aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/PowerPC/PPCISelLowering.cpp
blob: 137b3f95547d617d46c8c24aa229243f73aa5691 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PPCISelLowering class.
//
//===----------------------------------------------------------------------===//

#include "PPCISelLowering.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/VectorExtras.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;

PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
  : TargetLowering(TM) {
    
  // Fold away setcc operations if possible.
  setSetCCIsExpensive();
  setPow2DivIsCheap();
  
  // Use _setjmp/_longjmp instead of setjmp/longjmp.
  setUseUnderscoreSetJmpLongJmp(true);
    
  // Set up the register classes.
  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
  
  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);

  // PowerPC has no intrinsics for these particular operations
  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
  
  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
  setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
  setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
  
  // PowerPC has no SREM/UREM instructions
  setOperationAction(ISD::SREM, MVT::i32, Expand);
  setOperationAction(ISD::UREM, MVT::i32, Expand);
  
  // We don't support sin/cos/sqrt/fmod
  setOperationAction(ISD::FSIN , MVT::f64, Expand);
  setOperationAction(ISD::FCOS , MVT::f64, Expand);
  setOperationAction(ISD::FREM , MVT::f64, Expand);
  setOperationAction(ISD::FSIN , MVT::f32, Expand);
  setOperationAction(ISD::FCOS , MVT::f32, Expand);
  setOperationAction(ISD::FREM , MVT::f32, Expand);
  
  // If we're enabling GP optimizations, use hardware square root
  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
  }
  
  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
  
  // PowerPC does not have BSWAP, CTPOP or CTTZ
  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
  
  // PowerPC does not have ROTR
  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
  
  // PowerPC does not have Select
  setOperationAction(ISD::SELECT, MVT::i32, Expand);
  setOperationAction(ISD::SELECT, MVT::f32, Expand);
  setOperationAction(ISD::SELECT, MVT::f64, Expand);
  setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
  setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
  setOperationAction(ISD::SELECT, MVT::v8i16, Expand);
  setOperationAction(ISD::SELECT, MVT::v16i8, Expand);
  
  // PowerPC wants to turn select_cc of FP into fsel when possible.
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);

  // PowerPC wants to optimize integer setcc a bit
  setOperationAction(ISD::SETCC, MVT::i32, Custom);
  
  // PowerPC does not have BRCOND which requires SetCC
  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
  
  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);

  // PowerPC does not have [U|S]INT_TO_FP
  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);

  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);

  // PowerPC does not have truncstore for i1.
  setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);

  // Support label based line numbers.
  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
  // FIXME - use subtarget debug flags
  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
  
  // We want to legalize GlobalAddress and ConstantPool nodes into the 
  // appropriate instructions to materialize the address.
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);

  // RET must be custom lowered, to meet ABI requirements
  setOperationAction(ISD::RET               , MVT::Other, Custom);
  
  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
  
  // Use the default implementation.
  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand); 
  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
  
  // We want to custom lower some of our intrinsics.
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
  
  if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
    // They also have instructions for converting between i64 and fp.
    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    
    // FIXME: disable this lowered code.  This generates 64-bit register values,
    // and we don't model the fact that the top part is clobbered by calls.  We
    // need to flag these together so that the value isn't live across a call.
    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    
    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
  } else {
    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
  }

  if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
    // 64 bit PowerPC implementations can support i64 types directly
    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
  } else {
    // 32 bit PowerPC wants to expand i64 shifts itself.
    setOperationAction(ISD::SHL, MVT::i64, Custom);
    setOperationAction(ISD::SRL, MVT::i64, Custom);
    setOperationAction(ISD::SRA, MVT::i64, Custom);
  }

  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
    // First set operation action for all vector types to expand. Then we
    // will selectively turn on ones that can be effectively codegen'd.
    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
      // add/sub/and/or/xor are legal for all supported vector VT's.
      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
      setOperationAction(ISD::AND , (MVT::ValueType)VT, Legal);
      setOperationAction(ISD::OR  , (MVT::ValueType)VT, Legal);
      setOperationAction(ISD::XOR , (MVT::ValueType)VT, Legal);
      
      // We promote all shuffles to v16i8.
      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
      AddPromotedToType(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
      
      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);

      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
    }

    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    // with merges, splats, etc.
    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);

    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
    
    setOperationAction(ISD::MUL, MVT::v4f32, Legal);

    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    
    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
  }
  
  setSetCCResultContents(ZeroOrOneSetCCResult);
  setStackPointerRegisterToSaveRestore(PPC::R1);
  
  // We have target-specific dag combine patterns for the following nodes:
  setTargetDAGCombine(ISD::SINT_TO_FP);
  setTargetDAGCombine(ISD::STORE);
  
  computeRegisterProperties();
}

const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch (Opcode) {
  default: return 0;
  case PPCISD::FSEL:          return "PPCISD::FSEL";
  case PPCISD::FCFID:         return "PPCISD::FCFID";
  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
  case PPCISD::VPERM:         return "PPCISD::VPERM";
  case PPCISD::Hi:            return "PPCISD::Hi";
  case PPCISD::Lo:            return "PPCISD::Lo";
  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
  case PPCISD::SRL:           return "PPCISD::SRL";
  case PPCISD::SRA:           return "PPCISD::SRA";
  case PPCISD::SHL:           return "PPCISD::SHL";
  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
  case PPCISD::STD_32:        return "PPCISD::STD_32";
  case PPCISD::CALL:          return "PPCISD::CALL";
  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
  case PPCISD::MFCR:          return "PPCISD::MFCR";
  case PPCISD::VCMP:          return "PPCISD::VCMP";
  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
  }
}

/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
static bool isFloatingPointZero(SDOperand Op) {
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
  else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
    // Maybe this has already been legalized into the constant pool?
    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
  }
  return false;
}

/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
/// true if Op is undef or if it matches the specified value.
static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
  return Op.getOpcode() == ISD::UNDEF || 
         cast<ConstantSDNode>(Op)->getValue() == Val;
}

/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
  if (!isUnary) {
    for (unsigned i = 0; i != 16; ++i)
      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
        return false;
  } else {
    for (unsigned i = 0; i != 8; ++i)
      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
        return false;
  }
  return true;
}

