1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
|
//===-- AMDILISelLowering.cpp - AMDIL DAG Lowering Implementation ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//==-----------------------------------------------------------------------===//
//
/// \file
/// \brief TargetLowering functions borrowed from AMDIL.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUISelLowering.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUSubtarget.h"
#include "AMDILDevices.h"
#include "AMDILIntrinsicInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "AMDGPUGenCallingConv.inc"
//===----------------------------------------------------------------------===//
// TargetLowering Implementation Help Functions End
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// TargetLowering Class Implementation Begins
//===----------------------------------------------------------------------===//
void AMDGPUTargetLowering::InitAMDILLowering() {
int types[] = {
(int)MVT::i8,
(int)MVT::i16,
(int)MVT::i32,
(int)MVT::f32,
(int)MVT::f64,
(int)MVT::i64,
(int)MVT::v2i8,
(int)MVT::v4i8,
(int)MVT::v2i16,
(int)MVT::v4i16,
(int)MVT::v4f32,
(int)MVT::v4i32,
(int)MVT::v2f32,
(int)MVT::v2i32,
(int)MVT::v2f64,
(int)MVT::v2i64
};
int IntTypes[] = {
(int)MVT::i8,
(int)MVT::i16,
(int)MVT::i32,
(int)MVT::i64
};
int FloatTypes[] = {
(int)MVT::f32,
(int)MVT::f64
};
int VectorTypes[] = {
(int)MVT::v2i8,
(int)MVT::v4i8,
(int)MVT::v2i16,
(int)MVT::v4i16,
(int)MVT::v4f32,
(int)MVT::v4i32,
(int)MVT::v2f32,
(int)MVT::v2i32,
(int)MVT::v2f64,
(int)MVT::v2i64
};
size_t NumTypes = sizeof(types) / sizeof(*types);
size_t NumFloatTypes = sizeof(FloatTypes) / sizeof(*FloatTypes);
size_t NumIntTypes = sizeof(IntTypes) / sizeof(*IntTypes);
size_t NumVectorTypes = sizeof(VectorTypes) / sizeof(*VectorTypes);
const AMDGPUSubtarget &STM = getTargetMachine().getSubtarget<AMDGPUSubtarget>();
// These are the current register classes that are
// supported
for (unsigned int x = 0; x < NumTypes; ++x) {
MVT::SimpleValueType VT = (MVT::SimpleValueType)types[x];
//FIXME: SIGN_EXTEND_INREG is not meaningful for floating point types
// We cannot sextinreg, expand to shifts
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom);
setOperationAction(ISD::SUBE, VT, Expand);
setOperationAction(ISD::SUBC, VT, Expand);
setOperationAction(ISD::ADDE, VT, Expand);
setOperationAction(ISD::ADDC, VT, Expand);
setOperationAction(ISD::BRCOND, VT, Custom);
setOperationAction(ISD::BR_JT, VT, Expand);
setOperationAction(ISD::BRIND, VT, Expand);
// TODO: Implement custom UREM/SREM routines
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
if (VT != MVT::i64 && VT != MVT::v2i64) {
setOperationAction(ISD::SDIV, VT, Custom);
}
}
for (unsigned int x = 0; x < NumFloatTypes; ++x) {
MVT::SimpleValueType VT = (MVT::SimpleValueType)FloatTypes[x];
// IL does not have these operations for floating point types
setOperationAction(ISD::FP_ROUND_INREG, VT, Expand);
setOperationAction(ISD::SETOLT, VT, Expand);
setOperationAction(ISD::SETOGE, VT, Expand);
setOperationAction(ISD::SETOGT, VT, Expand);
setOperationAction(ISD::SETOLE, VT, Expand);
setOperationAction(ISD::SETULT, VT, Expand);
setOperationAction(ISD::SETUGE, VT, Expand);
setOperationAction(ISD::SETUGT, VT, Expand);
setOperationAction(ISD::SETULE, VT, Expand);
}
for (unsigned int x = 0; x < NumIntTypes; ++x) {
MVT::SimpleValueType VT = (MVT::SimpleValueType)IntTypes[x];
// GPU also does not have divrem function for signed or unsigned
setOperationAction(ISD::SDIVREM, VT, Expand);
// GPU does not have [S|U]MUL_LOHI functions as a single instruction
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
// GPU doesn't have a rotl, rotr, or byteswap instruction
