aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/R600/AMDGPUISelDAGToDAG.cpp
blob: 4f78f2938f9b36dc38fd5ef8c8d669c430909b76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
//===-- AMDILISelDAGToDAG.cpp - A dag to dag inst selector for AMDIL ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//==-----------------------------------------------------------------------===//
//
/// \file
/// \brief Defines an instruction selector for the AMDGPU target.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUInstrInfo.h"
#include "AMDGPUISelLowering.h" // For AMDGPUISD
#include "AMDGPURegisterInfo.h"
#include "R600InstrInfo.h"
#include "SIISelLowering.h"
#include "llvm/ADT/ValueMap.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/Compiler.h"
#include <list>
#include <queue>

using namespace llvm;

//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//

namespace {
/// AMDGPU specific code to select AMDGPU machine instructions for
/// SelectionDAG operations.
class AMDGPUDAGToDAGISel : public SelectionDAGISel {
  // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
  // make the right decision when generating code for different targets.
  const AMDGPUSubtarget &Subtarget;
public:
  AMDGPUDAGToDAGISel(TargetMachine &TM);
  virtual ~AMDGPUDAGToDAGISel();

  SDNode *Select(SDNode *N);
  virtual const char *getPassName() const;
  virtual void PostprocessISelDAG();

private:
  inline SDValue getSmallIPtrImm(unsigned Imm);
  bool FoldOperand(SDValue &Src, SDValue &Sel, SDValue &Neg, SDValue &Abs,
                   const R600InstrInfo *TII);
  bool FoldOperands(unsigned, const R600InstrInfo *, std::vector<SDValue> &);
  bool FoldDotOperands(unsigned, const R600InstrInfo *, std::vector<SDValue> &);

  // Complex pattern selectors
  bool SelectADDRParam(SDValue Addr, SDValue& R1, SDValue& R2);
  bool SelectADDR(SDValue N, SDValue &R1, SDValue &R2);
  bool SelectADDR64(SDValue N, SDValue &R1, SDValue &R2);
  SDValue SimplifyI24(SDValue &Op);
  bool SelectI24(SDValue Addr, SDValue &Op);
  bool SelectU24(SDValue Addr, SDValue &Op);

  static bool checkType(const Value *ptr, unsigned int addrspace);

  static bool isGlobalStore(const StoreSDNode *N);
  static bool isPrivateStore(const StoreSDNode *N);
  static bool isLocalStore(const StoreSDNode *N);
  static bool isRegionStore(const StoreSDNode *N);

  bool isCPLoad(const LoadSDNode *N) const;
  bool isConstantLoad(const LoadSDNode *N, int cbID) const;
  bool isGlobalLoad(const LoadSDNode *N) const;
  bool isParamLoad(const LoadSDNode *N) const;
  bool isPrivateLoad(const LoadSDNode *N) const;
  bool isLocalLoad(const LoadSDNode *N) const;
  bool isRegionLoad(const LoadSDNode *N) const;

  const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
  bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
  bool SelectGlobalValueVariableOffset(SDValue Addr,
      SDValue &BaseReg, SDValue& Offset);
  bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
  bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);

  // Include the pieces autogenerated from the target description.
#include "AMDGPUGenDAGISel.inc"
};
}  // end anonymous namespace

/// \brief This pass converts a legalized DAG into a AMDGPU-specific
// DAG, ready for instruction scheduling.
FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM
                                       ) {
  return new AMDGPUDAGToDAGISel(TM);
}

AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM)
  : SelectionDAGISel(TM), Subtarget(TM.getSubtarget<AMDGPUSubtarget>()) {
}

