aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
blob: 007901b23e0c38dc5cf024b5737e1743e064f630 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
//===-- PPCTargetTransformInfo.cpp - PPC specific TTI pass ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// PPC target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//

#include "PPC.h"
#include "PPCTargetMachine.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;

#define DEBUG_TYPE "ppctti"

static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);

// Declare the pass initialization routine locally as target-specific passes
// don't have a target-wide initialization entry point, and so we rely on the
// pass constructor initialization.
namespace llvm {
void initializePPCTTIPass(PassRegistry &);
}

namespace {

class PPCTTI final : public ImmutablePass, public TargetTransformInfo {
  const PPCSubtarget *ST;
  const PPCTargetLowering *TLI;

public:
  PPCTTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) {
    llvm_unreachable("This pass cannot be directly constructed");
  }

  PPCTTI(const PPCTargetMachine *TM)
      : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
        TLI(TM->getTargetLowering()) {
    initializePPCTTIPass(*PassRegistry::getPassRegistry());
  }

  virtual void initializePass() override {
    pushTTIStack(this);
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
    TargetTransformInfo::getAnalysisUsage(AU);
  }

  /// Pass identification.
  static char ID;

  /// Provide necessary pointer adjustments for the two base classes.
  virtual void *getAdjustedAnalysisPointer(const void *ID) override {
    if (ID == &TargetTransformInfo::ID)
      return (TargetTransformInfo*)this;
    return this;
  }

  /// \name Scalar TTI Implementations
  /// @{
  unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;

  unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
                         Type *Ty) const override;
  unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                         Type *Ty) const override;

  virtual PopcntSupportKind
  getPopcntSupport(unsigned TyWidth) const override;
  virtual void getUnrollingPreferences(
    Loop *L, UnrollingPreferences &UP) const override;

  /// @}

  /// \name Vector TTI Implementations
  /// @{

  virtual unsigned getNumberOfRegisters(bool Vector) const override;
  virtual unsigned getRegisterBitWidth(bool Vector) const override;
  virtual unsigned getMaximumUnrollFactor() const override;
  virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
                                          OperandValueKind,
                                          OperandValueKind) const override;
  virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
                                  int Index, Type *SubTp) const override;
  virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
                                    Type *Src) const override;
  virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                      Type *CondTy) const override;
  virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
                                      unsigned Index) const override;
  virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
                                   unsigned Alignment,
                                   unsigned AddressSpace) const override;

  /// @}
};

} // end anonymous namespace

INITIALIZE_AG_PASS(PPCTTI, TargetTransformInfo, "ppctti",
                   "PPC Target Transform Info", true, true, false)
char PPCTTI::ID = 0;

ImmutablePass *
llvm::createPPCTargetTransformInfoPass(const PPCTargetMachine *TM) {
  return new PPCTTI(TM);
}


//===----------------------------------------------------------------------===//
//
// PPC cost model.
//
//===----------------------------------------------------------------------===//

PPCTTI::PopcntSupportKind PPCTTI::getPopcntSupport(unsigned TyWidth) const {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  if (ST->hasPOPCNTD() && TyWidth <= 64)
    return PSK_FastHardware;
  return PSK_Software;
}

unsigned PPCTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
  if (DisablePPCConstHoist)
    return TargetTransformInfo::getIntImmCost(Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  if (Imm == 0)
    return TCC_Free;

  if (Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TCC_Basic;

    if (isInt<32>(Imm.getSExtValue())) {
      // A constant that can be materialized using lis.
      if ((Imm.getZExtValue() & 0xFFFF) == 0)
        return TCC_Basic;

      return 2 * TCC_Basic;
    }
  }

  return 4 * TCC_Basic;
}

unsigned PPCTTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
                               const APInt &Imm, Type *Ty) const {
  if (DisablePPCConstHoist)
    return TargetTransformInfo::getIntImmCost(IID, Idx, Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  switch (IID) {
  default: return TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
    if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
      return TCC_Free;
    break;
  }
  return PPCTTI::getIntImmCost(Imm, Ty);
}

unsigned PPCTTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
                               Type *Ty) const {
  if (DisablePPCConstHoist)
    return TargetTransformInfo::getIntImmCost(Opcode, Idx, Imm, Ty);

