aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
blob: 073bbb0c5567801a98c2ef537feeeac056470932 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "PPCTargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;

#define DEBUG_TYPE "ppctti"

static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);

//===----------------------------------------------------------------------===//
//
// PPC cost model.
//
//===----------------------------------------------------------------------===//

TargetTransformInfo::PopcntSupportKind
PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  if (ST->hasPOPCNTD() && TyWidth <= 64)
    return TTI::PSK_FastHardware;
  return TTI::PSK_Software;
}

unsigned PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCost(Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  if (Imm == 0)
    return TTI::TCC_Free;

  if (Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Basic;

    if (isInt<32>(Imm.getSExtValue())) {
      // A constant that can be materialized using lis.
      if ((Imm.getZExtValue() & 0xFFFF) == 0)
        return TTI::TCC_Basic;

      return 2 * TTI::TCC_Basic;
    }
  }

  return 4 * TTI::TCC_Basic;
}

unsigned PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
                                   const APInt &Imm, Type *Ty) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCost(IID, Idx, Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
    if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return PPCTTIImpl::getIntImmCost(Imm, Ty);
}

unsigned PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
                                   const APInt &Imm, Type *Ty) {
  if (DisablePPCConstHoist)
    return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  unsigned ImmIdx = ~0U;
  bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
       ZeroFree = false;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr. This prevents the
    // creation of new constants for every base constant that gets constant
    // folded with the offset.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::And:
    RunFree = true; // (for the rotate-and-mask instructions)
    // Fallthrough...
  case Instruction::Add:
  case Instruction::Or:
  case Instruction::Xor:
    ShiftedFree = true;
    // Fallthrough...
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    ImmIdx = 1;
    break;
  case Instruction::ICmp:
    UnsignedFree = true;
    ImmIdx = 1;
    // Fallthrough... (zero comparisons can use record-form instructions)
  case Instruction::Select:
    ZeroFree = true;
    break;
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Ret:
  case Instruction::Load:
  case Instruction::Store:
    break;
  }

  if (ZeroFree && Imm == 0)
    return TTI::TCC_Free;

  if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TTI::TCC_Free;

    if (RunFree) {
      if (Imm.getBitWidth() <= 32 &&
          (isShiftedMask_32(Imm.getZExtValue()) ||
           isShiftedMask_32(~Imm.getZExtValue())))
        return TTI::TCC_Free;

      if (ST->isPPC64() &&
          (isShiftedMask_64(Imm.getZExtValue()) ||
           isShiftedMask_64(~Imm.getZExtValue())))
        return TTI::TCC_Free;
    }

    if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
      return TTI::TCC_Free;

    if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
      return TTI::TCC_Free;
  }

  return PPCTTIImpl::getIntImmCost(Imm, Ty);
}

void PPCTTIImpl::getUnrollingPreferences(Loop *L,
                                         TTI::UnrollingPreferences &UP) {
  if (ST->getDarwinDirective() == PPC::DIR_A2) {
    // The A2 is in-order with a deep pipeline, and concatenation unrolling
    // helps expose latency-hiding opportunities to the instruction scheduler.
    UP.Partial = UP.Runtime = true;
  }

  BaseT::getUnrollingPreferences(L, UP);
}

unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
  if (Vector && !ST->hasAltivec() && !ST->hasQPX())
    return 0;
  return ST->hasVSX() ? 64 : 32;
}

unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) {
  if (Vector) {
    if (ST->hasQPX()) return 256;
    if (ST->hasAltivec()) return 128;
    return 0;
  }

  if (ST->isPPC64())
    return 64;
  return 32;

}

unsigned PPCTTIImpl::getMaxInterleaveFactor() {
  unsigned Directive = ST->getDarwinDirective();
  // The 440 has no SIMD support, but floating-point instructions
  // have a 5-cycle latency, so unroll by 5x for latency hiding.
  if (Directive == PPC::DIR_440)
    return 5;

  // The A2 has no SIMD support, but floating-point instructions
  // have a 6-cycle latency, so unroll by 6x for latency hiding.
  if (Directive == PPC::DIR_A2)
    return 6;

  // FIXME: For lack of any better information, do no harm...
  if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
    return 1;

  // For P7 and P8, floating-point instructions have a 6-cycle latency and
  // there are two execution units, so unroll by 12x for latency hiding.
  if (Directive == PPC::DIR_PWR7 ||
      Directive == PPC::DIR_PWR8)
    return 12;

  // For most things, modern systems have two execution units (and
  // out-of-order execution).
  return 2;
}

unsigned PPCTTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
    TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
    TTI::OperandValueProperties Opd2PropInfo) {
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");

  // Fallback to the default implementation.
  return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
                                       Opd1PropInfo, Opd2PropInfo);
}

unsigned PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
                                    Type *SubTp) {
  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}

unsigned PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");

  return BaseT::getCastInstrCost(Opcode, Dst, Src);
}

unsigned PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                        Type *CondTy) {
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
}

unsigned PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
                                        unsigned Index) {
  assert(Val->isVectorTy() && "This must be a vector type");

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
    // Double-precision scalars are already located in index #0.
    if (Index == 0)
      return 0;

    return BaseT::getVectorInstrCost(Opcode, Val, Index);
  } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
    // Floating point scalars are already located in index #0.
    if (Index == 0)
      return 0;

    return BaseT::getVectorInstrCost(Opcode, Val, Index);
  }

  // Estimated cost of a load-hit-store delay.  This was obtained
  // experimentally as a minimum needed to prevent unprofitable
  // vectorization for the paq8p benchmark.  It may need to be
  // raised further if other unprofitable cases remain.
  unsigned LHSPenalty = 2;
  if (ISD == ISD::INSERT_VECTOR_ELT)
    LHSPenalty += 7;

  // Vector element insert/extract with Altivec is very expensive,
  // because they require store and reload with the attendant
  // processor stall for load-hit-store.  Until VSX is available,
  // these need to be estimated as very costly.
  if (ISD == ISD::EXTRACT_VECTOR_ELT ||
      ISD == ISD::INSERT_VECTOR_ELT)
    return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);

  return BaseT::getVectorInstrCost(Opcode, Val, Index);
}

unsigned PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
                                     unsigned Alignment,
                                     unsigned AddressSpace) {
  // Legalize the type.
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
         "Invalid Opcode");

  unsigned Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);

  // VSX loads/stores support unaligned access.
  if (ST->hasVSX()) {
    if (LT.second == MVT::v2f64 || LT.second == MVT::v2i64)
      return Cost;
  }

  bool UnalignedAltivec =
    Src->isVectorTy() &&
    Src->getPrimitiveSizeInBits() >= LT.second.getSizeInBits() &&
    LT.second.getSizeInBits() == 128 &&
    Opcode == Instruction::Load;

  // PPC in general does not support unaligned loads and stores. They'll need
  // to be decomposed based on the alignment factor.
  unsigned SrcBytes = LT.second.getStoreSize();
  if (SrcBytes && Alignment && Alignment < SrcBytes && !UnalignedAltivec) {
    Cost += LT.first*(SrcBytes/Alignment-1);

    // For a vector type, there is also scalarization overhead (only for
    // stores, loads are expanded using the vector-load + permutation sequence,
    // which is much less expensive).
    if (Src->isVectorTy() && Opcode == Instruction::Store)
      for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
        Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
  }

  return Cost;
}