setOperationAction(ISD::ROTR, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
// GPU doesn't have any counting operators
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
}
for (unsigned int ii = 0; ii < NumVectorTypes; ++ii) {
MVT::SimpleValueType VT = (MVT::SimpleValueType)VectorTypes[ii];
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
// setOperationAction(ISD::VSETCC, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
}
if (STM.device()->isSupported(AMDGPUDeviceInfo::LongOps)) {
setOperationAction(ISD::MULHU, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::v2i64, Expand);
setOperationAction(ISD::MULHS, MVT::i64, Expand);
setOperationAction(ISD::MULHS, MVT::v2i64, Expand);
setOperationAction(ISD::ADD, MVT::v2i64, Expand);
setOperationAction(ISD::SREM, MVT::v2i64, Expand);
setOperationAction(ISD::Constant , MVT::i64 , Legal);
setOperationAction(ISD::SDIV, MVT::v2i64, Expand);
setOperationAction(ISD::TRUNCATE, MVT::v2i64, Expand);
setOperationAction(ISD::SIGN_EXTEND, MVT::v2i64, Expand);
setOperationAction(ISD::ZERO_EXTEND, MVT::v2i64, Expand);
setOperationAction(ISD::ANY_EXTEND, MVT::v2i64, Expand);
}
if (STM.device()->isSupported(AMDGPUDeviceInfo::DoubleOps)) {
// we support loading/storing v2f64 but not operations on the type
setOperationAction(ISD::FADD, MVT::v2f64, Expand);
setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
setOperationAction(ISD::FP_ROUND_INREG, MVT::v2f64, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
setOperationAction(ISD::ConstantFP , MVT::f64 , Legal);
// We want to expand vector conversions into their scalar
// counterparts.
setOperationAction(ISD::TRUNCATE, MVT::v2f64, Expand);
setOperationAction(ISD::SIGN_EXTEND, MVT::v2f64, Expand);
setOperationAction(ISD::ZERO_EXTEND, MVT::v2f64, Expand);
setOperationAction(ISD::ANY_EXTEND, MVT::v2f64, Expand);
setOperationAction(ISD::FABS, MVT::f64, Expand);
setOperationAction(ISD::FABS, MVT::v2f64, Expand);
}
// TODO: Fix the UDIV24 algorithm so it works for these
// types correctly. This needs vector comparisons
// for this to work correctly.
setOperationAction(ISD::UDIV, MVT::v2i8, Expand);
setOperationAction(ISD::UDIV, MVT::v4i8, Expand);
setOperationAction(ISD::UDIV, MVT::v2i16, Expand);
setOperationAction(ISD::UDIV, MVT::v4i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Custom);
setOperationAction(ISD::SUBC, MVT::Other, Expand);
setOperationAction(ISD::ADDE, MVT::Other, Expand);
setOperationAction(ISD::ADDC, MVT::Other, Expand);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
// Use the default implementation.
setOperationAction(ISD::ConstantFP , MVT::f32 , Legal);
setOperationAction(ISD::Constant , MVT::i32 , Legal);
setSchedulingPreference(Sched::RegPressure);
setPow2DivIsCheap(false);
setSelectIsExpensive(true);
setJumpIsExpensive(true);
maxStoresPerMemcpy = 4096;
maxStoresPerMemmove = 4096;
maxStoresPerMemset = 4096;
}
bool
AMDGPUTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I, unsigned Intrinsic) const {
return false;
}
// The backend supports 32 and 64 bit floating point immediates
bool
AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
if (VT.getScalarType().getSimpleVT().SimpleTy == MVT::f32
|| VT.getScalarType().getSimpleVT().SimpleTy == MVT::f64) {
return true;
} else {
return false;
}
}
bool
AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
if (VT.getScalarType().getSimpleVT().SimpleTy == MVT::f32
|| VT.getScalarType().getSimpleVT().SimpleTy == MVT::f64) {
return false;
} else {
return true;
}
}
// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
// be zero. Op is expected to be a target specific node. Used by DAG
// combiner.
