1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
|
Target Independent Opportunities:
//===---------------------------------------------------------------------===//
We should make the various target's "IMPLICIT_DEF" instructions be a single
target-independent opcode like TargetInstrInfo::INLINEASM. This would allow
us to eliminate the TargetInstrDesc::isImplicitDef() method, and would allow
us to avoid having to define this for every target for every register class.
//===---------------------------------------------------------------------===//
With the recent changes to make the implicit def/use set explicit in
machineinstrs, we should change the target descriptions for 'call' instructions
so that the .td files don't list all the call-clobbered registers as implicit
defs. Instead, these should be added by the code generator (e.g. on the dag).
This has a number of uses:
1. PPC32/64 and X86 32/64 can avoid having multiple copies of call instructions
for their different impdef sets.
2. Targets with multiple calling convs (e.g. x86) which have different clobber
sets don't need copies of call instructions.
3. 'Interprocedural register allocation' can be done to reduce the clobber sets
of calls.
//===---------------------------------------------------------------------===//
Make the PPC branch selector target independant
//===---------------------------------------------------------------------===//
Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
precision don't matter (ffastmath). Misc/mandel will like this. :)
//===---------------------------------------------------------------------===//
Solve this DAG isel folding deficiency:
int X, Y;
void fn1(void)
{
X = X | (Y << 3);
}
compiles to
fn1:
movl Y, %eax
shll $3, %eax
orl X, %eax
movl %eax, X
ret
The problem is the store's chain operand is not the load X but rather
a TokenFactor of the load X and load Y, which prevents the folding.
There are two ways to fix this:
1. The dag combiner can start using alias analysis to realize that y/x
don't alias, making the store to X not dependent on the load from Y.
2. The generated isel could be made smarter in the case it can't
disambiguate the pointers.
Number 1 is the preferred solution.
This has been "fixed" by a TableGen hack. But that is a short term workaround
which will be removed once the proper fix is made.
//===---------------------------------------------------------------------===//
On targets with expensive 64-bit multiply, we could LSR this:
for (i = ...; ++i) {
x = 1ULL << i;
into:
long long tmp = 1;
for (i = ...; ++i, tmp+=tmp)
x = tmp;
This would be a win on ppc32, but not x86 or ppc64.
//===---------------------------------------------------------------------===//
Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
//===---------------------------------------------------------------------===//
Reassociate should turn: X*X*X*X -> t=(X*X) (t*t) to eliminate a multiply.
//===---------------------------------------------------------------------===//
Interesting? testcase for add/shift/mul reassoc:
int bar(int x, int y) {
return x*x*x+y+x*x*x*x*x*y*y*y*y;
}
int foo(int z, int n) {
return bar(z, n) + bar(2*z, 2*n);
}
Reassociate should handle the example in GCC PR16157.
//===---------------------------------------------------------------------===//
These two functions should generate the same code on big-endian systems:
int g(int *j,int *l) { return memcmp(j,l,4); }
int h(int *j, int *l) { return *j - *l; }
this could be done in SelectionDAGISel.cpp, along with other special cases,
for 1,2,4,8 bytes.
//===---------------------------------------------------------------------===//
It would be nice to revert this patch:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
And teach the dag combiner enough to simplify the code expanded before
legalize. It seems plausible that this knowledge would let it simplify other
stuff too.
//===---------------------------------------------------------------------===//
For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal
to the type size. It works but can be overly conservative as the alignment of
specific vector types are target dependent.