/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
  if (!isUnary) {
    for (unsigned i = 0; i != 16; i += 2)
      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
        return false;
  } else {
    for (unsigned i = 0; i != 8; i += 2)
      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
        return false;
  }
  return true;
}

/// isVMerge - Common function, used to match vmrg* shuffles.
///
static bool isVMerge(SDNode *N, unsigned UnitSize, 
                     unsigned LHSStart, unsigned RHSStart) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
         "Unsupported merge size!");
  
  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
                             LHSStart+j+i*UnitSize) ||
          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
                             RHSStart+j+i*UnitSize))
        return false;
    }
      return true;
}

/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
  if (!isUnary)
    return isVMerge(N, UnitSize, 8, 24);
  return isVMerge(N, UnitSize, 8, 8);
}

/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
  if (!isUnary)
    return isVMerge(N, UnitSize, 0, 16);
  return isVMerge(N, UnitSize, 0, 0);
}


/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
/// amount, otherwise return -1.
int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
  // Find the first non-undef value in the shuffle mask.
  unsigned i;
  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
    /*search*/;
  
  if (i == 16) return -1;  // all undef.
  
  // Otherwise, check to see if the rest of the elements are consequtively
  // numbered from this value.
  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
  if (ShiftAmt < i) return -1;
  ShiftAmt -= i;

  if (!isUnary) {
    // Check the rest of the elements to see if they are consequtive.
    for (++i; i != 16; ++i)
      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
        return -1;
  } else {
    // Check the rest of the elements to see if they are consequtive.
    for (++i; i != 16; ++i)
      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
        return -1;
  }
  
  return ShiftAmt;
}

/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element that is suitable for input to
/// VSPLTB/VSPLTH/VSPLTW.
bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
         N->getNumOperands() == 16 &&
         (EltSize == 1 || EltSize == 2 || EltSize == 4));
  
  // This is a splat operation if each element of the permute is the same, and
  // if the value doesn't reference the second vector.
  unsigned ElementBase = 0;
  SDOperand Elt = N->getOperand(0);
  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
    ElementBase = EltV->getValue();
  else
    return false;   // FIXME: Handle UNDEF elements too!

  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
    return false;
  
  // Check that they are consequtive.
  for (unsigned i = 1; i != EltSize; ++i) {
    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
      return false;
  }
  
  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
           "Invalid VECTOR_SHUFFLE mask!");
    for (unsigned j = 0; j != EltSize; ++j)
      if (N->getOperand(i+j) != N->getOperand(j))
        return false;
  }

  return true;
}

/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
  assert(isSplatShuffleMask(N, EltSize));
  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
}

/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
/// by using a vspltis[bhw] instruction of the specified element size, return
/// the constant being splatted.  The ByteSize field indicates the number of
/// bytes of each element [124] -> [bhw].
SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
  SDOperand OpVal(0, 0);

  // If ByteSize of the splat is bigger than the element size of the
  // build_vector, then we have a case where we are checking for a splat where
  // multiple elements of the buildvector are folded together into a single
  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
  unsigned EltSize = 16/N->getNumOperands();
  if (EltSize < ByteSize) {
    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
    SDOperand UniquedVals[4];
    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
    
    // See if all of the elements in the buildvector agree across.
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
      // If the element isn't a constant, bail fully out.
      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();

          
      if (UniquedVals[i&(Multiple-1)].Val == 0)
        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
        return SDOperand();  // no match.
    }
    
    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
    // either constant or undef values that are identical for each chunk.  See
    // if these chunks can form into a larger vspltis*.
    
    // Check to see if all of the leading entries are either 0 or -1.  If
    // neither, then this won't fit into the immediate field.
    bool LeadingZero = true;
    bool LeadingOnes = true;
    for (unsigned i = 0; i != Multiple-1; ++i) {
      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
      
      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
    }
    // Finally, check the least significant entry.
    if (LeadingZero) {
      if (UniquedVals[Multiple-1].Val == 0)
        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
      if (Val < 16)
        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
    }
    if (LeadingOnes) {
      if (UniquedVals[Multiple-1].Val == 0)
        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
        return DAG.getTargetConstant(Val, MVT::i32);
    }
    
    return SDOperand();
  }
  
  // Check to see if this buildvec has a single non-undef value in its elements.
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    if (OpVal.Val == 0)
      OpVal = N->getOperand(i);
    else if (OpVal != N->getOperand(i))
      return SDOperand();
  }
  
  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
  
  unsigned ValSizeInBytes = 0;
  uint64_t Value = 0;
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
    Value = CN->getValue();
    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
    Value = FloatToBits(CN->getValue());
    ValSizeInBytes = 4;
  }

  // If the splat value is larger than the element value, then we can never do
  // this splat.  The only case that we could fit the replicated bits into our
  // immediate field for would be zero, and we prefer to use vxor for it.
  if (ValSizeInBytes < ByteSize) return SDOperand();
  
  // If the element value is larger than the splat value, cut it in half and
  // check to see if the two halves are equal.  Continue doing this until we
  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
  while (ValSizeInBytes > ByteSize) {
    ValSizeInBytes >>= 1;
    
    // If the top half equals the bottom half, we're still ok.
    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
      return SDOperand();
  }

  // Properly sign extend the value.
  int ShAmt = (4-ByteSize)*8;
  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
  
  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
  if (MaskVal == 0) return SDOperand();

  // Finally, if this value fits in a 5 bit sext field, return it
  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
    return DAG.getTargetConstant(MaskVal, MVT::i32);
  return SDOperand();
}

// If this is a vector of constants or undefs, get the bits.  A bit in
// UndefBits is set if the corresponding element of the vector is an 
// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
// zero.   Return true if this is not an array of constants, false if it is.
//
// Note that VectorBits/UndefBits are returned in 'little endian' form, so
// elements 0,1 go in VectorBits[0] and 2,3 go in VectorBits[1] for a v4i32.
static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
                                       uint64_t UndefBits[2]) {
  // Start with zero'd results.
  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
  
  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
    SDOperand OpVal = BV->getOperand(i);
    
    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
    unsigned SlotNo = i & (e/2-1);  // Which subpiece of the uint64_t it is.

