
      return false;

    ToPromote.insert(Op32.getNode());
    ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
    return true;
  }

  // For ORI and ORIS, we need the higher-order bits of the first operand to be
  // zero, and also for the constant to be positive (so that it is not sign
  // extended).
  if (Op32.getMachineOpcode() == PPC::ORI ||
      Op32.getMachineOpcode() == PPC::ORIS) {
    SmallPtrSet<SDNode *, 16> ToPromote1;
    if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
      return false;
    if (!isUInt<15>(Op32.getConstantOperandVal(1)))
      return false;

    ToPromote.insert(Op32.getNode());
    ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
    return true;
  }

  // The higher-order bits of AND are zero if that is true for at least one of
  // the operands.
  if (Op32.getMachineOpcode() == PPC::AND) {
    SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
    bool Op0OK =
      PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
    bool Op1OK =
      PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
    if (!Op0OK && !Op1OK)
      return false;

    ToPromote.insert(Op32.getNode());

    if (Op0OK)
      ToPromote.insert(ToPromote1.begin(), ToPromote1.end());

    if (Op1OK)
      ToPromote.insert(ToPromote2.begin(), ToPromote2.end());

    return true;
  }

  // For ANDI and ANDIS, the higher-order bits are zero if either that is true
  // of the first operand, or if the second operand is positive (so that it is
  // not sign extended).
  if (Op32.getMachineOpcode() == PPC::ANDIo ||
      Op32.getMachineOpcode() == PPC::ANDISo) {
    SmallPtrSet<SDNode *, 16> ToPromote1;
    bool Op0OK =
      PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
    bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
    if (!Op0OK && !Op1OK)
      return false;

    ToPromote.insert(Op32.getNode());

    if (Op0OK)
      ToPromote.insert(ToPromote1.begin(), ToPromote1.end());

    return true;
  }

  return false;
}

void PPCDAGToDAGISel::PeepholePPC64ZExt() {
  if (!PPCSubTarget->isPPC64())
    return;

  // When we zero-extend from i32 to i64, we use a pattern like this:
  // def : Pat<(i64 (zext i32:$in)),
  //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
  //                   0, 32)>;
  // There are several 32-bit shift/rotate instructions, however, that will
  // clear the higher-order bits of their output, rendering the RLDICL
  // unnecessary. When that happens, we remove it here, and redefine the
  // relevant 32-bit operation to be a 64-bit operation.

  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
  ++Position;

  bool MadeChange = false;
  while (Position != CurDAG->allnodes_begin()) {
    SDNode *N = --Position;
    // Skip dead nodes and any non-machine opcodes.
    if (N->use_empty() || !N->isMachineOpcode())
      continue;

    if (N->getMachineOpcode() != PPC::RLDICL)
      continue;

    if (N->getConstantOperandVal(1) != 0 ||
        N->getConstantOperandVal(2) != 32)
      continue;

    SDValue ISR = N->getOperand(0);
    if (!ISR.isMachineOpcode() ||
        ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
      continue;

    if (!ISR.hasOneUse())
      continue;

    if (ISR.getConstantOperandVal(2) != PPC::sub_32)
      continue;

    SDValue IDef = ISR.getOperand(0);
    if (!IDef.isMachineOpcode() ||
        IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
      continue;

    // We now know that we're looking at a canonical i32 -> i64 zext. See if we
    // can get rid of it.

    SDValue Op32 = ISR->getOperand(1);
    if (!Op32.isMachineOpcode())
      continue;

    // There are some 32-bit instructions that always clear the high-order 32
    // bits, there are also some instructions (like AND) that we can look
    // through.
    SmallPtrSet<SDNode *, 16> ToPromote;
    if (!PeepholePPC64ZExtGather(Op32, ToPromote))
      continue;

    // If the ToPromote set contains nodes that have uses outside of the set
    // (except for the original INSERT_SUBREG), then abort the transformation.
    bool OutsideUse = false;
    for (SDNode *PN : ToPromote) {
      for (SDNode *UN : PN->uses()) {
        if (!ToPromote.count(UN) && UN != ISR.getNode()) {
          OutsideUse = true;
          break;
        }
      }

      if (OutsideUse)
        break;
    }
    if (OutsideUse)
      continue;

