1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
|
Target Independent Opportunities:
//===---------------------------------------------------------------------===//
With the recent changes to make the implicit def/use set explicit in
machineinstrs, we should change the target descriptions for 'call' instructions
so that the .td files don't list all the call-clobbered registers as implicit
defs. Instead, these should be added by the code generator (e.g. on the dag).
This has a number of uses:
1. PPC32/64 and X86 32/64 can avoid having multiple copies of call instructions
for their different impdef sets.
2. Targets with multiple calling convs (e.g. x86) which have different clobber
sets don't need copies of call instructions.
3. 'Interprocedural register allocation' can be done to reduce the clobber sets
of calls.
//===---------------------------------------------------------------------===//
Make the PPC branch selector target independant
//===---------------------------------------------------------------------===//
Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't
safe in general, even on darwin. See the libm implementation of hypot for
examples (which special case when x/y are exactly zero to get signed zeros etc
right).
//===---------------------------------------------------------------------===//
Solve this DAG isel folding deficiency:
int X, Y;
void fn1(void)
{
X = X | (Y << 3);
}
compiles to
fn1:
movl Y, %eax
shll $3, %eax
orl X, %eax
movl %eax, X
ret
The problem is the store's chain operand is not the load X but rather
a TokenFactor of the load X and load Y, which prevents the folding.
There are two ways to fix this:
1. The dag combiner can start using alias analysis to realize that y/x
don't alias, making the store to X not dependent on the load from Y.
2. The generated isel could be made smarter in the case it can't
disambiguate the pointers.
Number 1 is the preferred solution.
This has been "fixed" by a TableGen hack. But that is a short term workaround
which will be removed once the proper fix is made.
//===---------------------------------------------------------------------===//
On targets with expensive 64-bit multiply, we could LSR this:
for (i = ...; ++i) {
x = 1ULL << i;
into:
long long tmp = 1;
for (i = ...; ++i, tmp+=tmp)
x = tmp;
This would be a win on ppc32, but not x86 or ppc64.
//===---------------------------------------------------------------------===//
Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
//===---------------------------------------------------------------------===//
Reassociate should turn: X*X*X*X -> t=(X*X) (t*t) to eliminate a multiply.
//===---------------------------------------------------------------------===//
Interesting? testcase for add/shift/mul reassoc:
int bar(int x, int y) {
return x*x*x+y+x*x*x*x*x*y*y*y*y;
}
int foo(int z, int n) {
return bar(z, n) + bar(2*z, 2*n);
}
Reassociate should handle the example in GCC PR16157.
//===---------------------------------------------------------------------===//
These two functions should generate the same code on big-endian systems:
int g(int *j,int *l) { return memcmp(j,l,4); }
int h(int *j, int *l) { return *j - *l; }
this could be done in SelectionDAGISel.cpp, along with other special cases,
for 1,2,4,8 bytes.
//===---------------------------------------------------------------------===//
It would be nice to revert this patch:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
And teach the dag combiner enough to simplify the code expanded before
legalize. It seems plausible that this knowledge would let it simplify other
stuff too.
//===---------------------------------------------------------------------===//
For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal
to the type size. It works but can be overly conservative as the alignment of
specific vector types are target dependent.
//===---------------------------------------------------------------------===//
We should produce an unaligned load from code like this:
v4sf example(float *P) {
return (v4sf){P[0], P[1], P[2], P[3] };
}
//===---------------------------------------------------------------------===//
Add support for conditional increments, and other related patterns. Instead
of:
movl 136(%esp), %eax
cmpl $0, %eax
je LBB16_2 #cond_next
LBB16_1: #cond_true
incl _foo
LBB16_2: #cond_next
emit:
movl _foo, %eax
cmpl $1, %edi
sbbl $-1, %eax
movl %eax, _foo
//===---------------------------------------------------------------------===//
Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
Expand these to calls of sin/cos and stores:
double sincos(double x, double *sin, double *cos);
float sincosf(float x, float *sin, float *cos);
long double sincosl(long double x, long double *sin, long double *cos);
Doing so could allow SROA of the destination pointers. See also:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
This is now easily doable with MRVs. We could even make an intrinsic for this
if anyone cared enough about sincos.
//===---------------------------------------------------------------------===//
Turn this into a single byte store with no load (the other 3 bytes are
unmodified):
define void @test(i32* %P) {
%tmp = load i32* %P
%tmp14 = or i32 %tmp, 3305111552
%tmp15 = and i32 %tmp14, 3321888767
store i32 %tmp15, i32* %P
ret void
}
//===---------------------------------------------------------------------===//
dag/inst combine "clz(x)>>5 -> x==0" for 32-bit x.
Compile:
int bar(int x)
{
int t = __builtin_clz(x);
return -(t>>5);
}
to:
_bar: addic r3,r3,-1
subfe r3,r3,r3
blr
//===---------------------------------------------------------------------===//
quantum_sigma_x in 462.libquantum contains the following loop:
for(i=0; i<reg->size; i++)
{
/* Flip the target bit of each basis state */
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
}
Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just
so cool to turn it into something like:
long long Res = ((MAX_UNSIGNED) 1 << target);
if (target < 32) {
for(i=0; i<reg->size; i++)
reg->node[i].state ^= Res & 0xFFFFFFFFULL;
} else {
for(i=0; i<reg->size; i++)
reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
}
... which would only do one 32-bit XOR per loop iteration instead of two.
It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
alas...
