aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/PowerPC/PPCISelLowering.h
blob: 2e458f9f570d6fd31809173186eb59f2ce9a6a0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that PPC uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H

#include "llvm/Target/TargetLowering.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "PPC.h"
#include "PPCSubtarget.h"

namespace llvm {
  namespace PPCISD {
    enum NodeType {
      // Start the numbering where the builtin ops and target ops leave off.
      FIRST_NUMBER = ISD::BUILTIN_OP_END+PPC::INSTRUCTION_LIST_END,

      /// FSEL - Traditional three-operand fsel node.
      ///
      FSEL,
      
      /// FCFID - The FCFID instruction, taking an f64 operand and producing
      /// and f64 value containing the FP representation of the integer that
      /// was temporarily in the f64 operand.
      FCFID,
      
      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 
      /// operand, producing an f64 value containing the integer representation
      /// of that FP value.
      FCTIDZ, FCTIWZ,
      
      /// STFIWX - The STFIWX instruction.  The first operand is an input token
      /// chain, then an f64 value to store, then an address to store it to,
      /// then a SRCVALUE for the address.
      STFIWX,
      
      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
      // three v4f32 operands and producing a v4f32 result.
      VMADDFP, VNMSUBFP,
      
      /// VPERM - The PPC VPERM Instruction.
      ///
      VPERM,
      
      /// Hi/Lo - These represent the high and low 16-bit parts of a global
      /// address respectively.  These nodes have two operands, the first of
      /// which must be a TargetGlobalAddress, and the second of which must be a
      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
      /// though these are usually folded into other nodes.
      Hi, Lo,
      
      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
      /// compute an allocation on the stack.
      DYNALLOC,
      
      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
      /// at function entry, used for PIC code.
      GlobalBaseReg,
      
      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
      /// shift amounts.  These nodes are generated by the multi-precision shift
      /// code.
      SRL, SRA, SHL,
      
      /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
      /// registers.
      EXTSW_32,

      /// STD_32 - This is the STD instruction for use with "32-bit" registers.
      STD_32,
      
      /// CALL - A direct function call.
      CALL_Macho, CALL_ELF,
      
      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
      /// MTCTR instruction.
      MTCTR,
      
      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
      /// BCTRL instruction.
      BCTRL_Macho, BCTRL_ELF,
      
      /// Return with a flag operand, matched by 'blr'
      RET_FLAG,
      
      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCR/MFOCRF instructions.
      /// This copies the bits corresponding to the specified CRREG into the
      /// resultant GPR.  Bits corresponding to other CR regs are undefined.
      MFCR,

      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
      /// instructions.  For lack of better number, we use the opcode number
      /// encoding for the OPC field to identify the compare.  For example, 838
      /// is VCMPGTSH.
      VCMP,
      
      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
      /// altivec VCMP*o instructions.  For lack of better number, we use the 
      /// opcode number encoding for the OPC field to identify the compare.  For
      /// example, 838 is VCMPGTSH.
      VCMPo,
      
      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
      /// condition register to branch on, OPC is the branch opcode to use (e.g.
      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
      /// an optional input flag argument.
      COND_BRANCH,
      
      /// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a 
      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
      /// i32.
      STBRX, 
      
      /// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a 
      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
      /// or i32.
      LBRX,

      // The following 5 instructions are used only as part of the
      // long double-to-int conversion sequence.

      /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
      /// register.
      MFFS,

      /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
      MTFSB0,

      /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
      MTFSB1,

      /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
      /// rounding towards zero.  It has flags added so it won't move past the 
      /// FPSCR-setting instructions.
      FADDRTZ,

      /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
      MTFSF,

      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
      /// reserve indexed. This is used to implement atomic operations.
      LARX,

      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
      /// indexed. This is used to implement atomic operations.
      STCX,

      /// TAILCALL - Indicates a tail call should be taken.
      TAILCALL,
      /// TC_RETURN - A tail call return.
      ///   operand #0 chain
      ///   operand #1 callee (register or absolute)
      ///   operand #2 stack adjustment
      ///   operand #3 optional in flag
      TC_RETURN
    };
  }

  /// Define some predicates that are used for node matching.
  namespace PPC {
    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    /// VPKUHUM instruction.
    bool isVPKUHUMShuffleMask(SDNode *N, bool isUnary);
    
    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    /// VPKUWUM instruction.
    bool isVPKUWUMShuffleMask(SDNode *N, bool isUnary);

    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    bool isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary);

    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    bool isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary);
    
    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    /// amount, otherwise return -1.
    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
    
    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a splat of a single element that is suitable for input to
    /// VSPLTB/VSPLTH/VSPLTW.
    bool isSplatShuffleMask(SDNode *N, unsigned EltSize);
    
    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
    /// are -0.0.
    bool isAllNegativeZeroVector(SDNode *N);