//===---------------------------------------------------------------------===//
We should add 'unaligned load/store' nodes, and produce them from code like
this:
v4sf example(float *P) {
return (v4sf){P[0], P[1], P[2], P[3] };
}
//===---------------------------------------------------------------------===//
Add support for conditional increments, and other related patterns. Instead
of:
movl 136(%esp), %eax
cmpl $0, %eax
je LBB16_2 #cond_next
LBB16_1: #cond_true
incl _foo
LBB16_2: #cond_next
emit:
movl _foo, %eax
cmpl $1, %edi
sbbl $-1, %eax
movl %eax, _foo
//===---------------------------------------------------------------------===//
Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
Expand these to calls of sin/cos and stores:
double sincos(double x, double *sin, double *cos);
float sincosf(float x, float *sin, float *cos);
long double sincosl(long double x, long double *sin, long double *cos);
Doing so could allow SROA of the destination pointers. See also:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
//===---------------------------------------------------------------------===//
Scalar Repl cannot currently promote this testcase to 'ret long cst':
%struct.X = type { i32, i32 }
%struct.Y = type { %struct.X }
define i64 @bar() {
%retval = alloca %struct.Y, align 8
%tmp12 = getelementptr %struct.Y* %retval, i32 0, i32 0, i32 0
store i32 0, i32* %tmp12
%tmp15 = getelementptr %struct.Y* %retval, i32 0, i32 0, i32 1
store i32 1, i32* %tmp15
%retval.upgrd.1 = bitcast %struct.Y* %retval to i64*
%retval.upgrd.2 = load i64* %retval.upgrd.1
ret i64 %retval.upgrd.2
}
it should be extended to do so.
//===---------------------------------------------------------------------===//
-scalarrepl should promote this to be a vector scalar.
%struct..0anon = type { <4 x float> }
define void @test1(<4 x float> %V, float* %P) {
%u = alloca %struct..0anon, align 16
%tmp = getelementptr %struct..0anon* %u, i32 0, i32 0
store <4 x float> %V, <4 x float>* %tmp
%tmp1 = bitcast %struct..0anon* %u to [4 x float]*
%tmp.upgrd.1 = getelementptr [4 x float]* %tmp1, i32 0, i32 1
%tmp.upgrd.2 = load float* %tmp.upgrd.1
%tmp3 = mul float %tmp.upgrd.2, 2.000000e+00
store float %tmp3, float* %P
ret void
}
//===---------------------------------------------------------------------===//
Turn this into a single byte store with no load (the other 3 bytes are
unmodified):
void %test(uint* %P) {
%tmp = load uint* %P
%tmp14 = or uint %tmp, 3305111552
%tmp15 = and uint %tmp14, 3321888767
store uint %tmp15, uint* %P
ret void
}
//===---------------------------------------------------------------------===//
dag/inst combine "clz(x)>>5 -> x==0" for 32-bit x.
Compile:
int bar(int x)
{
int t = __builtin_clz(x);
return -(t>>5);
}
to:
_bar: addic r3,r3,-1
subfe r3,r3,r3
blr
//===---------------------------------------------------------------------===//
Legalize should lower ctlz like this:
ctlz(x) = popcnt((x-1) & ~x)
on targets that have popcnt but not ctlz. itanium, what else?
//===---------------------------------------------------------------------===//
quantum_sigma_x in 462.libquantum contains the following loop:
for(i=0; i<reg->size; i++)
{
/* Flip the target bit of each basis state */
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
}
Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just
so cool to turn it into something like:
long long Res = ((MAX_UNSIGNED) 1 << target);
if (target < 32) {
for(i=0; i<reg->size; i++)
reg->node[i].state ^= Res & 0xFFFFFFFFULL;
} else {
for(i=0; i<reg->size; i++)
reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
}
... which would only do one 32-bit XOR per loop iteration instead of two.
It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
alas...
//===---------------------------------------------------------------------===//
This isn't recognized as bswap by instcombine (yes, it really is bswap):
unsigned long reverse(unsigned v) {
unsigned t;
t = v ^ ((v << 16) | (v >> 16));
t &= ~0xff0000;
v = (v << 24) | (v >> 8);
return v ^ (t >> 8);
}
//===---------------------------------------------------------------------===//
These idioms should be recognized as popcount (see PR1488):
unsigned countbits_slow(unsigned v) {
unsigned c;
for (c = 0; v; v >>= 1)
c += v & 1;
return c;
}
unsigned countbits_fast(unsigned v){
unsigned c;
for (c = 0; v; c++)
v &= v - 1; // clear the least significant bit set
return c;
}
BITBOARD = unsigned long long
int PopCnt(register BITBOARD a) {
register int c=0;
while(a) {
c++;
a &= a - 1;
}
return c;
}
unsigned int popcount(unsigned int input) {
unsigned int count = 0;
for (unsigned int i = 0; i < 4 * 8; i++)
count += (input >> i) & i;
return count;
}
//===---------------------------------------------------------------------===//
These should turn into single 16-bit (unaligned?) loads on little/big endian
processors.