//===---------------------------------------------------------------------===//
This isn't recognized as bswap by instcombine (yes, it really is bswap):
unsigned long reverse(unsigned v) {
unsigned t;
t = v ^ ((v << 16) | (v >> 16));
t &= ~0xff0000;
v = (v << 24) | (v >> 8);
return v ^ (t >> 8);
}
//===---------------------------------------------------------------------===//
These idioms should be recognized as popcount (see PR1488):
unsigned countbits_slow(unsigned v) {
unsigned c;
for (c = 0; v; v >>= 1)
c += v & 1;
return c;
}
unsigned countbits_fast(unsigned v){
unsigned c;
for (c = 0; v; c++)
v &= v - 1; // clear the least significant bit set
return c;
}
BITBOARD = unsigned long long
int PopCnt(register BITBOARD a) {
register int c=0;
while(a) {
c++;
a &= a - 1;
}
return c;
}
unsigned int popcount(unsigned int input) {
unsigned int count = 0;
for (unsigned int i = 0; i < 4 * 8; i++)
count += (input >> i) & i;
return count;
}
//===---------------------------------------------------------------------===//
These should turn into single 16-bit (unaligned?) loads on little/big endian
processors.
unsigned short read_16_le(const unsigned char *adr) {
return adr[0] | (adr[1] << 8);
}
unsigned short read_16_be(const unsigned char *adr) {
return (adr[0] << 8) | adr[1];
}
//===---------------------------------------------------------------------===//
-instcombine should handle this transform:
icmp pred (sdiv X / C1 ), C2
when X, C1, and C2 are unsigned. Similarly for udiv and signed operands.
Currently InstCombine avoids this transform but will do it when the signs of
the operands and the sign of the divide match. See the FIXME in
InstructionCombining.cpp in the visitSetCondInst method after the switch case
for Instruction::UDiv (around line 4447) for more details.
The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
this construct.
//===---------------------------------------------------------------------===//
viterbi speeds up *significantly* if the various "history" related copy loops
are turned into memcpy calls at the source level. We need a "loops to memcpy"
pass.
//===---------------------------------------------------------------------===//
Consider:
typedef unsigned U32;
typedef unsigned long long U64;
int test (U32 *inst, U64 *regs) {
U64 effective_addr2;
U32 temp = *inst;
int r1 = (temp >> 20) & 0xf;
int b2 = (temp >> 16) & 0xf;
effective_addr2 = temp & 0xfff;
if (b2) effective_addr2 += regs[b2];
b2 = (temp >> 12) & 0xf;
if (b2) effective_addr2 += regs[b2];
effective_addr2 &= regs[4];
if ((effective_addr2 & 3) == 0)
return 1;
return 0;
}
Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems,
we don't eliminate the computation of the top half of effective_addr2 because
we don't have whole-function selection dags. On x86, this means we use one
extra register for the function when effective_addr2 is declared as U64 than
when it is declared U32.
//===---------------------------------------------------------------------===//
LSR should know what GPR types a target has. This code:
volatile short X, Y; // globals
void foo(int N) {
int i;
for (i = 0; i < N; i++) { X = i; Y = i*4; }
}
produces two identical IV's (after promotion) on PPC/ARM:
LBB1_1: @bb.preheader
mov r3, #0
mov r2, r3
mov r1, r3
LBB1_2: @bb
ldr r12, LCPI1_0
ldr r12, [r12]
strh r2, [r12]
ldr r12, LCPI1_1
ldr r12, [r12]
strh r3, [r12]
add r1, r1, #1 <- [0,+,1]
add r3, r3, #4
add r2, r2, #1 <- [0,+,1]
cmp r1, r0
bne LBB1_2 @bb
//===---------------------------------------------------------------------===//
Tail call elim should be more aggressive, checking to see if the call is
followed by an uncond branch to an exit block.
; This testcase is due to tail-duplication not wanting to copy the return
; instruction into the terminating blocks because there was other code
; optimized out of the function after the taildup happened.
; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
define i32 @t4(i32 %a) {
entry:
%tmp.1 = and i32 %a, 1 ; <i32> [#uses=1]
%tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1]
br i1 %tmp.2, label %then.0, label %else.0
then.0: ; preds = %entry
%tmp.5 = add i32 %a, -1 ; <i32> [#uses=1]
%tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1]
br label %return
else.0: ; preds = %entry
%tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1]
br i1 %tmp.7, label %then.1, label %return
then.1: ; preds = %else.0
%tmp.11 = add i32 %a, -2 ; <i32> [#uses=1]
%tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1]
br label %return
return: ; preds = %then.1, %else.0, %then.0
%result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
[ %tmp.9, %then.1 ]
ret i32 %result.0
}
//===---------------------------------------------------------------------===//
Tail recursion elimination is not transforming this function, because it is
returning n, which fails the isDynamicConstant check in the accumulator
recursion checks.
long long fib(const long long n) {
switch(n) {
case 0:
case 1:
return n;
default:
return fib(n-1) + fib(n-2);
}
}
//===---------------------------------------------------------------------===//
Tail recursion elimination should handle:
int pow2m1(int n) {
if (n == 0)
return 0;
return 2 * pow2m1 (n - 1) + 1;
}
Also, multiplies can be turned into SHL's, so they should be handled as if
they were associative. "return foo() << 1" can be tail recursion eliminated.