AMDGPUDAGToDAGISel::~AMDGPUDAGToDAGISel() {
}

/// \brief Determine the register class for \p OpNo
/// \returns The register class of the virtual register that will be used for
/// the given operand number \OpNo or NULL if the register class cannot be
/// determined.
const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
                                                          unsigned OpNo) const {
  if (!N->isMachineOpcode()) {
    return NULL;
  }
  switch (N->getMachineOpcode()) {
  default: {
    const MCInstrDesc &Desc = TM.getInstrInfo()->get(N->getMachineOpcode());
    unsigned OpIdx = Desc.getNumDefs() + OpNo;
    if (OpIdx >= Desc.getNumOperands())
      return NULL;
    int RegClass = Desc.OpInfo[OpIdx].RegClass;
    if (RegClass == -1) {
      return NULL;
    }
    return TM.getRegisterInfo()->getRegClass(RegClass);
  }
  case AMDGPU::REG_SEQUENCE: {
    const TargetRegisterClass *SuperRC = TM.getRegisterInfo()->getRegClass(
                      cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
    unsigned SubRegIdx =
            dyn_cast<ConstantSDNode>(N->getOperand(OpNo + 1))->getZExtValue();
    return TM.getRegisterInfo()->getSubClassWithSubReg(SuperRC, SubRegIdx);
  }
  }
}

SDValue AMDGPUDAGToDAGISel::getSmallIPtrImm(unsigned int Imm) {
  return CurDAG->getTargetConstant(Imm, MVT::i32);
}

bool AMDGPUDAGToDAGISel::SelectADDRParam(
    SDValue Addr, SDValue& R1, SDValue& R2) {

  if (Addr.getOpcode() == ISD::FrameIndex) {
    if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
      R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
      R2 = CurDAG->getTargetConstant(0, MVT::i32);
    } else {
      R1 = Addr;
      R2 = CurDAG->getTargetConstant(0, MVT::i32);
    }
  } else if (Addr.getOpcode() == ISD::ADD) {
    R1 = Addr.getOperand(0);
    R2 = Addr.getOperand(1);
  } else {
    R1 = Addr;
    R2 = CurDAG->getTargetConstant(0, MVT::i32);
  }
  return true;
}

bool AMDGPUDAGToDAGISel::SelectADDR(SDValue Addr, SDValue& R1, SDValue& R2) {
  if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
      Addr.getOpcode() == ISD::TargetGlobalAddress) {
    return false;
  }
  return SelectADDRParam(Addr, R1, R2);
}


bool AMDGPUDAGToDAGISel::SelectADDR64(SDValue Addr, SDValue& R1, SDValue& R2) {
  if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
      Addr.getOpcode() == ISD::TargetGlobalAddress) {
    return false;
  }

  if (Addr.getOpcode() == ISD::FrameIndex) {
    if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
      R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i64);
      R2 = CurDAG->getTargetConstant(0, MVT::i64);
    } else {
      R1 = Addr;
      R2 = CurDAG->getTargetConstant(0, MVT::i64);
    }
  } else if (Addr.getOpcode() == ISD::ADD) {
    R1 = Addr.getOperand(0);
    R2 = Addr.getOperand(1);
  } else {
    R1 = Addr;
    R2 = CurDAG->getTargetConstant(0, MVT::i64);
  }
  return true;
}

SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) {
  const R600InstrInfo *TII =
                      static_cast<const R600InstrInfo*>(TM.getInstrInfo());
  unsigned int Opc = N->getOpcode();
  if (N->isMachineOpcode()) {
    return NULL;   // Already selected.
  }
  switch (Opc) {
  default: break;
  case AMDGPUISD::CONST_ADDRESS: {
    for (SDNode::use_iterator I = N->use_begin(), Next = llvm::next(I);
                              I != SDNode::use_end(); I = Next) {
      Next = llvm::next(I);
      if (!I->isMachineOpcode()) {
        continue;
      }
      unsigned Opcode = I->getMachineOpcode();
      bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
      int SrcIdx = I.getOperandNo();
      int SelIdx;
      // Unlike MachineInstrs, SDNodes do not have results in their operand
      // list, so we need to increment the SrcIdx, since
      // R600InstrInfo::getOperandIdx is based on the MachineInstr indices.
      if (HasDst) {
        SrcIdx++;
      }

      SelIdx = TII->getSelIdx(I->getMachineOpcode(), SrcIdx);
      if (SelIdx < 0) {
        continue;
      }

      SDValue CstOffset;
      if (N->getValueType(0).isVector() ||
          !SelectGlobalValueConstantOffset(N->getOperand(0), CstOffset))
        continue;