void
AMDGPUTargetLowering::computeMaskedBitsForTargetNode(
const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
APInt KnownZero2;
APInt KnownOne2;
KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything
switch (Op.getOpcode()) {
default: break;
case ISD::SELECT_CC:
DAG.ComputeMaskedBits(
Op.getOperand(1),
KnownZero,
KnownOne,
Depth + 1
);
DAG.ComputeMaskedBits(
Op.getOperand(0),
KnownZero2,
KnownOne2
);
assert((KnownZero & KnownOne) == 0
&& "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0
&& "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
};
}
//===----------------------------------------------------------------------===//
// Other Lowering Hooks
//===----------------------------------------------------------------------===//
SDValue
AMDGPUTargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
EVT OVT = Op.getValueType();
SDValue DST;
if (OVT.getScalarType() == MVT::i64) {
DST = LowerSDIV64(Op, DAG);
} else if (OVT.getScalarType() == MVT::i32) {
DST = LowerSDIV32(Op, DAG);
} else if (OVT.getScalarType() == MVT::i16
|| OVT.getScalarType() == MVT::i8) {
DST = LowerSDIV24(Op, DAG);
} else {
DST = SDValue(Op.getNode(), 0);
}
return DST;
}
SDValue
AMDGPUTargetLowering::LowerSREM(SDValue Op, SelectionDAG &DAG) const {
EVT OVT = Op.getValueType();
SDValue DST;
if (OVT.getScalarType() == MVT::i64) {
DST = LowerSREM64(Op, DAG);
} else if (OVT.getScalarType() == MVT::i32) {
DST = LowerSREM32(Op, DAG);
} else if (OVT.getScalarType() == MVT::i16) {
DST = LowerSREM16(Op, DAG);
} else if (OVT.getScalarType() == MVT::i8) {
DST = LowerSREM8(Op, DAG);
} else {
DST = SDValue(Op.getNode(), 0);
}
return DST;
}
SDValue
AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const {
SDValue Data = Op.getOperand(0);
VTSDNode *BaseType = cast<VTSDNode>(Op.getOperand(1));
DebugLoc DL = Op.getDebugLoc();
EVT DVT = Data.getValueType();
EVT BVT = BaseType->getVT();
unsigned baseBits = BVT.getScalarType().getSizeInBits();
unsigned srcBits = DVT.isSimple() ? DVT.getScalarType().getSizeInBits() : 1;
unsigned shiftBits = srcBits - baseBits;
if (srcBits < 32) {
// If the op is less than 32 bits, then it needs to extend to 32bits
// so it can properly keep the upper bits valid.
EVT IVT = genIntType(32, DVT.isVector() ? DVT.getVectorNumElements() : 1);
Data = DAG.getNode(ISD::ZERO_EXTEND, DL, IVT, Data);
shiftBits = 32 - baseBits;
DVT = IVT;
}
SDValue Shift = DAG.getConstant(shiftBits, DVT);
// Shift left by 'Shift' bits.
Data = DAG.getNode(ISD::SHL, DL, DVT, Data, Shift);
// Signed shift Right by 'Shift' bits.
Data = DAG.getNode(ISD::SRA, DL, DVT, Data, Shift);
if (srcBits < 32) {
// Once the sign extension is done, the op needs to be converted to
// its original type.