    MadeChange = true;

    // We now know that this zero extension can be removed by promoting to
    // nodes in ToPromote to 64-bit operations, where for operations in the
    // frontier of the set, we need to insert INSERT_SUBREGs for their
    // operands.
    for (SDNode *PN : ToPromote) {
      unsigned NewOpcode;
      switch (PN->getMachineOpcode()) {
      default:
        llvm_unreachable("Don't know the 64-bit variant of this instruction");
      case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
      case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
      case PPC::SLW:       NewOpcode = PPC::SLW8; break;
      case PPC::SRW:       NewOpcode = PPC::SRW8; break;
      case PPC::LI:        NewOpcode = PPC::LI8; break;
      case PPC::LIS:       NewOpcode = PPC::LIS8; break;
      case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
      case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
      case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
      case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
      case PPC::OR:        NewOpcode = PPC::OR8; break;
      case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
      case PPC::ORI:       NewOpcode = PPC::ORI8; break;
      case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
      case PPC::AND:       NewOpcode = PPC::AND8; break;
      case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
      case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
      }

      // Note: During the replacement process, the nodes will be in an
      // inconsistent state (some instructions will have operands with values
      // of the wrong type). Once done, however, everything should be right
      // again.

      SmallVector<SDValue, 4> Ops;
      for (const SDValue &V : PN->ops()) {
        if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
            !isa<ConstantSDNode>(V)) {
          SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
          SDNode *ReplOp =
            CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
                                   ISR.getNode()->getVTList(), ReplOpOps);
          Ops.push_back(SDValue(ReplOp, 0));
        } else {
          Ops.push_back(V);
        }
      }

      // Because all to-be-promoted nodes only have users that are other
      // promoted nodes (or the original INSERT_SUBREG), we can safely replace
      // the i32 result value type with i64.

      SmallVector<EVT, 2> NewVTs;
      SDVTList VTs = PN->getVTList();
      for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
        if (VTs.VTs[i] == MVT::i32)
          NewVTs.push_back(MVT::i64);
        else
          NewVTs.push_back(VTs.VTs[i]);

      DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
      DEBUG(PN->dump(CurDAG));

      CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);

      DEBUG(dbgs() << "\nNew: ");
      DEBUG(PN->dump(CurDAG));
      DEBUG(dbgs() << "\n");
    }

    // Now we replace the original zero extend and its associated INSERT_SUBREG
    // with the value feeding the INSERT_SUBREG (which has now been promoted to
    // return an i64).

    DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
    DEBUG(N->dump(CurDAG));
    DEBUG(dbgs() << "\nNew: ");
    DEBUG(Op32.getNode()->dump(CurDAG));
    DEBUG(dbgs() << "\n");

    ReplaceUses(N, Op32.getNode());
  }

  if (MadeChange)
    CurDAG->RemoveDeadNodes();
}

void PPCDAGToDAGISel::PeepholePPC64() {
  // These optimizations are currently supported only for 64-bit SVR4.
  if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
    return;

  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
  ++Position;

  while (Position != CurDAG->allnodes_begin()) {
    SDNode *N = --Position;
    // Skip dead nodes and any non-machine opcodes.
    if (N->use_empty() || !N->isMachineOpcode())
      continue;

    unsigned FirstOp;
    unsigned StorageOpcode = N->getMachineOpcode();

    switch (StorageOpcode) {
    default: continue;

    case PPC::LBZ:
    case PPC::LBZ8:
    case PPC::LD:
    case PPC::LFD:
    case PPC::LFS:
    case PPC::LHA:
    case PPC::LHA8:
    case PPC::LHZ:
    case PPC::LHZ8:
    case PPC::LWA:
    case PPC::LWZ:
    case PPC::LWZ8:
      FirstOp = 0;
      break;

    case PPC::STB:
    case PPC::STB8:
    case PPC::STD:
    case PPC::STFD:
    case PPC::STFS:
    case PPC::STH:
    case PPC::STH8:
    case PPC::STW:
    case PPC::STW8:
      FirstOp = 1;
      break;
    }