    uint64_t EltBits = 0;
    if (OpVal.getOpcode() == ISD::UNDEF) {
      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
      continue;
    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
      assert(CN->getValueType(0) == MVT::f32 &&
             "Only one legal FP vector type!");
      EltBits = FloatToBits(CN->getValue());
    } else {
      // Nonconstant element.
      return true;
    }
    
    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
  }
  
  //printf("%llx %llx  %llx %llx\n", 
  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
  return false;
}

/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
  switch (Op.getOpcode()) {
  default: assert(0 && "Wasn't expecting to be able to lower this!"); 
  case ISD::FP_TO_SINT: {
    assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
    SDOperand Src = Op.getOperand(0);
    if (Src.getValueType() == MVT::f32)
      Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
    
    SDOperand Tmp;
    switch (Op.getValueType()) {
    default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
    case MVT::i32:
      Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
      break;
    case MVT::i64:
      Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
      break;
    }
   
    // Convert the FP value to an int value through memory.
    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
    if (Op.getValueType() == MVT::i32)
      Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
    return Bits;
  }
  case ISD::SINT_TO_FP:
    if (Op.getOperand(0).getValueType() == MVT::i64) {
      SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
      SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
      if (Op.getValueType() == MVT::f32)
        FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
      return FP;
    } else {
      assert(Op.getOperand(0).getValueType() == MVT::i32 &&
             "Unhandled SINT_TO_FP type in custom expander!");
      // Since we only generate this in 64-bit mode, we can take advantage of
      // 64-bit registers.  In particular, sign extend the input value into the
      // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
      // then lfd it and fcfid it.
      MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
      int FrameIdx = FrameInfo->CreateStackObject(8, 8);
      SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
      
      SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
                                    Op.getOperand(0));

      // STD the extended value into the stack slot.
      SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
                                    DAG.getEntryNode(), Ext64, FIdx,
                                    DAG.getSrcValue(NULL));
      // Load the value as a double.
      SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
      
      // FCFID it and return it.
      SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
      if (Op.getValueType() == MVT::f32)
        FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
      return FP;
    }
    break;

  case ISD::SELECT_CC: {
    // Turn FP only select_cc's into fsel instructions.
    if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
        !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
      break;
    
    ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
    
    // Cannot handle SETEQ/SETNE.
    if (CC == ISD::SETEQ || CC == ISD::SETNE) break;
    
    MVT::ValueType ResVT = Op.getValueType();
    MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
    SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);

    // If the RHS of the comparison is a 0.0, we don't need to do the
    // subtraction at all.
    if (isFloatingPointZero(RHS))
      switch (CC) {
      default: break;       // SETUO etc aren't handled by fsel.
      case ISD::SETULT:
      case ISD::SETLT:
        std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
      case ISD::SETUGE:
      case ISD::SETGE:
        if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
          LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
        return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
      case ISD::SETUGT:
      case ISD::SETGT:
        std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
      case ISD::SETULE:
      case ISD::SETLE:
        if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
          LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
        return DAG.getNode(PPCISD::FSEL, ResVT,
                           DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
      }
    
    SDOperand Cmp;
    switch (CC) {
    default: break;       // SETUO etc aren't handled by fsel.
    case ISD::SETULT:
    case ISD::SETLT:
      Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
    case ISD::SETUGE:
    case ISD::SETGE:
      Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
    case ISD::SETUGT:
    case ISD::SETGT:
      Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
    case ISD::SETULE:
    case ISD::SETLE:
      Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
    }
    break;
  }
  case ISD::SHL: {
    assert(Op.getValueType() == MVT::i64 &&
           Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
    // The generic code does a fine job expanding shift by a constant.
    if (isa<ConstantSDNode>(Op.getOperand(1))) break;
    
    // Otherwise, expand into a bunch of logical ops.  Note that these ops
    // depend on the PPC behavior for oversized shift amounts.
    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(0, MVT::i32));
    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(1, MVT::i32));
    SDOperand Amt = Op.getOperand(1);
    
    SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
                                 DAG.getConstant(32, MVT::i32), Amt);
    SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
    SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
    SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
    SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
                                 DAG.getConstant(-32U, MVT::i32));
    SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
    SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
    SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
    return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
  }
  case ISD::SRL: {
    assert(Op.getValueType() == MVT::i64 &&
           Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
    // The generic code does a fine job expanding shift by a constant.
    if (isa<ConstantSDNode>(Op.getOperand(1))) break;
    
    // Otherwise, expand into a bunch of logical ops.  Note that these ops
    // depend on the PPC behavior for oversized shift amounts.
    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(0, MVT::i32));
    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(1, MVT::i32));
    SDOperand Amt = Op.getOperand(1);
    
    SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
                                 DAG.getConstant(32, MVT::i32), Amt);
    SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
    SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
    SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
    SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
                                 DAG.getConstant(-32U, MVT::i32));
    SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
    SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
    SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
    return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
  }    
  case ISD::SRA: {
    assert(Op.getValueType() == MVT::i64 &&
           Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
    // The generic code does a fine job expanding shift by a constant.
    if (isa<ConstantSDNode>(Op.getOperand(1))) break;
      
    // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(0, MVT::i32));
    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
                               DAG.getConstant(1, MVT::i32));
    SDOperand Amt = Op.getOperand(1);
    
    SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
                                 DAG.getConstant(32, MVT::i32), Amt);
    SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
    SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
    SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
    SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
                                 DAG.getConstant(-32U, MVT::i32));
    SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
    SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
    SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
                                      Tmp4, Tmp6, ISD::SETLE);
    return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
  }
  case ISD::ConstantPool: {
    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
    Constant *C = CP->get();
    SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
    SDOperand Zero = DAG.getConstant(0, MVT::i32);
    
    if (getTargetMachine().getRelocationModel() == Reloc::Static) {
      // Generate non-pic code that has direct accesses to the constant pool.
      // The address of the global is just (hi(&g)+lo(&g)).
      SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
      SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
      return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
    }
    
    // Only lower ConstantPool on Darwin.
    if (!getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin()) break;
    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
    if (getTargetMachine().getRelocationModel() == Reloc::PIC) {
      // With PIC, the first instruction is actually "GR+hi(&G)".
      Hi = DAG.getNode(ISD::ADD, MVT::i32,
                       DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
    }