//===---------------------------------------------------------------------===//
Argument promotion should promote arguments for recursive functions, like
this:
; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
define internal i32 @foo(i32* %x) {
entry:
%tmp = load i32* %x ; <i32> [#uses=0]
%tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
ret i32 %tmp.foo
}
define i32 @bar(i32* %x) {
entry:
%tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
ret i32 %tmp3
}
//===---------------------------------------------------------------------===//
"basicaa" should know how to look through "or" instructions that act like add
instructions. For example in this code, the x*4+1 is turned into x*4 | 1, and
basicaa can't analyze the array subscript, leading to duplicated loads in the
generated code:
void test(int X, int Y, int a[]) {
int i;
for (i=2; i<1000; i+=4) {
a[i+0] = a[i-1+0]*a[i-2+0];
a[i+1] = a[i-1+1]*a[i-2+1];
a[i+2] = a[i-1+2]*a[i-2+2];
a[i+3] = a[i-1+3]*a[i-2+3];
}
}
BasicAA also doesn't do this for add. It needs to know that &A[i+1] != &A[i].
//===---------------------------------------------------------------------===//
We should investigate an instruction sinking pass. Consider this silly
example in pic mode:
#include <assert.h>
void foo(int x) {
assert(x);
//...
}
we compile this to:
_foo:
subl $28, %esp
call "L1$pb"
"L1$pb":
popl %eax
cmpl $0, 32(%esp)
je LBB1_2 # cond_true
LBB1_1: # return
# ...
addl $28, %esp
ret
LBB1_2: # cond_true
...
The PIC base computation (call+popl) is only used on one path through the
code, but is currently always computed in the entry block. It would be
better to sink the picbase computation down into the block for the
assertion, as it is the only one that uses it. This happens for a lot of
code with early outs.
Another example is loads of arguments, which are usually emitted into the
entry block on targets like x86. If not used in all paths through a
function, they should be sunk into the ones that do.
In this case, whole-function-isel would also handle this.
//===---------------------------------------------------------------------===//
Investigate lowering of sparse switch statements into perfect hash tables:
http://burtleburtle.net/bob/hash/perfect.html
//===---------------------------------------------------------------------===//
We should turn things like "load+fabs+store" and "load+fneg+store" into the
corresponding integer operations. On a yonah, this loop:
double a[256];
void foo() {
int i, b;
for (b = 0; b < 10000000; b++)
for (i = 0; i < 256; i++)
a[i] = -a[i];
}
is twice as slow as this loop:
long long a[256];
void foo() {
int i, b;
for (b = 0; b < 10000000; b++)
for (i = 0; i < 256; i++)
a[i] ^= (1ULL << 63);
}
and I suspect other processors are similar. On X86 in particular this is a
big win because doing this with integers allows the use of read/modify/write
instructions.
//===---------------------------------------------------------------------===//
DAG Combiner should try to combine small loads into larger loads when
profitable. For example, we compile this C++ example:
struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
extern THotKey m_HotKey;
THotKey GetHotKey () { return m_HotKey; }
into (-O3 -fno-exceptions -static -fomit-frame-pointer):
__Z9GetHotKeyv:
pushl %esi
movl 8(%esp), %eax
movb _m_HotKey+3, %cl
movb _m_HotKey+4, %dl
movb _m_HotKey+2, %ch
movw _m_HotKey, %si
movw %si, (%eax)
movb %ch, 2(%eax)
movb %cl, 3(%eax)
movb %dl, 4(%eax)
popl %esi
ret $4
GCC produces:
__Z9GetHotKeyv:
movl _m_HotKey, %edx
movl 4(%esp), %eax
movl %edx, (%eax)
movzwl _m_HotKey+4, %edx
movw %dx, 4(%eax)
ret $4
The LLVM IR contains the needed alignment info, so we should be able to
merge the loads and stores into 4-byte loads:
%struct.THotKey = type { i16, i8, i8, i8 }
define void @_Z9GetHotKeyv(%struct.THotKey* sret %agg.result) nounwind {
...
%tmp2 = load i16* getelementptr (@m_HotKey, i32 0, i32 0), align 8
%tmp5 = load i8* getelementptr (@m_HotKey, i32 0, i32 1), align 2
%tmp8 = load i8* getelementptr (@m_HotKey, i32 0, i32 2), align 1
%tmp11 = load i8* getelementptr (@m_HotKey, i32 0, i32 3), align 2
Alternatively, we should use a small amount of base-offset alias analysis
to make it so the scheduler doesn't need to hold all the loads in regs at
once.
//===---------------------------------------------------------------------===//
We should add an FRINT node to the DAG to model targets that have legal
implementations of ceil/floor/rint.
//===---------------------------------------------------------------------===//
This GCC bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34043
contains a testcase that compiles down to:
%struct.XMM128 = type { <4 x float> }
..
%src = alloca %struct.XMM128
..
%tmp6263 = bitcast %struct.XMM128* %src to <2 x i64>*
%tmp65 = getelementptr %struct.XMM128* %src, i32 0, i32 0
store <2 x i64> %tmp5899, <2 x i64>* %tmp6263, align 16
%tmp66 = load <4 x float>* %tmp65, align 16
%tmp71 = add <4 x float> %tmp66, %tmp66
If the mid-level optimizer turned the bitcast of pointer + store of tmp5899
into a bitcast of the vector value and a store to the pointer, then the
store->load could be easily removed.