      // Gather constants values
      int SrcIndices[] = {
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src2),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
        TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
      };
      std::vector<unsigned> Consts;
      for (unsigned i = 0; i < sizeof(SrcIndices) / sizeof(int); i++) {
        int OtherSrcIdx = SrcIndices[i];
        int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
        if (OtherSrcIdx < 0 || OtherSelIdx < 0) {
          continue;
        }
        if (HasDst) {
          OtherSrcIdx--;
          OtherSelIdx--;
        }
        if (RegisterSDNode *Reg =
                         dyn_cast<RegisterSDNode>(I->getOperand(OtherSrcIdx))) {
          if (Reg->getReg() == AMDGPU::ALU_CONST) {
            ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(I->getOperand(OtherSelIdx));
            Consts.push_back(Cst->getZExtValue());
          }
        }
      }

      ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(CstOffset);
      Consts.push_back(Cst->getZExtValue());
      if (!TII->fitsConstReadLimitations(Consts))
        continue;

      // Convert back to SDNode indices
      if (HasDst) {
        SrcIdx--;
        SelIdx--;
      }
      std::vector<SDValue> Ops;
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
        if (i == SrcIdx) {
          Ops.push_back(CurDAG->getRegister(AMDGPU::ALU_CONST, MVT::f32));
        } else if (i == SelIdx) {
          Ops.push_back(CstOffset);
        } else {
          Ops.push_back(I->getOperand(i));
        }
      }
      CurDAG->UpdateNodeOperands(*I, Ops.data(), Ops.size());
    }
    break;
  }
  case ISD::BUILD_VECTOR: {
    unsigned RegClassID;
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    const AMDGPURegisterInfo *TRI =
                   static_cast<const AMDGPURegisterInfo*>(TM.getRegisterInfo());
    const SIRegisterInfo *SIRI =
                   static_cast<const SIRegisterInfo*>(TM.getRegisterInfo());
    EVT VT = N->getValueType(0);
    unsigned NumVectorElts = VT.getVectorNumElements();
    assert(VT.getVectorElementType().bitsEq(MVT::i32));
    if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
      bool UseVReg = true;
      for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
                                                    U != E; ++U) {
        if (!U->isMachineOpcode()) {
          continue;
        }
        const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
        if (!RC) {
          continue;
        }
        if (SIRI->isSGPRClass(RC)) {
          UseVReg = false;
        }
      }
      switch(NumVectorElts) {
      case 1: RegClassID = UseVReg ? AMDGPU::VReg_32RegClassID :
                                     AMDGPU::SReg_32RegClassID;
        break;
      case 2: RegClassID = UseVReg ? AMDGPU::VReg_64RegClassID :
                                     AMDGPU::SReg_64RegClassID;
        break;
      case 4: RegClassID = UseVReg ? AMDGPU::VReg_128RegClassID :
                                     AMDGPU::SReg_128RegClassID;
        break;
      case 8: RegClassID = UseVReg ? AMDGPU::VReg_256RegClassID :
                                     AMDGPU::SReg_256RegClassID;
        break;
      case 16: RegClassID = UseVReg ? AMDGPU::VReg_512RegClassID :
                                      AMDGPU::SReg_512RegClassID;
        break;
      }
    } else {
      // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
      // that adds a 128 bits reg copy when going through TwoAddressInstructions
      // pass. We want to avoid 128 bits copies as much as possible because they
      // can't be bundled by our scheduler.
      switch(NumVectorElts) {
      case 2: RegClassID = AMDGPU::R600_Reg64RegClassID; break;
      case 4: RegClassID = AMDGPU::R600_Reg128RegClassID; break;
      default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
      }
    }

    SDValue RegClass = CurDAG->getTargetConstant(RegClassID, MVT::i32);

    if (NumVectorElts == 1) {
      return CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS,
                                  VT.getVectorElementType(),
                                  N->getOperand(0), RegClass);
    }

    assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not "
                                  "supported yet");
    // 16 = Max Num Vector Elements
    // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
    // 1 = Vector Register Class
    SDValue RegSeqArgs[16 * 2 + 1];

    RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, MVT::i32);
    bool IsRegSeq = true;
    for (unsigned i = 0; i < N->getNumOperands(); i++) {
      // XXX: Why is this here?
      if (dyn_cast<RegisterSDNode>(N->getOperand(i))) {
        IsRegSeq = false;
        break;
      }
      RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
      RegSeqArgs[1 + (2 * i) + 1] =
              CurDAG->getTargetConstant(TRI->getSubRegFromChannel(i), MVT::i32);
    }
    if (!IsRegSeq)
      break;
    return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(),
        RegSeqArgs, 2 * N->getNumOperands() + 1);
  }
  case ISD::BUILD_PAIR: {
    SDValue RC, SubReg0, SubReg1;
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
      break;
    }
    if (N->getValueType(0) == MVT::i128) {
      RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32);
      SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32);
      SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32);
    } else if (N->getValueType(0) == MVT::i64) {
      RC = CurDAG->getTargetConstant(AMDGPU::VSrc_64RegClassID, MVT::i32);
      SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32);
      SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32);
    } else {
      llvm_unreachable("Unhandled value type for BUILD_PAIR");
    }
    const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
                            N->getOperand(1), SubReg1 };
    return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
                                  SDLoc(N), N->getValueType(0), Ops);
  }

  case ISD::ConstantFP:
  case ISD::Constant: {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    // XXX: Custom immediate lowering not implemented yet.  Instead we use
    // pseudo instructions defined in SIInstructions.td
    if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
      break;
    }

    uint64_t ImmValue = 0;
    unsigned ImmReg = AMDGPU::ALU_LITERAL_X;

    if (N->getOpcode() == ISD::ConstantFP) {
      // XXX: 64-bit Immediates not supported yet
      assert(N->getValueType(0) != MVT::f64);

      ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N);
      APFloat Value = C->getValueAPF();
      float FloatValue = Value.convertToFloat();
      if (FloatValue == 0.0) {
        ImmReg = AMDGPU::ZERO;
      } else if (FloatValue == 0.5) {
        ImmReg = AMDGPU::HALF;
      } else if (FloatValue == 1.0) {
        ImmReg = AMDGPU::ONE;
      } else {
        ImmValue = Value.bitcastToAPInt().getZExtValue();
      }
    } else {
      // XXX: 64-bit Immediates not supported yet
      assert(N->getValueType(0) != MVT::i64);

      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
      if (C->getZExtValue() == 0) {
        ImmReg = AMDGPU::ZERO;
      } else if (C->getZExtValue() == 1) {
        ImmReg = AMDGPU::ONE_INT;
      } else {
        ImmValue = C->getZExtValue();
      }
    }

    for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use);
                              Use != SDNode::use_end(); Use = Next) {
      Next = llvm::next(Use);
      std::vector<SDValue> Ops;
      for (unsigned i = 0; i < Use->getNumOperands(); ++i) {
        Ops.push_back(Use->getOperand(i));
      }

      if (!Use->isMachineOpcode()) {
          if (ImmReg == AMDGPU::ALU_LITERAL_X) {
            // We can only use literal constants (e.g. AMDGPU::ZERO,
            // AMDGPU::ONE, etc) in machine opcodes.
            continue;
          }
      } else {
        switch(Use->getMachineOpcode()) {
        case AMDGPU::REG_SEQUENCE: break;
        default:
          if (!TII->isALUInstr(Use->getMachineOpcode()) ||
              (TII->get(Use->getMachineOpcode()).TSFlags &
               R600_InstFlag::VECTOR)) {
            continue;
          }
        }

        // Check that we aren't already using an immediate.
        // XXX: It's possible for an instruction to have more than one
        // immediate operand, but this is not supported yet.
        if (ImmReg == AMDGPU::ALU_LITERAL_X) {
          int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(),
                                          AMDGPU::OpName::literal);
          if (ImmIdx == -1) {
            continue;
          }

          if (TII->getOperandIdx(Use->getMachineOpcode(),
                                 AMDGPU::OpName::dst) != -1) {
            // subtract one from ImmIdx, because the DST operand is usually index
            // 0 for MachineInstrs, but we have no DST in the Ops vector.
            ImmIdx--;
          }
          ConstantSDNode *C = dyn_cast<ConstantSDNode>(Use->getOperand(ImmIdx));
          assert(C);

          if (C->getZExtValue() != 0) {
            // This instruction is already using an immediate.
            continue;
          }