    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
    Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
    return Lo;
  }
  case ISD::GlobalAddress: {
    GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
    GlobalValue *GV = GSDN->getGlobal();
    SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
    SDOperand Zero = DAG.getConstant(0, MVT::i32);

    if (getTargetMachine().getRelocationModel() == Reloc::Static) {
      // Generate non-pic code that has direct accesses to globals.
      // The address of the global is just (hi(&g)+lo(&g)).
      SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
      SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
      return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
    }
    
    // Only lower GlobalAddress on Darwin.
    if (!getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin()) break;
    
    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
    if (getTargetMachine().getRelocationModel() == Reloc::PIC) {
      // With PIC, the first instruction is actually "GR+hi(&G)".
      Hi = DAG.getNode(ISD::ADD, MVT::i32,
                       DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
    }
    
    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
    Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
                                   
    if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
        (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
      return Lo;

    // If the global is weak or external, we have to go through the lazy
    // resolution stub.
    return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
  }
  case ISD::SETCC: {
    ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
    
    // If we're comparing for equality to zero, expose the fact that this is
    // implented as a ctlz/srl pair on ppc, so that the dag combiner can
    // fold the new nodes.
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      if (C->isNullValue() && CC == ISD::SETEQ) {
        MVT::ValueType VT = Op.getOperand(0).getValueType();
        SDOperand Zext = Op.getOperand(0);
        if (VT < MVT::i32) {
          VT = MVT::i32;
          Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
        } 
        unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
        SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
        SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
                                    DAG.getConstant(Log2b, getShiftAmountTy()));
        return DAG.getNode(ISD::TRUNCATE, getSetCCResultTy(), Scc);
      }
      // Leave comparisons against 0 and -1 alone for now, since they're usually 
      // optimized.  FIXME: revisit this when we can custom lower all setcc
      // optimizations.
      if (C->isAllOnesValue() || C->isNullValue())
        break;
    }
        
    // If we have an integer seteq/setne, turn it into a compare against zero
    // by subtracting the rhs from the lhs, which is faster than setting a
    // condition register, reading it back out, and masking the correct bit.
    MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
    if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
      MVT::ValueType VT = Op.getValueType();
      SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0), 
                                  Op.getOperand(1));
      return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
    }
    break;
  }
  case ISD::VASTART: {
    // vastart just stores the address of the VarArgsFrameIndex slot into the
    // memory location argument.
    // FIXME: Replace MVT::i32 with PointerTy
    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
    return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, 
                       Op.getOperand(1), Op.getOperand(2));
  }
  case ISD::RET: {
    SDOperand Copy;
    
    switch(Op.getNumOperands()) {
    default:
      assert(0 && "Do not know how to return this many arguments!");
      abort();
    case 1: 
      return SDOperand(); // ret void is legal
    case 2: {
      MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
      unsigned ArgReg;
      if (MVT::isVector(ArgVT))
        ArgReg = PPC::V2;
      else if (MVT::isInteger(ArgVT))
        ArgReg = PPC::R3;
      else {
        assert(MVT::isFloatingPoint(ArgVT));
        ArgReg = PPC::F1;
      }
      
      Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
                              SDOperand());
      
      // If we haven't noted the R3/F1 are live out, do so now.
      if (DAG.getMachineFunction().liveout_empty())
        DAG.getMachineFunction().addLiveOut(ArgReg);
      break;
    }
    case 3:
      Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2), 
                              SDOperand());
      Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
      // If we haven't noted the R3+R4 are live out, do so now.
      if (DAG.getMachineFunction().liveout_empty()) {
        DAG.getMachineFunction().addLiveOut(PPC::R3);
        DAG.getMachineFunction().addLiveOut(PPC::R4);
      }
      break;
    }
    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
  }
  case ISD::SCALAR_TO_VECTOR: {
    // Create a stack slot that is 16-byte aligned.
    MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
    int FrameIdx = FrameInfo->CreateStackObject(16, 16);
    SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
    
    // Store the input value into Value#0 of the stack slot.
    SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
                                  Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
    // Load it out.
    return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
  }
  case ISD::BUILD_VECTOR: {
    // If this is a case we can't handle, return null and let the default
    // expansion code take care of it.  If we CAN select this case, return Op
    // or something simpler.
    
    // If this is a vector of constants or undefs, get the bits.  A bit in
    // UndefBits is set if the corresponding element of the vector is an 
    // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
    // zero. 
    uint64_t VectorBits[2];
    uint64_t UndefBits[2];
    if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
      return SDOperand();   // Not a constant vector.

    // See if this is all zeros.
    if ((VectorBits[0] | VectorBits[1]) == 0) {
      // Canonicalize all zero vectors to be v4i32.
      if (Op.getValueType() != MVT::v4i32) {
        SDOperand Z = DAG.getConstant(0, MVT::i32);
        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
      }
      return Op;
    }
    
    // Check to see if this is something we can use VSPLTI* to form.
    MVT::ValueType CanonicalVT = MVT::Other;
    SDNode *CST = 0;
    
    if ((CST = PPC::get_VSPLTI_elt(Op.Val, 4, DAG).Val))       // vspltisw
      CanonicalVT = MVT::v4i32;
    else if ((CST = PPC::get_VSPLTI_elt(Op.Val, 2, DAG).Val))  // vspltish
      CanonicalVT = MVT::v8i16;
    else if ((CST = PPC::get_VSPLTI_elt(Op.Val, 1, DAG).Val))  // vspltisb
      CanonicalVT = MVT::v16i8;

    // If this matches one of the vsplti* patterns, force it to the canonical
    // type for the pattern.
    if (CST) {
      if (Op.getValueType() != CanonicalVT) {
        // Convert the splatted element to the right element type.
        SDOperand Elt = DAG.getNode(ISD::TRUNCATE, 
                                    MVT::getVectorBaseType(CanonicalVT), 
                                    SDOperand(CST, 0));
        std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
        SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
      }
      return Op;
    }

    // If this is some other splat of 4-byte elements, see if we can handle it
    // in another way.
    // FIXME: Make this more undef happy and work with other widths (1,2 bytes).
    if (VectorBits[0] == VectorBits[1] &&
        unsigned(VectorBits[0]) == unsigned(VectorBits[0] >> 32)) {
      unsigned Bits = unsigned(VectorBits[0]);

      // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is 
      // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  These are important
      // for fneg/fabs.
      if (Bits == 0x80000000 || Bits == 0x7FFFFFFF) {
        // Make -1 and vspltisw -1:
        SDOperand OnesI = DAG.getConstant(~0U, MVT::i32);
        SDOperand OnesV = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32,
                                      OnesI, OnesI, OnesI, OnesI);
        
        // Make the VSLW intrinsic, computing 0x8000_0000.
        SDOperand Res
          = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, MVT::v4i32,
                        DAG.getConstant(Intrinsic::ppc_altivec_vslw, MVT::i32),
                        OnesV, OnesV);
        
        // If this is 0x7FFF_FFFF, xor by OnesV to invert it.
        if (Bits == 0x7FFFFFFF)
          Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
        
        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
      }
    }
    
      
    return SDOperand();
  }
  case ISD::VECTOR_SHUFFLE: {
    SDOperand V1 = Op.getOperand(0);
    SDOperand V2 = Op.getOperand(1);
    SDOperand PermMask = Op.getOperand(2);
    
    // Cases that are handled by instructions that take permute immediates
    // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
    // selected by the instruction selector.
    if (V2.getOpcode() == ISD::UNDEF) {
      if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
          PPC::isSplatShuffleMask(PermMask.Val, 2) ||
          PPC::isSplatShuffleMask(PermMask.Val, 4) ||
          PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
          PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
          PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
          PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
          PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
          PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
          PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
          PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
          PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
        return Op;
      }
    }
    
    // Altivec has a variety of "shuffle immediates" that take two vector inputs
    // and produce a fixed permutation.  If any of these match, do not lower to
    // VPERM.
    if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
        PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
        PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
        PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
        PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
        PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
        PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
        PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
        PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
      return Op;
    
    // TODO: Handle more cases, and also handle cases that are cheaper to do as
    // multiple such instructions than as a constant pool load/vperm pair.
    
    // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
    // vector that will get spilled to the constant pool.
    if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
    
    // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
    // that it is in input element units, not in bytes.  Convert now.
    MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
    unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
    
    std::vector<SDOperand> ResultMask;
    for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
      unsigned SrcElt =cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
      
      for (unsigned j = 0; j != BytesPerElement; ++j)
        ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
                                             MVT::i8));
    }
    
    SDOperand VPermMask =DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
    return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
  }
  case ISD::INTRINSIC_WO_CHAIN: {
    unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
    
    // If this is a lowered altivec predicate compare, CompareOpc is set to the
    // opcode number of the comparison.
    int CompareOpc = -1;
    bool isDot = false;
    switch (IntNo) {
    default: return SDOperand();    // Don't custom lower most intrinsics.
    // Comparison predicates.
    case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
    case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;

    // Normal Comparisons.
    case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
    case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
    }
    
    assert(CompareOpc>0 && "We only lower altivec predicate compares so far!");

    // If this is a non-dot comparison, make the VCMP node.
    if (!isDot) {
      SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
                                  Op.getOperand(1), Op.getOperand(2),
                                  DAG.getConstant(CompareOpc, MVT::i32));
      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
    }
    
    // Create the PPCISD altivec 'dot' comparison node.
    std::vector<SDOperand> Ops;
    std::vector<MVT::ValueType> VTs;
    Ops.push_back(Op.getOperand(2));  // LHS
    Ops.push_back(Op.getOperand(3));  // RHS
    Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
    VTs.push_back(Op.getOperand(2).getValueType());
    VTs.push_back(MVT::Flag);
    SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);

    // Now that we have the comparison, emit a copy from the CR to a GPR.
    // This is flagged to the above dot comparison.
    SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
                                  DAG.getRegister(PPC::CR6, MVT::i32),
                                  CompNode.getValue(1)); 

    // Unpack the result based on how the target uses it.
    unsigned BitNo;   // Bit # of CR6.
    bool InvertBit;   // Invert result?
    switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
    default:  // Can't happen, don't crash on invalid number though.
    case 0:   // Return the value of the EQ bit of CR6.
      BitNo = 0; InvertBit = false;
      break;
    case 1:   // Return the inverted value of the EQ bit of CR6.
      BitNo = 0; InvertBit = true;
      break;
    case 2:   // Return the value of the LT bit of CR6.
      BitNo = 2; InvertBit = false;
      break;
    case 3:   // Return the inverted value of the LT bit of CR6.
      BitNo = 2; InvertBit = true;
      break;
    }
    
    // Shift the bit into the low position.
    Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
                        DAG.getConstant(8-(3-BitNo), MVT::i32));
    // Isolate the bit.
    Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
                        DAG.getConstant(1, MVT::i32));
    
    // If we are supposed to, toggle the bit.
    if (InvertBit)
      Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
                          DAG.getConstant(1, MVT::i32));
    return Flags;
  }
  }
  return SDOperand();
}

std::vector<SDOperand>
PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
  //
  // add beautiful description of PPC stack frame format, or at least some docs
  //
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  MachineBasicBlock& BB = MF.front();
  SSARegMap *RegMap = MF.getSSARegMap();
  std::vector<SDOperand> ArgValues;
  
  unsigned ArgOffset = 24;
  unsigned GPR_remaining = 8;
  unsigned FPR_remaining = 13;
  unsigned GPR_idx = 0, FPR_idx = 0;
  static const unsigned GPR[] = {
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
  };
  static const unsigned FPR[] = {
    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
  };
  