//===---------------------------------------------------------------------===//
Consider:
int test() {
long long input[8] = {1,1,1,1,1,1,1,1};
foo(input);
}
We currently compile this into a memcpy from a global array since the
initializer is fairly large and not memset'able. This is good, but the memcpy
gets lowered to load/stores in the code generator. This is also ok, except
that the codegen lowering for memcpy doesn't handle the case when the source
is a constant global. This gives us atrocious code like this:
call "L1$pb"
"L1$pb":
popl %eax
movl _C.0.1444-"L1$pb"+32(%eax), %ecx
movl %ecx, 40(%esp)
movl _C.0.1444-"L1$pb"+20(%eax), %ecx
movl %ecx, 28(%esp)
movl _C.0.1444-"L1$pb"+36(%eax), %ecx
movl %ecx, 44(%esp)
movl _C.0.1444-"L1$pb"+44(%eax), %ecx
movl %ecx, 52(%esp)
movl _C.0.1444-"L1$pb"+40(%eax), %ecx
movl %ecx, 48(%esp)
movl _C.0.1444-"L1$pb"+12(%eax), %ecx
movl %ecx, 20(%esp)
movl _C.0.1444-"L1$pb"+4(%eax), %ecx
...
instead of:
movl $1, 16(%esp)
movl $0, 20(%esp)
movl $1, 24(%esp)
movl $0, 28(%esp)
movl $1, 32(%esp)
movl $0, 36(%esp)
...
//===---------------------------------------------------------------------===//
http://llvm.org/PR717:
The following code should compile into "ret int undef". Instead, LLVM
produces "ret int 0":
int f() {
int x = 4;
int y;
if (x == 3) y = 0;
return y;
}
//===---------------------------------------------------------------------===//
The loop unroller should partially unroll loops (instead of peeling them)
when code growth isn't too bad and when an unroll count allows simplification
of some code within the loop. One trivial example is:
#include <stdio.h>
int main() {
int nRet = 17;
int nLoop;
for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
if ( nLoop & 1 )
nRet += 2;
else
nRet -= 1;
}
return nRet;
}
Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
reduction in code size. The resultant code would then also be suitable for
exit value computation.
//===---------------------------------------------------------------------===//
We miss a bunch of rotate opportunities on various targets, including ppc, x86,
etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate
matching code in dag combine doesn't look through truncates aggressively
enough. Here are some testcases reduces from GCC PR17886:
unsigned long long f(unsigned long long x, int y) {
return (x << y) | (x >> 64-y);
}
unsigned f2(unsigned x, int y){
return (x << y) | (x >> 32-y);
}
unsigned long long f3(unsigned long long x){
int y = 9;
return (x << y) | (x >> 64-y);
}
unsigned f4(unsigned x){
int y = 10;
return (x << y) | (x >> 32-y);
}
unsigned long long f5(unsigned long long x, unsigned long long y) {
return (x << 8) | ((y >> 48) & 0xffull);
}
unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
switch(z) {
case 1:
return (x << 8) | ((y >> 48) & 0xffull);
case 2:
return (x << 16) | ((y >> 40) & 0xffffull);
case 3:
return (x << 24) | ((y >> 32) & 0xffffffull);
case 4:
return (x << 32) | ((y >> 24) & 0xffffffffull);
default:
return (x << 40) | ((y >> 16) & 0xffffffffffull);
}
}
On X86-64, we only handle f2/f3/f4 right. On x86-32, a few of these
generate truly horrible code, instead of using shld and friends. On
ARM, we end up with calls to L___lshrdi3/L___ashldi3 in f, which is
badness. PPC64 misses f, f5 and f6. CellSPU aborts in isel.
//===---------------------------------------------------------------------===//
We do a number of simplifications in simplify libcalls to strength reduce
standard library functions, but we don't currently merge them together. For
example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only
be done safely if "b" isn't modified between the strlen and memcpy of course.
//===---------------------------------------------------------------------===//
Reassociate should turn things like:
int factorial(int X) {
return X*X*X*X*X*X*X*X;
}
into llvm.powi calls, allowing the code generator to produce balanced
multiplication trees.
//===---------------------------------------------------------------------===//
We generate a horrible libcall for llvm.powi. For example, we compile:
#include <cmath>
double f(double a) { return std::pow(a, 4); }
into:
__Z1fd:
subl $12, %esp
movsd 16(%esp), %xmm0
movsd %xmm0, (%esp)
movl $4, 8(%esp)
call L___powidf2$stub
addl $12, %esp
ret
GCC produces:
__Z1fd:
subl $12, %esp
movsd 16(%esp), %xmm0
mulsd %xmm0, %xmm0
mulsd %xmm0, %xmm0
movsd %xmm0, (%esp)
fldl (%esp)
addl $12, %esp
ret
//===---------------------------------------------------------------------===//
We compile this program: (from GCC PR11680)
http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
Into code that runs the same speed in fast/slow modes, but both modes run 2x
slower than when compile with GCC (either 4.0 or 4.2):
$ llvm-g++ perf.cpp -O3 -fno-exceptions
$ time ./a.out fast
1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w
$ g++ perf.cpp -O3 -fno-exceptions
$ time ./a.out fast
0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w
It looks like we are making the same inlining decisions, so this may be raw
codegen badness or something else (haven't investigated).
//===---------------------------------------------------------------------===//
We miss some instcombines for stuff like this:
void bar (void);
void foo (unsigned int a) {
/* This one is equivalent to a >= (3 << 2). */
if ((a >> 2) >= 3)
bar ();
}
A few other related ones are in GCC PR14753.