          // Set the immediate value
          Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32);
        }
      }
      // Set the immediate register
      Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32);

      CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands());
    }
    break;
  }
  }
  SDNode *Result = SelectCode(N);

  // Fold operands of selected node

  const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
  if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
    const R600InstrInfo *TII =
        static_cast<const R600InstrInfo*>(TM.getInstrInfo());
    if (Result && Result->isMachineOpcode() && Result->getMachineOpcode() == AMDGPU::DOT_4) {
      bool IsModified = false;
      do {
        std::vector<SDValue> Ops;
        for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end();
            I != E; ++I)
          Ops.push_back(*I);
        IsModified = FoldDotOperands(Result->getMachineOpcode(), TII, Ops);
        if (IsModified) {
          Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size());
        }
      } while (IsModified);

    }
    if (Result && Result->isMachineOpcode() &&
        !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)
        && TII->hasInstrModifiers(Result->getMachineOpcode())) {
      // Fold FNEG/FABS
      // TODO: Isel can generate multiple MachineInst, we need to recursively
      // parse Result
      bool IsModified = false;
      do {
        std::vector<SDValue> Ops;
        for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end();
            I != E; ++I)
          Ops.push_back(*I);
        IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops);
        if (IsModified) {
          Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size());
        }
      } while (IsModified);

      // If node has a single use which is CLAMP_R600, folds it
      if (Result->hasOneUse() && Result->isMachineOpcode()) {
        SDNode *PotentialClamp = *Result->use_begin();
        if (PotentialClamp->isMachineOpcode() &&
            PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) {
          unsigned ClampIdx =
            TII->getOperandIdx(Result->getMachineOpcode(), AMDGPU::OpName::clamp);
          std::vector<SDValue> Ops;
          unsigned NumOp = Result->getNumOperands();
          for (unsigned i = 0; i < NumOp; ++i) {
            Ops.push_back(Result->getOperand(i));
          }
          Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32);
          Result = CurDAG->SelectNodeTo(PotentialClamp,
              Result->getMachineOpcode(), PotentialClamp->getVTList(),
              Ops.data(), NumOp);
        }
      }
    }
  }

  return Result;
}

bool AMDGPUDAGToDAGISel::FoldOperand(SDValue &Src, SDValue &Sel, SDValue &Neg,
                                     SDValue &Abs, const R600InstrInfo *TII) {
  switch (Src.getOpcode()) {
  case ISD::FNEG:
    Src = Src.getOperand(0);
    Neg = CurDAG->getTargetConstant(1, MVT::i32);
    return true;
  case ISD::FABS:
    if (!Abs.getNode())
      return false;
    Src = Src.getOperand(0);
    Abs = CurDAG->getTargetConstant(1, MVT::i32);
    return true;
  case ISD::BITCAST:
    Src = Src.getOperand(0);
    return true;
  default:
    return false;
  }
}

bool AMDGPUDAGToDAGISel::FoldOperands(unsigned Opcode,
    const R600InstrInfo *TII, std::vector<SDValue> &Ops) {
  int OperandIdx[] = {
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src2)
  };
  int SelIdx[] = {
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_sel),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_sel),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src2_sel)
  };
  int NegIdx[] = {
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src2_neg)
  };
  int AbsIdx[] = {
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs),
    -1
  };


  for (unsigned i = 0; i < 3; i++) {
    if (OperandIdx[i] < 0)
      return false;
    SDValue &Src = Ops[OperandIdx[i] - 1];
    SDValue &Sel = Ops[SelIdx[i] - 1];
    SDValue &Neg = Ops[NegIdx[i] - 1];
    SDValue FakeAbs;
    SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
    if (FoldOperand(Src, Sel, Neg, Abs, TII))
      return true;
  }
  return false;
}