Data = DAG.getSExtOrTrunc(Data, DL, Op.getOperand(0).getValueType());
}
return Data;
}
EVT
AMDGPUTargetLowering::genIntType(uint32_t size, uint32_t numEle) const {
int iSize = (size * numEle);
int vEle = (iSize >> ((size == 64) ? 6 : 5));
if (!vEle) {
vEle = 1;
}
if (size == 64) {
if (vEle == 1) {
return EVT(MVT::i64);
} else {
return EVT(MVT::getVectorVT(MVT::i64, vEle));
}
} else {
if (vEle == 1) {
return EVT(MVT::i32);
} else {
return EVT(MVT::getVectorVT(MVT::i32, vEle));
}
}
}
SDValue
AMDGPUTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Cond = Op.getOperand(1);
SDValue Jump = Op.getOperand(2);
SDValue Result;
Result = DAG.getNode(
AMDGPUISD::BRANCH_COND,
Op.getDebugLoc(),
Op.getValueType(),
Chain, Jump, Cond);
return Result;
}
SDValue
AMDGPUTargetLowering::LowerSDIV24(SDValue Op, SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
EVT OVT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
MVT INTTY;
MVT FLTTY;
if (!OVT.isVector()) {
INTTY = MVT::i32;
FLTTY = MVT::f32;
} else if (OVT.getVectorNumElements() == 2) {
INTTY = MVT::v2i32;
FLTTY = MVT::v2f32;
} else if (OVT.getVectorNumElements() == 4) {
INTTY = MVT::v4i32;
FLTTY = MVT::v4f32;
}
unsigned bitsize = OVT.getScalarType().getSizeInBits();
// char|short jq = ia ^ ib;
SDValue jq = DAG.getNode(ISD::XOR, DL, OVT, LHS, RHS);
// jq = jq >> (bitsize - 2)
jq = DAG.getNode(ISD::SRA, DL, OVT, jq, DAG.getConstant(bitsize - 2, OVT));
// jq = jq | 0x1
jq = DAG.getNode(ISD::OR, DL, OVT, jq, DAG.getConstant(1, OVT));
// jq = (int)jq
jq = DAG.getSExtOrTrunc(jq, DL, INTTY);
// int ia = (int)LHS;
SDValue ia = DAG.getSExtOrTrunc(LHS, DL, INTTY);
// int ib, (int)RHS;
SDValue ib = DAG.getSExtOrTrunc(RHS, DL, INTTY);
// float fa = (float)ia;
SDValue fa = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ia);
// float fb = (float)ib;
SDValue fb = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ib);
// float fq = native_divide(fa, fb);
SDValue fq = DAG.getNode(AMDGPUISD::DIV_INF, DL, FLTTY, fa, fb);
// fq = trunc(fq);
fq = DAG.getNode(ISD::FTRUNC, DL, FLTTY, fq);
// float fqneg = -fq;
SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FLTTY, fq);
// float fr = mad(fqneg, fb, fa);
SDValue fr = DAG.getNode(AMDGPUISD::MAD, DL, FLTTY, fqneg, fb, fa);
// int iq = (int)fq;
SDValue iq = DAG.getNode(ISD::FP_TO_SINT, DL, INTTY, fq);
// fr = fabs(fr);
fr = DAG.getNode(ISD::FABS, DL, FLTTY, fr);
// fb = fabs(fb);
fb = DAG.getNode(ISD::FABS, DL, FLTTY, fb);
// int cv = fr >= fb;
SDValue cv;
if (INTTY == MVT::i32) {
cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE);
} else {
cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE);
}
// jq = (cv ? jq : 0);
jq = DAG.getNode(ISD::SELECT, DL, OVT, cv, jq,
DAG.getConstant(0, OVT));
// dst = iq + jq;
iq = DAG.getSExtOrTrunc(iq, DL, OVT);
iq = DAG.getNode(ISD::ADD, DL, OVT, iq, jq);
return iq;
}
SDValue
AMDGPUTargetLowering::LowerSDIV32(SDValue Op, SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
EVT OVT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
// The LowerSDIV32 function generates equivalent to the following IL.