//===---------------------------------------------------------------------===//
Divisibility by constant can be simplified (according to GCC PR12849) from
being a mulhi to being a mul lo (cheaper). Testcase:
void bar(unsigned n) {
if (n % 3 == 0)
true();
}
I think this basically amounts to a dag combine to simplify comparisons against
multiply hi's into a comparison against the mullo.
//===---------------------------------------------------------------------===//
Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
bunch of other stuff from this example (see PR1604):
#include <cstdio>
struct test {
int val;
virtual ~test() {}
};
int main() {
test t;
std::scanf("%d", &t.val);
std::printf("%d\n", t.val);
}
//===---------------------------------------------------------------------===//
Instcombine will merge comparisons like (x >= 10) && (x < 20) by producing (x -
10) u< 10, but only when the comparisons have matching sign.
This could be converted with a similiar technique. (PR1941)
define i1 @test(i8 %x) {
%A = icmp uge i8 %x, 5
%B = icmp slt i8 %x, 20
%C = and i1 %A, %B
ret i1 %C
}
//===---------------------------------------------------------------------===//
These functions perform the same computation, but produce different assembly.
define i8 @select(i8 %x) readnone nounwind {
%A = icmp ult i8 %x, 250
%B = select i1 %A, i8 0, i8 1
ret i8 %B
}
define i8 @addshr(i8 %x) readnone nounwind {
%A = zext i8 %x to i9
%B = add i9 %A, 6 ;; 256 - 250 == 6
%C = lshr i9 %B, 8
%D = trunc i9 %C to i8
ret i8 %D
}
//===---------------------------------------------------------------------===//
From gcc bug 24696:
int
f (unsigned long a, unsigned long b, unsigned long c)
{
return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
}
int
f (unsigned long a, unsigned long b, unsigned long c)
{
return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
}
Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with
"clang -emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
From GCC Bug 20192:
#define PMD_MASK (~((1UL << 23) - 1))
void clear_pmd_range(unsigned long start, unsigned long end)
{
if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
f();
}
The expression should optimize to something like
"!((start|end)&~PMD_MASK). Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
From GCC Bug 15241:
unsigned int
foo (unsigned int a, unsigned int b)
{
if (a <= 7 && b <= 7)
baz ();
}
Should combine to "(a|b) <= 7". Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
From GCC Bug 3756:
int
pn (int n)
{
return (n >= 0 ? 1 : -1);
}
Should combine to (n >> 31) | 1. Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts | llc".
//===---------------------------------------------------------------------===//
From GCC Bug 28685:
int test(int a, int b)
{
int lt = a < b;
int eq = a == b;
return (lt || eq);
}
Should combine to "a <= b". Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts | llc".
//===---------------------------------------------------------------------===//
void a(int variable)
{
if (variable == 4 || variable == 6)
bar();
}
This should optimize to "if ((variable | 2) == 6)". Currently not
optimized with "clang -emit-llvm-bc | opt -std-compile-opts | llc".
//===---------------------------------------------------------------------===//
unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
i;}
unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
These should combine to the same thing. Currently, the first function
produces better code on X86.
//===---------------------------------------------------------------------===//
From GCC Bug 15784:
#define abs(x) x>0?x:-x
int f(int x, int y)
{
return (abs(x)) >= 0;
}
This should optimize to x == INT_MIN. (With -fwrapv.) Currently not
optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
From GCC Bug 14753:
void
rotate_cst (unsigned int a)
{
a = (a << 10) | (a >> 22);
if (a == 123)
bar ();
}
void
minus_cst (unsigned int a)
{
unsigned int tem;
tem = 20 - a;
if (tem == 5)
bar ();
}
void
mask_gt (unsigned int a)
{
/* This is equivalent to a > 15. */
if ((a & ~7) > 8)
bar ();
}
void
rshift_gt (unsigned int a)
{
/* This is equivalent to a > 23. */
if ((a >> 2) > 5)
bar ();
}
All should simplify to a single comparison. All of these are
currently not optimized with "clang -emit-llvm-bc | opt
-std-compile-opts".
//===---------------------------------------------------------------------===//
From GCC Bug 32605:
int c(int* x) {return (char*)x+2 == (char*)x;}
Should combine to 0. Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it).
//===---------------------------------------------------------------------===//
int a(unsigned char* b) {return *b > 99;}
There's an unnecessary zext in the generated code with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
Should be combined to "((b >> 1) | b) & 1". Currently not optimized
with "clang -emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
Should combine to "x | (y & 3)". Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
unsigned a(unsigned a) {return ((a | 1) & 3) | (a & -4);}
Should combine to "a | 1". Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
Should fold to "(~a & c) | (a & b)". Currently not optimized with
"clang -emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(int a,int b) {return (~(a|b))|a;}
Should fold to "a|~b". Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(int a, int b) {return (a&&b) || (a&&!b);}
Should fold to "a". Currently not optimized with "clang -emit-llvm-bc
| opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
Should fold to "a ? b : c", or at least something sane. Currently not
optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
Should fold to a && (b || c). Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(int x) {return x | ((x & 8) ^ 8);}
Should combine to x | 8. Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(int x) {return x ^ ((x & 8) ^ 8);}
Should also combine to x | 8. Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(int x) {return (x & 8) == 0 ? -1 : -9;}
Should combine to (x | -9) ^ 8. Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(int x) {return (x & 8) == 0 ? -9 : -1;}
Should combine to x | -9. Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
int a(int x) {return ((x | -9) ^ 8) & x;}
Should combine to x & -9. Currently not optimized with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
Should combine to "a * 0x88888888 >> 31". Currently not optimized
with "clang -emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
unsigned a(char* x) {if ((*x & 32) == 0) return b();}
There's an unnecessary zext in the generated code with "clang
-emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
unsigned a(unsigned long long x) {return 40 * (x >> 1);}
Should combine to "20 * (((unsigned)x) & -2)". Currently not
optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
This was noticed in the entryblock for grokdeclarator in 403.gcc:
%tmp = icmp eq i32 %decl_context, 4
%decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context
%tmp1 = icmp eq i32 %decl_context_addr.0, 1
%decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
tmp1 should be simplified to something like:
(!tmp || decl_context == 1)
This allows recursive simplifications, tmp1 is used all over the place in
the function, e.g. by:
%tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1]
%tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1]
%or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1]
later.