bool AMDGPUDAGToDAGISel::FoldDotOperands(unsigned Opcode,
    const R600InstrInfo *TII, std::vector<SDValue> &Ops) {
  int OperandIdx[] = {
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
  };
  int SelIdx[] = {
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_sel_X),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_sel_Y),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_sel_Z),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_sel_W),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_sel_X),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_sel_Y),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_sel_Z),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_sel_W)
  };
  int NegIdx[] = {
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_X),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Y),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Z),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_W),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_X),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Y),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Z),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_W)
  };
  int AbsIdx[] = {
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_X),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Y),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Z),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_W),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_X),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Y),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Z),
    TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_W)
  };

  for (unsigned i = 0; i < 8; i++) {
    if (OperandIdx[i] < 0)
      return false;
    SDValue &Src = Ops[OperandIdx[i] - 1];
    SDValue &Sel = Ops[SelIdx[i] - 1];
    SDValue &Neg = Ops[NegIdx[i] - 1];
    SDValue &Abs = Ops[AbsIdx[i] - 1];
    if (FoldOperand(Src, Sel, Neg, Abs, TII))
      return true;
  }
  return false;
}

bool AMDGPUDAGToDAGISel::checkType(const Value *ptr, unsigned int addrspace) {
  if (!ptr) {
    return false;
  }
  Type *ptrType = ptr->getType();
  return dyn_cast<PointerType>(ptrType)->getAddressSpace() == addrspace;
}

bool AMDGPUDAGToDAGISel::isGlobalStore(const StoreSDNode *N) {
  return checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isPrivateStore(const StoreSDNode *N) {
  return (!checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS)
          && !checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS)
          && !checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS));
}

bool AMDGPUDAGToDAGISel::isLocalStore(const StoreSDNode *N) {
  return checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isRegionStore(const StoreSDNode *N) {
  return checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isConstantLoad(const LoadSDNode *N, int CbId) const {
  if (CbId == -1) {
    return checkType(N->getSrcValue(), AMDGPUAS::CONSTANT_ADDRESS);
  }
  return checkType(N->getSrcValue(), AMDGPUAS::CONSTANT_BUFFER_0 + CbId);
}

bool AMDGPUDAGToDAGISel::isGlobalLoad(const LoadSDNode *N) const {
  if (N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) {
    const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
    if (ST.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS ||
        N->getMemoryVT().bitsLT(MVT::i32)) {
      return true;
    }
  }
  return checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isParamLoad(const LoadSDNode *N) const {
  return checkType(N->getSrcValue(), AMDGPUAS::PARAM_I_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isLocalLoad(const  LoadSDNode *N) const {
  return checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isRegionLoad(const  LoadSDNode *N) const {
  return checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS);
}

bool AMDGPUDAGToDAGISel::isCPLoad(const LoadSDNode *N) const {
  MachineMemOperand *MMO = N->getMemOperand();
  if (checkType(N->getSrcValue(), AMDGPUAS::PRIVATE_ADDRESS)) {
    if (MMO) {
      const Value *V = MMO->getValue();
      const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V);
      if (PSV && PSV == PseudoSourceValue::getConstantPool()) {
        return true;
      }
    }
  }
  return false;
}

bool AMDGPUDAGToDAGISel::isPrivateLoad(const LoadSDNode *N) const {
  if (checkType(N->getSrcValue(), AMDGPUAS::PRIVATE_ADDRESS)) {
    // Check to make sure we are not a constant pool load or a constant load
    // that is marked as a private load
    if (isCPLoad(N) || isConstantLoad(N, -1)) {
      return false;
    }
  }
  if (!checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS)
      && !checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS)
      && !checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS)
      && !checkType(N->getSrcValue(), AMDGPUAS::CONSTANT_ADDRESS)
      && !checkType(N->getSrcValue(), AMDGPUAS::PARAM_D_ADDRESS)
      && !checkType(N->getSrcValue(), AMDGPUAS::PARAM_I_ADDRESS)) {
    return true;
  }
  return false;
}

const char *AMDGPUDAGToDAGISel::getPassName() const {
  return "AMDGPU DAG->DAG Pattern Instruction Selection";
}