    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
    
    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    /// formed by using a vspltis[bhw] instruction of the specified element
    /// size, return the constant being splatted.  The ByteSize field indicates
    /// the number of bytes of each element [124] -> [bhw].
    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
  }
  
  class PPCTargetLowering : public TargetLowering {
    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
    int VarArgsStackOffset;           // StackOffset for start of stack
                                      // arguments.
    unsigned VarArgsNumGPR;           // Index of the first unused integer
                                      // register for parameter passing.
    unsigned VarArgsNumFPR;           // Index of the first unused double
                                      // register for parameter passing.
    int ReturnAddrIndex;              // FrameIndex for return slot.
    const PPCSubtarget &PPCSubTarget;
  public:
    explicit PPCTargetLowering(PPCTargetMachine &TM);
    
    /// getTargetNodeName() - This method returns the name of a target specific
    /// DAG node.
    virtual const char *getTargetNodeName(unsigned Opcode) const;

    /// getSetCCResultType - Return the ISD::SETCC ValueType
    virtual MVT getSetCCResultType(const SDValue &) const;

    /// getPreIndexedAddressParts - returns true by value, base pointer and
    /// offset pointer and addressing mode by reference if the node's address
    /// can be legally represented as pre-indexed load / store address.
    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
                                           SDValue &Offset,
                                           ISD::MemIndexedMode &AM,
                                           SelectionDAG &DAG);
    
    /// SelectAddressRegReg - Given the specified addressed, check to see if it
    /// can be represented as an indexed [r+r] operation.  Returns false if it
    /// can be more efficiently represented with [r+imm].
    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
                             SelectionDAG &DAG);
    
    /// SelectAddressRegImm - Returns true if the address N can be represented
    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    /// is not better represented as reg+reg.
    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
                             SelectionDAG &DAG);
    
    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    /// represented as an indexed [r+r] operation.
    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
                                 SelectionDAG &DAG);

    /// SelectAddressRegImmShift - Returns true if the address N can be
    /// represented by a base register plus a signed 14-bit displacement
    /// [r+imm*4].  Suitable for use by STD and friends.
    bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
                                  SelectionDAG &DAG);

    
    /// LowerOperation - Provide custom lowering hooks for some operations.
    ///
    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);

    virtual SDNode *ReplaceNodeResults(SDNode *N, SelectionDAG &DAG);
    
    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    
    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
                                                const APInt &Mask,
                                                APInt &KnownZero, 
                                                APInt &KnownOne,
                                                const SelectionDAG &DAG,
                                                unsigned Depth = 0) const;

    virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
                                                        MachineBasicBlock *MBB);
    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI, 
                                        MachineBasicBlock *MBB, bool is64Bit,
                                        unsigned BinOpcode);
    
    ConstraintType getConstraintType(const std::string &Constraint) const;
    std::pair<unsigned, const TargetRegisterClass*> 
      getRegForInlineAsmConstraint(const std::string &Constraint,
                                   MVT VT) const;

    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area.  This is the actual
    /// alignment, not its logarithm.
    unsigned getByValTypeAlignment(const Type *Ty) const;

    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    /// vector.  If it is invalid, don't add anything to Ops.
    virtual void LowerAsmOperandForConstraint(SDValue Op,
                                              char ConstraintLetter,
                                              std::vector<SDValue> &Ops,
                                              SelectionDAG &DAG) const;
    
    /// isLegalAddressingMode - Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
    
    /// isLegalAddressImmediate - Return true if the integer value can be used
    /// as the offset of the target addressing mode for load / store of the
    /// given type.
    virtual bool isLegalAddressImmediate(int64_t V, const Type *Ty) const;

    /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
    /// the offset of the target addressing mode.
    virtual bool isLegalAddressImmediate(GlobalValue *GV) const;

     /// IsEligibleForTailCallOptimization - Check whether the call is eligible
    /// for tail call optimization. Target which want to do tail call
    /// optimization should implement this function.
    virtual bool IsEligibleForTailCallOptimization(SDValue Call,
                                                   SDValue Ret,
                                                   SelectionDAG &DAG) const;

  private:
    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;

    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
                                           int SPDiff,
                                           SDValue Chain,
                                           SDValue &LROpOut,
                                           SDValue &FPOpOut);

    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
                           int VarArgsFrameIndex, int VarArgsStackOffset,
                           unsigned VarArgsNumGPR, unsigned VarArgsNumFPR,
                           const PPCSubtarget &Subtarget);
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, int VarArgsFrameIndex,
                         int VarArgsStackOffset, unsigned VarArgsNumGPR,
                         unsigned VarArgsNumFPR, const PPCSubtarget &Subtarget);
    SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG,
                                    int &VarArgsFrameIndex, 
                                    int &VarArgsStackOffset,
                                    unsigned &VarArgsNumGPR,
                                    unsigned &VarArgsNumFPR,
                                    const PPCSubtarget &Subtarget);
    SDValue LowerCALL(SDValue Op, SelectionDAG &DAG,
                        const PPCSubtarget &Subtarget, TargetMachine &TM);
    SDValue LowerRET(SDValue Op, SelectionDAG &DAG, TargetMachine &TM);
    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
                                const PPCSubtarget &Subtarget);
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
                                      const PPCSubtarget &Subtarget);
    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG);
    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFP_ROUND_INREG(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG);
    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG);
    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG);
    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG);
  };
}

#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H