  // Add DAG nodes to load the arguments...  On entry to a function on PPC,
  // the arguments start at offset 24, although they are likely to be passed
  // in registers.
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
    SDOperand newroot, argt;
    unsigned ObjSize;
    bool needsLoad = false;
    bool ArgLive = !I->use_empty();
    MVT::ValueType ObjectVT = getValueType(I->getType());
    
    switch (ObjectVT) {
    default: assert(0 && "Unhandled argument type!");
    case MVT::i1:
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
      ObjSize = 4;
      if (!ArgLive) break;
      if (GPR_remaining > 0) {
        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
        MF.addLiveIn(GPR[GPR_idx], VReg);
        argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
        if (ObjectVT != MVT::i32) {
          unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext 
                                                       : ISD::AssertZext;
          argt = DAG.getNode(AssertOp, MVT::i32, argt, 
                             DAG.getValueType(ObjectVT));
          argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt);
        }
      } else {
        needsLoad = true;
      }
      break;
    case MVT::i64:
      ObjSize = 8;
      if (!ArgLive) break;
      if (GPR_remaining > 0) {
        SDOperand argHi, argLo;
        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
        MF.addLiveIn(GPR[GPR_idx], VReg);
        argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
        // If we have two or more remaining argument registers, then both halves
        // of the i64 can be sourced from there.  Otherwise, the lower half will
        // have to come off the stack.  This can happen when an i64 is preceded
        // by 28 bytes of arguments.
        if (GPR_remaining > 1) {
          unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
          MF.addLiveIn(GPR[GPR_idx+1], VReg);
          argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32);
        } else {
          int FI = MFI->CreateFixedObject(4, ArgOffset+4);
          SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
          argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
                              DAG.getSrcValue(NULL));
        }
        // Build the outgoing arg thingy
        argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
        newroot = argLo;
      } else {
        needsLoad = true;
      }
      break;
    case MVT::f32:
    case MVT::f64:
      ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
      if (!ArgLive) {
        if (FPR_remaining > 0) {
          --FPR_remaining;
          ++FPR_idx;
        }        
        break;
      }
      if (FPR_remaining > 0) {
        unsigned VReg;
        if (ObjectVT == MVT::f32)
          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
        else
          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
        MF.addLiveIn(FPR[FPR_idx], VReg);
        argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT);
        --FPR_remaining;
        ++FPR_idx;
      } else {
        needsLoad = true;
      }
      break;
    }
    
    // We need to load the argument to a virtual register if we determined above
    // that we ran out of physical registers of the appropriate type
    if (needsLoad) {
      unsigned SubregOffset = 0;
      if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
      if (ObjectVT == MVT::i16) SubregOffset = 2;
      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
      SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
                        DAG.getConstant(SubregOffset, MVT::i32));
      argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
                                   DAG.getSrcValue(NULL));
    }
    
    // Every 4 bytes of argument space consumes one of the GPRs available for
    // argument passing.
    if (GPR_remaining > 0) {
      unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
      GPR_remaining -= delta;
      GPR_idx += delta;
    }
    ArgOffset += ObjSize;
    if (newroot.Val)
      DAG.setRoot(newroot.getValue(1));
    
    ArgValues.push_back(argt);
  }
  
  // If the function takes variable number of arguments, make a frame index for
  // the start of the first vararg value... for expansion of llvm.va_start.
  if (F.isVarArg()) {
    VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
    // If this function is vararg, store any remaining integer argument regs
    // to their spots on the stack so that they may be loaded by deferencing the
    // result of va_next.
    std::vector<SDOperand> MemOps;
    for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
      unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
      MF.addLiveIn(GPR[GPR_idx], VReg);
      SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
      SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
                                    Val, FIN, DAG.getSrcValue(NULL));
      MemOps.push_back(Store);
      // Increment the address by four for the next argument to store
      SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
    }
    if (!MemOps.empty()) {
      MemOps.push_back(DAG.getRoot());
      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
    }
  }
  
  return ArgValues;
}

std::pair<SDOperand, SDOperand>
PPCTargetLowering::LowerCallTo(SDOperand Chain,
                               const Type *RetTy, bool isVarArg,
                               unsigned CallingConv, bool isTailCall,
                               SDOperand Callee, ArgListTy &Args,
                               SelectionDAG &DAG) {
  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
  // SelectExpr to use to put the arguments in the appropriate registers.
  std::vector<SDOperand> args_to_use;
  
  // Count how many bytes are to be pushed on the stack, including the linkage
  // area, and parameter passing area.
  unsigned NumBytes = 24;
  
  if (Args.empty()) {
    Chain = DAG.getCALLSEQ_START(Chain,
                                 DAG.getConstant(NumBytes, getPointerTy()));
  } else {
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
      switch (getValueType(Args[i].second)) {
      default: assert(0 && "Unknown value type!");
      case MVT::i1:
      case MVT::i8:
      case MVT::i16:
      case MVT::i32:
      case MVT::f32:
        NumBytes += 4;
        break;
      case MVT::i64:
      case MVT::f64:
        NumBytes += 8;
        break;
      }
    }
        
    // Just to be safe, we'll always reserve the full 24 bytes of linkage area
    // plus 32 bytes of argument space in case any called code gets funky on us.
    // (Required by ABI to support var arg)
    if (NumBytes < 56) NumBytes = 56;
    
    // Adjust the stack pointer for the new arguments...
    // These operations are automatically eliminated by the prolog/epilog pass
    Chain = DAG.getCALLSEQ_START(Chain,
                                 DAG.getConstant(NumBytes, getPointerTy()));
    
    // Set up a copy of the stack pointer for use loading and storing any
    // arguments that may not fit in the registers available for argument
    // passing.
    SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
    
    // Figure out which arguments are going to go in registers, and which in
    // memory.  Also, if this is a vararg function, floating point operations
    // must be stored to our stack, and loaded into integer regs as well, if
    // any integer regs are available for argument passing.
    unsigned ArgOffset = 24;
    unsigned GPR_remaining = 8;
    unsigned FPR_remaining = 13;
    
    std::vector<SDOperand> MemOps;
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
      // PtrOff will be used to store the current argument to the stack if a
      // register cannot be found for it.
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
      MVT::ValueType ArgVT = getValueType(Args[i].second);
      