//===---------------------------------------------------------------------===//
Store sinking: This code:
void f (int n, int *cond, int *res) {
int i;
*res = 0;
for (i = 0; i < n; i++)
if (*cond)
*res ^= 234; /* (*) */
}
On this function GVN hoists the fully redundant value of *res, but nothing
moves the store out. This gives us this code:
bb: ; preds = %bb2, %entry
%.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]
%i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
%1 = load i32* %cond, align 4
%2 = icmp eq i32 %1, 0
br i1 %2, label %bb2, label %bb1
bb1: ; preds = %bb
%3 = xor i32 %.rle, 234
store i32 %3, i32* %res, align 4
br label %bb2
bb2: ; preds = %bb, %bb1
%.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]
%indvar.next = add i32 %i.05, 1
%exitcond = icmp eq i32 %indvar.next, %n
br i1 %exitcond, label %return, label %bb
DSE should sink partially dead stores to get the store out of the loop.
Here's another partial dead case:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
//===---------------------------------------------------------------------===//
Scalar PRE hoists the mul in the common block up to the else:
int test (int a, int b, int c, int g) {
int d, e;
if (a)
d = b * c;
else
d = b - c;
e = b * c + g;
return d + e;
}
It would be better to do the mul once to reduce codesize above the if.
This is GCC PR38204.
//===---------------------------------------------------------------------===//
GCC PR37810 is an interesting case where we should sink load/store reload
into the if block and outside the loop, so we don't reload/store it on the
non-call path.
for () {
*P += 1;
if ()
call();
else
...
->
tmp = *P
for () {
tmp += 1;
if () {
*P = tmp;
call();
tmp = *P;
} else ...
}
*P = tmp;
We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
we don't sink the store. We need partially dead store sinking.
//===---------------------------------------------------------------------===//
[PHI TRANSLATE GEPs]
GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
leading to excess stack traffic. This could be handled by GVN with some crazy
symbolic phi translation. The code we get looks like (g is on the stack):
bb2: ; preds = %bb1
..
%9 = getelementptr %struct.f* %g, i32 0, i32 0
store i32 %8, i32* %9, align bel %bb3
bb3: ; preds = %bb1, %bb2, %bb
%c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
%b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
%10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
%11 = load i32* %10, align 4
%11 is fully redundant, an in BB2 it should have the value %8.
GCC PR33344 is a similar case.
//===---------------------------------------------------------------------===//
There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
GCC testsuite. There are many pre testcases as ssa-pre-*.c
//===---------------------------------------------------------------------===//
There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
GCC testsuite. For example, predcom-1.c is:
for (i = 2; i < 1000; i++)
fib[i] = (fib[i-1] + fib[i - 2]) & 0xffff;
which compiles into:
bb1: ; preds = %bb1, %bb1.thread
%indvar = phi i32 [ 0, %bb1.thread ], [ %0, %bb1 ]
%i.0.reg2mem.0 = add i32 %indvar, 2
%0 = add i32 %indvar, 1 ; <i32> [#uses=3]
%1 = getelementptr [1000 x i32]* @fib, i32 0, i32 %0
%2 = load i32* %1, align 4 ; <i32> [#uses=1]
%3 = getelementptr [1000 x i32]* @fib, i32 0, i32 %indvar
%4 = load i32* %3, align 4 ; <i32> [#uses=1]
%5 = add i32 %4, %2 ; <i32> [#uses=1]
%6 = and i32 %5, 65535 ; <i32> [#uses=1]
%7 = getelementptr [1000 x i32]* @fib, i32 0, i32 %i.0.reg2mem.0
store i32 %6, i32* %7, align 4
%exitcond = icmp eq i32 %0, 998 ; <i1> [#uses=1]
br i1 %exitcond, label %return, label %bb1
This is basically:
LOAD fib[i+1]
LOAD fib[i]
STORE fib[i+2]
instead of handling this as a loop or other xform, all we'd need to do is teach
load PRE to phi translate the %0 add (i+1) into the predecessor as (i'+1+1) =
(i'+2) (where i' is the previous iteration of i). This would find the store
which feeds it.
predcom-2.c is apparently the same as predcom-1.c
predcom-3.c is very similar but needs loads feeding each other instead of
store->load.
predcom-4.c seems the same as the rest.