  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  unsigned ImmIdx = ~0U;
  bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
       ZeroFree = false;
  switch (Opcode) {
  default: return TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr. This prevents the
    // creation of new constants for every base constant that gets constant
    // folded with the offset.
    if (Idx == 0)
      return 2 * TCC_Basic;
    return TCC_Free;
  case Instruction::And:
    RunFree = true; // (for the rotate-and-mask instructions)
    // Fallthrough...
  case Instruction::Add:
  case Instruction::Or:
  case Instruction::Xor:
    ShiftedFree = true;
    // Fallthrough...
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    ImmIdx = 1;
    break;
  case Instruction::ICmp:
    UnsignedFree = true;
    ImmIdx = 1;
    // Fallthrough... (zero comparisons can use record-form instructions)
  case Instruction::Select:
    ZeroFree = true;
    break;
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Ret:
  case Instruction::Load:
  case Instruction::Store:
    break;
  }

  if (ZeroFree && Imm == 0)
    return TCC_Free;

  if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
    if (isInt<16>(Imm.getSExtValue()))
      return TCC_Free;

    if (RunFree) {
      if (Imm.getBitWidth() <= 32 &&
          (isShiftedMask_32(Imm.getZExtValue()) ||
           isShiftedMask_32(~Imm.getZExtValue())))
        return TCC_Free;


      if (ST->isPPC64() &&
          (isShiftedMask_64(Imm.getZExtValue()) ||
           isShiftedMask_64(~Imm.getZExtValue())))
        return TCC_Free;
    }

    if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
      return TCC_Free;

    if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
      return TCC_Free;
  }

  return PPCTTI::getIntImmCost(Imm, Ty);
}

void PPCTTI::getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const {
  if (ST->getDarwinDirective() == PPC::DIR_A2) {
    // The A2 is in-order with a deep pipeline, and concatenation unrolling
    // helps expose latency-hiding opportunities to the instruction scheduler.
    UP.Partial = UP.Runtime = true;
  }
}

unsigned PPCTTI::getNumberOfRegisters(bool Vector) const {
  if (Vector && !ST->hasAltivec())
    return 0;
  return ST->hasVSX() ? 64 : 32;
}

unsigned PPCTTI::getRegisterBitWidth(bool Vector) const {
  if (Vector) {
    if (ST->hasAltivec()) return 128;
    return 0;
  }

  if (ST->isPPC64())
    return 64;
  return 32;

}

unsigned PPCTTI::getMaximumUnrollFactor() const {
  unsigned Directive = ST->getDarwinDirective();
  // The 440 has no SIMD support, but floating-point instructions
  // have a 5-cycle latency, so unroll by 5x for latency hiding.
  if (Directive == PPC::DIR_440)
    return 5;

  // The A2 has no SIMD support, but floating-point instructions
  // have a 6-cycle latency, so unroll by 6x for latency hiding.
  if (Directive == PPC::DIR_A2)
    return 6;

  // FIXME: For lack of any better information, do no harm...
  if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
    return 1;

  // For most things, modern systems have two execution units (and
  // out-of-order execution).
  return 2;
}

unsigned PPCTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
                                        OperandValueKind Op1Info,
                                        OperandValueKind Op2Info) const {
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");

  // Fallback to the default implementation.
  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
                                                     Op2Info);
}

unsigned PPCTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
                                Type *SubTp) const {
  return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
}

unsigned PPCTTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");

  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
}

unsigned PPCTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                    Type *CondTy) const {
  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
}

unsigned PPCTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
                                    unsigned Index) const {
  assert(Val->isVectorTy() && "This must be a vector type");

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
    // Double-precision scalars are already located in index #0.
    if (Index == 0)
      return 0;

    return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
  }

  // Estimated cost of a load-hit-store delay.  This was obtained
  // experimentally as a minimum needed to prevent unprofitable
  // vectorization for the paq8p benchmark.  It may need to be
  // raised further if other unprofitable cases remain.
  unsigned LHSPenalty = 2;
  if (ISD == ISD::INSERT_VECTOR_ELT)
    LHSPenalty += 7;

  // Vector element insert/extract with Altivec is very expensive,
  // because they require store and reload with the attendant
  // processor stall for load-hit-store.  Until VSX is available,
  // these need to be estimated as very costly.
  if (ISD == ISD::EXTRACT_VECTOR_ELT ||
      ISD == ISD::INSERT_VECTOR_ELT)
    return LHSPenalty +
      TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);

  return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
}

unsigned PPCTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                                 unsigned AddressSpace) const {
  // Legalize the type.
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
         "Invalid Opcode");

  unsigned Cost =
    TargetTransformInfo::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);

  // VSX loads/stores support unaligned access.
  if (ST->hasVSX()) {
    if (LT.second == MVT::v2f64 || LT.second == MVT::v2i64)
      return Cost;
  }

  bool UnalignedAltivec =
    Src->isVectorTy() &&
    Src->getPrimitiveSizeInBits() >= LT.second.getSizeInBits() &&
    LT.second.getSizeInBits() == 128 &&
    Opcode == Instruction::Load;

  // PPC in general does not support unaligned loads and stores. They'll need
  // to be decomposed based on the alignment factor.
  unsigned SrcBytes = LT.second.getStoreSize();
  if (SrcBytes && Alignment && Alignment < SrcBytes && !UnalignedAltivec) {
    Cost += LT.first*(SrcBytes/Alignment-1);

    // For a vector type, there is also scalarization overhead (only for
    // stores, loads are expanded using the vector-load + permutation sequence,
    // which is much less expensive).
    if (Src->isVectorTy() && Opcode == Instruction::Store)
      for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
        Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
  }

  return Cost;
}