      switch (ArgVT) {
      default: assert(0 && "Unexpected ValueType for argument!");
      case MVT::i1:
      case MVT::i8:
      case MVT::i16:
        // Promote the integer to 32 bits.  If the input type is signed use a
        // sign extend, otherwise use a zero extend.
        if (Args[i].second->isSigned())
          Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
        else
          Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
        // FALL THROUGH
      case MVT::i32:
        if (GPR_remaining > 0) {
          args_to_use.push_back(Args[i].first);
          --GPR_remaining;
        } else {
          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                       Args[i].first, PtrOff,
                                       DAG.getSrcValue(NULL)));
        }
        ArgOffset += 4;
        break;
      case MVT::i64:
        // If we have one free GPR left, we can place the upper half of the i64
        // in it, and store the other half to the stack.  If we have two or more
        // free GPRs, then we can pass both halves of the i64 in registers.
        if (GPR_remaining > 0) {
          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
                                     Args[i].first, DAG.getConstant(1, MVT::i32));
          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
                                     Args[i].first, DAG.getConstant(0, MVT::i32));
          args_to_use.push_back(Hi);
          --GPR_remaining;
          if (GPR_remaining > 0) {
            args_to_use.push_back(Lo);
            --GPR_remaining;
          } else {
            SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
            PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
            MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                         Lo, PtrOff, DAG.getSrcValue(NULL)));
          }
        } else {
          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                       Args[i].first, PtrOff,
                                       DAG.getSrcValue(NULL)));
        }
        ArgOffset += 8;
        break;
      case MVT::f32:
      case MVT::f64:
        if (FPR_remaining > 0) {
          args_to_use.push_back(Args[i].first);
          --FPR_remaining;
          if (isVarArg) {
            SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                          Args[i].first, PtrOff,
                                          DAG.getSrcValue(NULL));
            MemOps.push_back(Store);
            // Float varargs are always shadowed in available integer registers
            if (GPR_remaining > 0) {
              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
                                           DAG.getSrcValue(NULL));
              MemOps.push_back(Load.getValue(1));
              args_to_use.push_back(Load);
              --GPR_remaining;
            }
            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
              SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
              PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
                                           DAG.getSrcValue(NULL));
              MemOps.push_back(Load.getValue(1));
              args_to_use.push_back(Load);
              --GPR_remaining;
            }
          } else {
            // If we have any FPRs remaining, we may also have GPRs remaining.
            // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
            // GPRs.
            if (GPR_remaining > 0) {
              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
              --GPR_remaining;
            }
            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
              --GPR_remaining;
            }
          }
        } else {
          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                       Args[i].first, PtrOff,
                                       DAG.getSrcValue(NULL)));
        }
        ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
        break;
      }
    }
    if (!MemOps.empty())
      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
  }
  
  std::vector<MVT::ValueType> RetVals;
  MVT::ValueType RetTyVT = getValueType(RetTy);
  MVT::ValueType ActualRetTyVT = RetTyVT;
  if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
    ActualRetTyVT = MVT::i32;   // Promote result to i32.
    
  if (RetTyVT == MVT::i64) {
    RetVals.push_back(MVT::i32);
    RetVals.push_back(MVT::i32);
  } else if (RetTyVT != MVT::isVoid) {
    RetVals.push_back(ActualRetTyVT);
  }
  RetVals.push_back(MVT::Other);
  
  // If the callee is a GlobalAddress node (quite common, every direct call is)
  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
  
  std::vector<SDOperand> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);
  Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
  SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
  Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
                      DAG.getConstant(NumBytes, getPointerTy()));
  SDOperand RetVal = TheCall;
  
  // If the result is a small value, add a note so that we keep track of the
  // information about whether it is sign or zero extended.
  if (RetTyVT != ActualRetTyVT) {
    RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
                         MVT::i32, RetVal, DAG.getValueType(RetTyVT));
    RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
  } else if (RetTyVT == MVT::i64) {
    RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
  }
  
  return std::make_pair(RetVal, Chain);
}

MachineBasicBlock *
PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
                                           MachineBasicBlock *BB) {
  assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
          MI->getOpcode() == PPC::SELECT_CC_F4 ||
          MI->getOpcode() == PPC::SELECT_CC_F8 ||
          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
         "Unexpected instr type to insert");
  
  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
  // control-flow pattern.  The incoming instruction knows the destination vreg
  // to set, the condition code register to branch on, the true/false values to
  // select between, and a branch opcode to use.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  ilist<MachineBasicBlock>::iterator It = BB;
  ++It;
  
  //  thisMBB:
  //  ...
  //   TrueVal = ...
  //   cmpTY ccX, r1, r2
  //   bCC copy1MBB
  //   fallthrough --> copy0MBB
  MachineBasicBlock *thisMBB = BB;
  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
  BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
  MachineFunction *F = BB->getParent();
  F->getBasicBlockList().insert(It, copy0MBB);
  F->getBasicBlockList().insert(It, sinkMBB);
  // Update machine-CFG edges by first adding all successors of the current
  // block to the new block which will contain the Phi node for the select.
  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), 
      e = BB->succ_end(); i != e; ++i)
    sinkMBB->addSuccessor(*i);
  // Next, remove all successors of the current block, and add the true
  // and fallthrough blocks as its successors.
  while(!BB->succ_empty())
    BB->removeSuccessor(BB->succ_begin());
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);
  
  //  copy0MBB:
  //   %FalseValue = ...
  //   # fallthrough to sinkMBB
  BB = copy0MBB;
  
  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);
  
  //  sinkMBB:
  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
  //  ...
  BB = sinkMBB;
  BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);

  delete MI;   // The pseudo instruction is gone now.
  return BB;
}

SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N, 
                                               DAGCombinerInfo &DCI) const {
  TargetMachine &TM = getTargetMachine();
  SelectionDAG &DAG = DCI.DAG;
  switch (N->getOpcode()) {
  default: break;
  case ISD::SINT_TO_FP:
    if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
        // We allow the src/dst to be either f32/f64, but the intermediate
        // type must be i64.
        if (N->getOperand(0).getValueType() == MVT::i64) {
          SDOperand Val = N->getOperand(0).getOperand(0);
          if (Val.getValueType() == MVT::f32) {
            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
            DCI.AddToWorklist(Val.Val);
          }
            
          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
          DCI.AddToWorklist(Val.Val);
          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
          DCI.AddToWorklist(Val.Val);
          if (N->getValueType(0) == MVT::f32) {
            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
            DCI.AddToWorklist(Val.Val);
          }
          return Val;
        } else if (N->getOperand(0).getValueType() == MVT::i32) {
          // If the intermediate type is i32, we can avoid the load/store here
          // too.
        }
      }
    }
    break;
  case ISD::STORE:
    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
        N->getOperand(1).getValueType() == MVT::i32) {
      SDOperand Val = N->getOperand(1).getOperand(0);
      if (Val.getValueType() == MVT::f32) {
        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
        DCI.AddToWorklist(Val.Val);
      }
      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
      DCI.AddToWorklist(Val.Val);