    // If this is a load or store with a zero offset, we may be able to
    // fold an add-immediate into the memory operation.
    if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
        N->getConstantOperandVal(FirstOp) != 0)
      continue;

    SDValue Base = N->getOperand(FirstOp + 1);
    if (!Base.isMachineOpcode())
      continue;

    unsigned Flags = 0;
    bool ReplaceFlags = true;

    // When the feeding operation is an add-immediate of some sort,
    // determine whether we need to add relocation information to the
    // target flags on the immediate operand when we fold it into the
    // load instruction.
    //
    // For something like ADDItocL, the relocation information is
    // inferred from the opcode; when we process it in the AsmPrinter,
    // we add the necessary relocation there.  A load, though, can receive
    // relocation from various flavors of ADDIxxx, so we need to carry
    // the relocation information in the target flags.
    switch (Base.getMachineOpcode()) {
    default: continue;

    case PPC::ADDI8:
    case PPC::ADDI:
      // In some cases (such as TLS) the relocation information
      // is already in place on the operand, so copying the operand
      // is sufficient.
      ReplaceFlags = false;
      // For these cases, the immediate may not be divisible by 4, in
      // which case the fold is illegal for DS-form instructions.  (The
      // other cases provide aligned addresses and are always safe.)
      if ((StorageOpcode == PPC::LWA ||
           StorageOpcode == PPC::LD  ||
           StorageOpcode == PPC::STD) &&
          (!isa<ConstantSDNode>(Base.getOperand(1)) ||
           Base.getConstantOperandVal(1) % 4 != 0))
        continue;
      break;
    case PPC::ADDIdtprelL:
      Flags = PPCII::MO_DTPREL_LO;
      break;
    case PPC::ADDItlsldL:
      Flags = PPCII::MO_TLSLD_LO;
      break;
    case PPC::ADDItocL:
      Flags = PPCII::MO_TOC_LO;
      break;
    }

    // We found an opportunity.  Reverse the operands from the add
    // immediate and substitute them into the load or store.  If
    // needed, update the target flags for the immediate operand to
    // reflect the necessary relocation information.
    DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
    DEBUG(Base->dump(CurDAG));
    DEBUG(dbgs() << "\nN: ");
    DEBUG(N->dump(CurDAG));
    DEBUG(dbgs() << "\n");

    SDValue ImmOpnd = Base.getOperand(1);

    // If the relocation information isn't already present on the
    // immediate operand, add it now.
    if (ReplaceFlags) {
      if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
        SDLoc dl(GA);
        const GlobalValue *GV = GA->getGlobal();
        // We can't perform this optimization for data whose alignment
        // is insufficient for the instruction encoding.
        if (GV->getAlignment() < 4 &&
            (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
             StorageOpcode == PPC::LWA)) {
          DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
          continue;
        }
        ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
      } else if (ConstantPoolSDNode *CP =
                 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
        const Constant *C = CP->getConstVal();
        ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
                                                CP->getAlignment(),
                                                0, Flags);
      }
    }

    if (FirstOp == 1) // Store
      (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
                                       Base.getOperand(0), N->getOperand(3));
    else // Load
      (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
                                       N->getOperand(2));

    // The add-immediate may now be dead, in which case remove it.
    if (Base.getNode()->use_empty())
      CurDAG->RemoveDeadNode(Base.getNode());
  }
}


/// createPPCISelDag - This pass converts a legalized DAG into a
/// PowerPC-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
  return new PPCDAGToDAGISel(TM);
}

static void initializePassOnce(PassRegistry &Registry) {
  const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
  PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
                              nullptr, false, false);
  Registry.registerPass(*PI, true);
}

void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
  CALL_ONCE_INITIALIZATION(initializePassOnce);
}