//===---------------------------------------------------------------------===//
Other simple load PRE cases:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=35287 [LPRE crit edge splitting]
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34677 (licm does this, LPRE crit edge)
llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | opt -mem2reg -simplifycfg -gvn | llvm-dis
//===---------------------------------------------------------------------===//
Type based alias analysis:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
//===---------------------------------------------------------------------===//
When GVN/PRE finds a store of float* to a must aliases pointer when expecting
an int*, it should turn it into a bitcast. This is a nice generalization of
the SROA hack that would apply to other cases, e.g.:
int foo(int C, int *P, float X) {
if (C) {
bar();
*P = 42;
} else
*(float*)P = X;
return *P;
}
One example (that requires crazy phi translation) is:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16799 [BITCAST PHI TRANS]
//===---------------------------------------------------------------------===//
A/B get pinned to the stack because we turn an if/then into a select instead
of PRE'ing the load/store. This may be fixable in instcombine:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=37892
Interesting missed case because of control flow flattening (should be 2 loads):
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as |
opt -mem2reg -gvn -instcombine | llvm-dis
we miss it because we need 1) GEP PHI TRAN, 2) CRIT EDGE 3) MULTIPLE DIFFERENT
VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
//===---------------------------------------------------------------------===//
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
We could eliminate the branch condition here, loading from null is undefined:
struct S { int w, x, y, z; };
struct T { int r; struct S s; };
void bar (struct S, int);
void foo (int a, struct T b)
{
struct S *c = 0;
if (a)
c = &b.s;
bar (*c, a);
}
//===---------------------------------------------------------------------===//
simplifylibcalls should do several optimizations for strspn/strcspn:
strcspn(x, "") -> strlen(x)
strcspn("", x) -> 0
strspn("", x) -> 0
strspn(x, "") -> strlen(x)
strspn(x, "a") -> strchr(x, 'a')-x
strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
int __reject3) {
register size_t __result = 0;
while (__s[__result] != '\0' && __s[__result] != __reject1 &&
__s[__result] != __reject2 && __s[__result] != __reject3)
++__result;
return __result;
}
This should turn into a switch on the character. See PR3253 for some notes on
codegen.
456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn.
//===---------------------------------------------------------------------===//
"gas" uses this idiom:
else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
..
else if (strchr ("<>", *intel_parser.op_string)
Those should be turned into a switch.
//===---------------------------------------------------------------------===//
252.eon contains this interesting code:
%3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
%3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
%strlen = call i32 @strlen(i8* %3072) ; uses = 1
%endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
call void @llvm.memcpy.i32(i8* %endptr,
i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
%3074 = call i32 @strlen(i8* %endptr) nounwind readonly
This is interesting for a couple reasons. First, in this:
%3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
%strlen = call i32 @strlen(i8* %3072)
The strlen could be replaced with: %strlen = sub %3072, %3073, because the
strcpy call returns a pointer to the end of the string. Based on that, the
endptr GEP just becomes equal to 3073, which eliminates a strlen call and GEP.
Second, the memcpy+strlen strlen can be replaced with:
%3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly
Because the destination was just copied into the specified memory buffer. This,
in turn, can be constant folded to "4".
In other code, it contains:
%endptr6978 = bitcast i8* %endptr69 to i32*
store i32 7107374, i32* %endptr6978, align 1
%3167 = call i32 @strlen(i8* %endptr69) nounwind readonly
Which could also be constant folded. Whatever is producing this should probably
be fixed to leave this as a memcpy from a string.
Further, eon also has an interesting partially redundant strlen call:
bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit
%682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2]
%683 = load i8** %682, align 4 ; <i8*> [#uses=4]
%684 = load i8* %683, align 1 ; <i8> [#uses=1]
%685 = icmp eq i8 %684, 0 ; <i1> [#uses=1]
br i1 %685, label %bb10, label %bb9
bb9: ; preds = %bb8
%686 = call i32 @strlen(i8* %683) nounwind readonly
%687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1]
br i1 %687, label %bb10, label %bb11
bb10: ; preds = %bb9, %bb8
%688 = call i32 @strlen(i8* %683) nounwind readonly
This could be eliminated by doing the strlen once in bb8, saving code size and
improving perf on the bb8->9->10 path.
//===---------------------------------------------------------------------===//
I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
which looks like:
%movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0
bb62: ; preds = %bb55, %bb53
%promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]
%171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
%172 = add i32 %171, -1 ; <i32> [#uses=1]
%173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172
... no stores ...
br i1 %or.cond, label %bb65, label %bb72
bb65: ; preds = %bb62
store i8 0, i8* %173, align 1
br label %bb72
bb72: ; preds = %bb65, %bb62
%trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]
%177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
Note that on the bb62->bb72 path, that the %177 strlen call is partially
redundant with the %171 call. At worst, we could shove the %177 strlen call
up into the bb65 block moving it out of the bb62->bb72 path. However, note
that bb65 stores to the string, zeroing out the last byte. This means that on
that path the value of %177 is actually just %171-1. A sub is cheaper than a
strlen!
This pattern repeats several times, basically doing:
A = strlen(P);
P[A-1] = 0;
B = strlen(P);
where it is "obvious" that B = A-1.
//===---------------------------------------------------------------------===//
186.crafty contains this interesting pattern:
%77 = call i8* @strstr(i8* getelementptr ([6 x i8]* @"\01LC5", i32 0, i32 0),
i8* %30)
%phitmp648 = icmp eq i8* %77, getelementptr ([6 x i8]* @"\01LC5", i32 0, i32 0)
br i1 %phitmp648, label %bb70, label %bb76
bb70: ; preds = %OptionMatch.exit91, %bb69
%78 = call i32 @strlen(i8* %30) nounwind readonly align 1 ; <i32> [#uses=1]
This is basically:
cststr = "abcdef";
if (strstr(cststr, P) == cststr) {
x = strlen(P);
...