      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
                        N->getOperand(2), N->getOperand(3));
      DCI.AddToWorklist(Val.Val);
      return Val;
    }
    break;
  case PPCISD::VCMP: {
    // If a VCMPo node already exists with exactly the same operands as this
    // node, use its result instead of this node (VCMPo computes both a CR6 and
    // a normal output).
    //
    if (!N->getOperand(0).hasOneUse() &&
        !N->getOperand(1).hasOneUse() &&
        !N->getOperand(2).hasOneUse()) {
      
      // Scan all of the users of the LHS, looking for VCMPo's that match.
      SDNode *VCMPoNode = 0;
      
      SDNode *LHSN = N->getOperand(0).Val;
      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
           UI != E; ++UI)
        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
            (*UI)->getOperand(1) == N->getOperand(1) &&
            (*UI)->getOperand(2) == N->getOperand(2) &&
            (*UI)->getOperand(0) == N->getOperand(0)) {
          VCMPoNode = *UI;
          break;
        }
      
      // If there are non-zero uses of the flag value, use the VCMPo node!
      if (VCMPoNode && !VCMPoNode->hasNUsesOfValue(0, 1))
        return SDOperand(VCMPoNode, 0);
    }
    break;
  }
  }
  
  return SDOperand();
}

void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
                                                       uint64_t Mask,
                                                       uint64_t &KnownZero, 
                                                       uint64_t &KnownOne,
                                                       unsigned Depth) const {
  KnownZero = 0;
  KnownOne = 0;
  switch (Op.getOpcode()) {
  default: break;
  case ISD::INTRINSIC_WO_CHAIN: {
    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
    default: break;
    case Intrinsic::ppc_altivec_vcmpbfp_p:
    case Intrinsic::ppc_altivec_vcmpeqfp_p:
    case Intrinsic::ppc_altivec_vcmpequb_p:
    case Intrinsic::ppc_altivec_vcmpequh_p:
    case Intrinsic::ppc_altivec_vcmpequw_p:
    case Intrinsic::ppc_altivec_vcmpgefp_p:
    case Intrinsic::ppc_altivec_vcmpgtfp_p:
    case Intrinsic::ppc_altivec_vcmpgtsb_p:
    case Intrinsic::ppc_altivec_vcmpgtsh_p:
    case Intrinsic::ppc_altivec_vcmpgtsw_p:
    case Intrinsic::ppc_altivec_vcmpgtub_p:
    case Intrinsic::ppc_altivec_vcmpgtuh_p:
    case Intrinsic::ppc_altivec_vcmpgtuw_p:
      KnownZero = ~1U;  // All bits but the low one are known to be zero.
      break;
    }        
  }
  }
}


/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
PPCTargetLowering::ConstraintType 
PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
  switch (ConstraintLetter) {
  default: break;
  case 'b':
  case 'r':
  case 'f':
  case 'v':
  case 'y':
    return C_RegisterClass;
  }  
  return TargetLowering::getConstraintType(ConstraintLetter);
}


std::vector<unsigned> PPCTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
                                  MVT::ValueType VT) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {      // GCC RS6000 Constraint Letters
    default: break;  // Unknown constriant letter
    case 'b': 
      return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, 
                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15, 
                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19, 
                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23, 
                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27, 
                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31, 
                                   0);
    case 'r': 
      return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, 
                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15, 
                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19, 
                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23, 
                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27, 
                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31, 
                                   0);
    case 'f': 
      return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
                                   PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
                                   PPC::F8 , PPC::F9 , PPC::F10, PPC::F11, 
                                   PPC::F12, PPC::F13, PPC::F14, PPC::F15, 
                                   PPC::F16, PPC::F17, PPC::F18, PPC::F19, 
                                   PPC::F20, PPC::F21, PPC::F22, PPC::F23, 
                                   PPC::F24, PPC::F25, PPC::F26, PPC::F27, 
                                   PPC::F28, PPC::F29, PPC::F30, PPC::F31, 
                                   0);
    case 'v': 
      return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
                                   PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
                                   PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, 
                                   PPC::V12, PPC::V13, PPC::V14, PPC::V15, 
                                   PPC::V16, PPC::V17, PPC::V18, PPC::V19, 
                                   PPC::V20, PPC::V21, PPC::V22, PPC::V23, 
                                   PPC::V24, PPC::V25, PPC::V26, PPC::V27, 
                                   PPC::V28, PPC::V29, PPC::V30, PPC::V31, 
                                   0);
    case 'y': 
      return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
                                   PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
                                   0);
    }
  }
  
  return std::vector<unsigned>();
}

// isOperandValidForConstraint
bool PPCTargetLowering::
isOperandValidForConstraint(SDOperand Op, char Letter) {
  switch (Letter) {
  default: break;
  case 'I':
  case 'J':
  case 'K':
  case 'L':
  case 'M':
  case 'N':
  case 'O':
  case 'P': {
    if (!isa<ConstantSDNode>(Op)) return false;  // Must be an immediate.
    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
    switch (Letter) {
    default: assert(0 && "Unknown constraint letter!");
    case 'I':  // "I" is a signed 16-bit constant.
      return (short)Value == (int)Value;
    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
      return (short)Value == 0;
    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
      return (Value >> 16) == 0;
    case 'M':  // "M" is a constant that is greater than 31.
      return Value > 31;
    case 'N':  // "N" is a positive constant that is an exact power of two.
      return (int)Value > 0 && isPowerOf2_32(Value);
    case 'O':  // "O" is the constant zero. 
      return Value == 0;
    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
      return (short)-Value == (int)-Value;
    }
    break;
  }
  }
  
  // Handle standard constraint letters.
  return TargetLowering::isOperandValidForConstraint(Op, Letter);
}

/// isLegalAddressImmediate - Return true if the integer value can be used
/// as the offset of the target addressing mode.
bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
  // PPC allows a sign-extended 16-bit immediate field.
  return (V > -(1 << 16) && V < (1 << 16)-1);
}