// mov r0, LHS
// mov r1, RHS
// ilt r10, r0, 0
// ilt r11, r1, 0
// iadd r0, r0, r10
// iadd r1, r1, r11
// ixor r0, r0, r10
// ixor r1, r1, r11
// udiv r0, r0, r1
// ixor r10, r10, r11
// iadd r0, r0, r10
// ixor DST, r0, r10
// mov r0, LHS
SDValue r0 = LHS;
// mov r1, RHS
SDValue r1 = RHS;
// ilt r10, r0, 0
SDValue r10 = DAG.getSelectCC(DL,
r0, DAG.getConstant(0, OVT),
DAG.getConstant(-1, MVT::i32),
DAG.getConstant(0, MVT::i32),
ISD::SETLT);
// ilt r11, r1, 0
SDValue r11 = DAG.getSelectCC(DL,
r1, DAG.getConstant(0, OVT),
DAG.getConstant(-1, MVT::i32),
DAG.getConstant(0, MVT::i32),
ISD::SETLT);
// iadd r0, r0, r10
r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
// iadd r1, r1, r11
r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11);
// ixor r0, r0, r10
r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
// ixor r1, r1, r11
r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11);
// udiv r0, r0, r1
r0 = DAG.getNode(ISD::UDIV, DL, OVT, r0, r1);
// ixor r10, r10, r11
r10 = DAG.getNode(ISD::XOR, DL, OVT, r10, r11);
// iadd r0, r0, r10
r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
// ixor DST, r0, r10
SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
return DST;
}
SDValue
AMDGPUTargetLowering::LowerSDIV64(SDValue Op, SelectionDAG &DAG) const {
return SDValue(Op.getNode(), 0);
}
SDValue
AMDGPUTargetLowering::LowerSREM8(SDValue Op, SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
EVT OVT = Op.getValueType();
MVT INTTY = MVT::i32;
if (OVT == MVT::v2i8) {
INTTY = MVT::v2i32;
} else if (OVT == MVT::v4i8) {
INTTY = MVT::v4i32;
}
SDValue LHS = DAG.getSExtOrTrunc(Op.getOperand(0), DL, INTTY);
SDValue RHS = DAG.getSExtOrTrunc(Op.getOperand(1), DL, INTTY);
LHS = DAG.getNode(ISD::SREM, DL, INTTY, LHS, RHS);
LHS = DAG.getSExtOrTrunc(LHS, DL, OVT);
return LHS;
}
SDValue
AMDGPUTargetLowering::LowerSREM16(SDValue Op, SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
EVT OVT = Op.getValueType();
MVT INTTY = MVT::i32;
if (OVT == MVT::v2i16) {
INTTY = MVT::v2i32;
} else if (OVT == MVT::v4i16) {
INTTY = MVT::v4i32;
}
SDValue LHS = DAG.getSExtOrTrunc(Op.getOperand(0), DL, INTTY);
SDValue RHS = DAG.getSExtOrTrunc(Op.getOperand(1), DL, INTTY);
LHS = DAG.getNode(ISD::SREM, DL, INTTY, LHS, RHS);
LHS = DAG.getSExtOrTrunc(LHS, DL, OVT);
return LHS;
}
SDValue
AMDGPUTargetLowering::LowerSREM32(SDValue Op, SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
EVT OVT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
// The LowerSREM32 function generates equivalent to the following IL.
// mov r0, LHS
// mov r1, RHS
// ilt r10, r0, 0
// ilt r11, r1, 0
// iadd r0, r0, r10
// iadd r1, r1, r11
// ixor r0, r0, r10
// ixor r1, r1, r11
// udiv r20, r0, r1
// umul r20, r20, r1
// sub r0, r0, r20
// iadd r0, r0, r10
// ixor DST, r0, r10
// mov r0, LHS
SDValue r0 = LHS;
// mov r1, RHS
SDValue r1 = RHS;
// ilt r10, r0, 0
SDValue r10 = DAG.getSetCC(DL, OVT, r0, DAG.getConstant(0, OVT), ISD::SETLT);
// ilt r11, r1, 0
SDValue r11 = DAG.getSetCC(DL, OVT, r1, DAG.getConstant(0, OVT), ISD::SETLT);
// iadd r0, r0, r10
r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
// iadd r1, r1, r11
r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11);
// ixor r0, r0, r10
r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
// ixor r1, r1, r11
r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11);
// udiv r20, r0, r1
SDValue r20 = DAG.getNode(ISD::UREM, DL, OVT, r0, r1);
// umul r20, r20, r1
r20 = DAG.getNode(AMDGPUISD::UMUL, DL, OVT, r20, r1);
// sub r0, r0, r20
r0 = DAG.getNode(ISD::SUB, DL, OVT, r0, r20);
// iadd r0, r0, r10
r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
// ixor DST, r0, r10
SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
return DST;
}
SDValue
AMDGPUTargetLowering::LowerSREM64(SDValue Op, SelectionDAG &DAG) const {
return SDValue(Op.getNode(), 0);
}
|