The strstr call would be significantly cheaper written as:
cststr = "abcdef";
if (memcmp(P, str, strlen(P)))
x = strlen(P);
This is memcmp+strlen instead of strstr. This also makes the strlen fully
redundant.
//===---------------------------------------------------------------------===//
186.crafty also contains this code:
%1906 = call i32 @strlen(i8* getelementptr ([32 x i8]* @pgn_event, i32 0,i32 0))
%1907 = getelementptr [32 x i8]* @pgn_event, i32 0, i32 %1906
%1908 = call i8* @strcpy(i8* %1907, i8* %1905) nounwind align 1
%1909 = call i32 @strlen(i8* getelementptr ([32 x i8]* @pgn_event, i32 0,i32 0))
%1910 = getelementptr [32 x i8]* @pgn_event, i32 0, i32 %1909
The last strlen is computable as 1908-@pgn_event, which means 1910=1908.
//===---------------------------------------------------------------------===//
186.crafty has this interesting pattern with the "out.4543" variable:
call void @llvm.memcpy.i32(
i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1)
%101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind
It is basically doing:
memcpy(globalarray, "string");
printf(..., globalarray);
Anyway, by knowing that printf just reads the memory and forward substituting
the string directly into the printf, this eliminates reads from globalarray.
Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
other similar functions) there are many stores to "out". Once all the printfs
stop using "out", all that is left is the memcpy's into it. This should allow
globalopt to remove the "stored only" global.
//===---------------------------------------------------------------------===//
This code:
define inreg i32 @foo(i8* inreg %p) nounwind {
%tmp0 = load i8* %p
%tmp1 = ashr i8 %tmp0, 5
%tmp2 = sext i8 %tmp1 to i32
ret i32 %tmp2
}
could be dagcombine'd to a sign-extending load with a shift.
For example, on x86 this currently gets this:
movb (%eax), %al
sarb $5, %al
movsbl %al, %eax
while it could get this:
movsbl (%eax), %eax
sarl $5, %eax
//===---------------------------------------------------------------------===//
GCC PR31029:
int test(int x) { return 1-x == x; } // --> return false
int test2(int x) { return 2-x == x; } // --> return x == 1 ?
Always foldable for odd constants, what is the rule for even?
//===---------------------------------------------------------------------===//
PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
for next field in struct (which is at same address).
For example: store of float into { {{}}, float } could be turned into a store to
the float directly.
//===---------------------------------------------------------------------===//
#include <math.h>
double foo(double a) { return sin(a); }
This compiles into this on x86-64 Linux:
foo:
subq $8, %rsp
call sin
addq $8, %rsp
ret
vs:
foo:
jmp sin
//===---------------------------------------------------------------------===//
The arg promotion pass should make use of nocapture to make its alias analysis
stuff much more precise.
//===---------------------------------------------------------------------===//
The following functions should be optimized to use a select instead of a
branch (from gcc PR40072):
char char_int(int m) {if(m>7) return 0; return m;}
int int_char(char m) {if(m>7) return 0; return m;}
//===---------------------------------------------------------------------===//
Instcombine should replace the load with a constant in:
static const char x[4] = {'a', 'b', 'c', 'd'};
unsigned int y(void) {
return *(unsigned int *)x;
}
It currently only does this transformation when the size of the constant
is the same as the size of the integer (so, try x[5]) and the last byte
is a null (making it a C string). There's no need for these restrictions.
//===---------------------------------------------------------------------===//
InstCombine's "turn load from constant into constant" optimization should be
more aggressive in the presence of bitcasts. For example, because of unions,
this code:
union vec2d {
double e[2];
double v __attribute__((vector_size(16)));
};
typedef union vec2d vec2d;
static vec2d a={{1,2}}, b={{3,4}};
vec2d foo () {
return (vec2d){ .v = a.v + b.v * (vec2d){{5,5}}.v };
}
Compiles into:
@a = internal constant %0 { [2 x double]
[double 1.000000e+00, double 2.000000e+00] }, align 16
@b = internal constant %0 { [2 x double]
[double 3.000000e+00, double 4.000000e+00] }, align 16
...
define void @foo(%struct.vec2d* noalias nocapture sret %agg.result) nounwind {
entry:
%0 = load <2 x double>* getelementptr (%struct.vec2d*
bitcast (%0* @a to %struct.vec2d*), i32 0, i32 0), align 16
%1 = load <2 x double>* getelementptr (%struct.vec2d*
bitcast (%0* @b to %struct.vec2d*), i32 0, i32 0), align 16
Instcombine should be able to optimize away the loads (and thus the globals).
//===---------------------------------------------------------------------===//
I saw this constant expression in real code after llvm-g++ -O2:
declare extern_weak i32 @0(i64)
define void @foo() {
br i1 icmp eq (i32 zext (i1 icmp ne (i32 (i64)* @0, i32 (i64)* null) to i32),
i32 0), label %cond_true, label %cond_false
cond_true:
ret void
cond_false:
ret void
}
That branch expression should be reduced to:
i1 icmp eq (i32 (i64)* @0, i32 (i64)* null)
It's probably not a perf issue, I just happened to see it while examining
something else and didn't want to forget about it.
//===---------------------------------------------------------------------===//
|