#ifdef DEBUGTMP
#undef INT64_C
#endif
#undef DEBUGTMP

//===----------------------------------------------------------------------===//
// Complex Patterns
//===----------------------------------------------------------------------===//

bool AMDGPUDAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
    SDValue& IntPtr) {
  if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
    IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, true);
    return true;
  }
  return false;
}

bool AMDGPUDAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
    SDValue& BaseReg, SDValue &Offset) {
  if (!dyn_cast<ConstantSDNode>(Addr)) {
    BaseReg = Addr;
    Offset = CurDAG->getIntPtrConstant(0, true);
    return true;
  }
  return false;
}

bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
                                           SDValue &Offset) {
  ConstantSDNode * IMMOffset;

  if (Addr.getOpcode() == ISD::ADD
      && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
      && isInt<16>(IMMOffset->getZExtValue())) {

      Base = Addr.getOperand(0);
      Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32);
      return true;
  // If the pointer address is constant, we can move it to the offset field.
  } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
             && isInt<16>(IMMOffset->getZExtValue())) {
    Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
                                  SDLoc(CurDAG->getEntryNode()),
                                  AMDGPU::ZERO, MVT::i32);
    Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32);
    return true;
  }

  // Default case, no offset
  Base = Addr;
  Offset = CurDAG->getTargetConstant(0, MVT::i32);
  return true;
}

bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
                                            SDValue &Offset) {
  ConstantSDNode *C;

  if ((C = dyn_cast<ConstantSDNode>(Addr))) {
    Base = CurDAG->getRegister(AMDGPU::INDIRECT_BASE_ADDR, MVT::i32);
    Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
  } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
            (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
    Base = Addr.getOperand(0);
    Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
  } else {
    Base = Addr;
    Offset = CurDAG->getTargetConstant(0, MVT::i32);
  }

  return true;
}

SDValue AMDGPUDAGToDAGISel::SimplifyI24(SDValue &Op) {
  APInt Demanded = APInt(32, 0x00FFFFFF);
  APInt KnownZero, KnownOne;
  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true);
  const TargetLowering *TLI = getTargetLowering();
  if (TLI->SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) {
    CurDAG->ReplaceAllUsesWith(Op, TLO.New);
    CurDAG->RepositionNode(Op.getNode(), TLO.New.getNode());
    return SimplifyI24(TLO.New);
  } else {
    return  Op;
  }
}

bool AMDGPUDAGToDAGISel::SelectI24(SDValue Op, SDValue &I24) {

  assert(Op.getValueType() == MVT::i32);

  if (CurDAG->ComputeNumSignBits(Op) == 9) {
    I24 = SimplifyI24(Op);
    return true;
  }
  return false;
}

bool AMDGPUDAGToDAGISel::SelectU24(SDValue Op, SDValue &U24) {
  APInt KnownZero;
  APInt KnownOne;
  CurDAG->ComputeMaskedBits(Op, KnownZero, KnownOne);

  assert (Op.getValueType() == MVT::i32);

  // ANY_EXTEND and EXTLOAD operations can only be done on types smaller than
  // i32.  These smaller types are legal to use with the i24 instructions.
  if ((KnownZero & APInt(KnownZero.getBitWidth(), 0xFF000000)) == 0xFF000000 ||
       Op.getOpcode() == ISD::ANY_EXTEND ||
       ISD::isEXTLoad(Op.getNode())) {
    U24 = SimplifyI24(Op);
    return true;
  }
  return false;
}

void AMDGPUDAGToDAGISel::PostprocessISelDAG() {

  if (Subtarget.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) {
    return;
  }

  // Go over all selected nodes and try to fold them a bit more
  const AMDGPUTargetLowering& Lowering =
    (*(const AMDGPUTargetLowering*)getTargetLowering());
  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
       E = CurDAG->allnodes_end(); I != E; ++I) {

    SDNode *Node = I;

    MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
    if (!MachineNode)
      continue;

    SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
    if (ResNode != Node) {
      ReplaceUses(Node, ResNode);
    }
  }
}