unsigned short read_16_le(const unsigned char *adr) {
return adr[0] | (adr[1] << 8);
}
unsigned short read_16_be(const unsigned char *adr) {
return (adr[0] << 8) | adr[1];
}
//===---------------------------------------------------------------------===//
-instcombine should handle this transform:
icmp pred (sdiv X / C1 ), C2
when X, C1, and C2 are unsigned. Similarly for udiv and signed operands.
Currently InstCombine avoids this transform but will do it when the signs of
the operands and the sign of the divide match. See the FIXME in
InstructionCombining.cpp in the visitSetCondInst method after the switch case
for Instruction::UDiv (around line 4447) for more details.
The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
this construct.
//===---------------------------------------------------------------------===//
viterbi speeds up *significantly* if the various "history" related copy loops
are turned into memcpy calls at the source level. We need a "loops to memcpy"
pass.
//===---------------------------------------------------------------------===//
Consider:
typedef unsigned U32;
typedef unsigned long long U64;
int test (U32 *inst, U64 *regs) {
U64 effective_addr2;
U32 temp = *inst;
int r1 = (temp >> 20) & 0xf;
int b2 = (temp >> 16) & 0xf;
effective_addr2 = temp & 0xfff;
if (b2) effective_addr2 += regs[b2];
b2 = (temp >> 12) & 0xf;
if (b2) effective_addr2 += regs[b2];
effective_addr2 &= regs[4];
if ((effective_addr2 & 3) == 0)
return 1;
return 0;
}
Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems,
we don't eliminate the computation of the top half of effective_addr2 because
we don't have whole-function selection dags. On x86, this means we use one
extra register for the function when effective_addr2 is declared as U64 than
when it is declared U32.
//===---------------------------------------------------------------------===//
Promote for i32 bswap can use i64 bswap + shr. Useful on targets with 64-bit
regs and bswap, like itanium.
//===---------------------------------------------------------------------===//
LSR should know what GPR types a target has. This code:
volatile short X, Y; // globals
void foo(int N) {
int i;
for (i = 0; i < N; i++) { X = i; Y = i*4; }
}
produces two identical IV's (after promotion) on PPC/ARM:
LBB1_1: @bb.preheader
mov r3, #0
mov r2, r3
mov r1, r3
LBB1_2: @bb
ldr r12, LCPI1_0
ldr r12, [r12]
strh r2, [r12]
ldr r12, LCPI1_1
ldr r12, [r12]
strh r3, [r12]
add r1, r1, #1 <- [0,+,1]
add r3, r3, #4
add r2, r2, #1 <- [0,+,1]
cmp r1, r0
bne LBB1_2 @bb
//===---------------------------------------------------------------------===//
Tail call elim should be more aggressive, checking to see if the call is
followed by an uncond branch to an exit block.
; This testcase is due to tail-duplication not wanting to copy the return
; instruction into the terminating blocks because there was other code
; optimized out of the function after the taildup happened.
; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
define i32 @t4(i32 %a) {
entry:
%tmp.1 = and i32 %a, 1 ; <i32> [#uses=1]
%tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1]
br i1 %tmp.2, label %then.0, label %else.0
then.0: ; preds = %entry
%tmp.5 = add i32 %a, -1 ; <i32> [#uses=1]
%tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1]
br label %return
else.0: ; preds = %entry
%tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1]
br i1 %tmp.7, label %then.1, label %return
then.1: ; preds = %else.0
%tmp.11 = add i32 %a, -2 ; <i32> [#uses=1]
%tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1]
br label %return
return: ; preds = %then.1, %else.0, %then.0
%result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
[ %tmp.9, %then.1 ]
ret i32 %result.0
}
//===---------------------------------------------------------------------===//
Tail recursion elimination is not transforming this function, because it is
returning n, which fails the isDynamicConstant check in the accumulator
recursion checks.
long long fib(const long long n) {
switch(n) {
case 0:
case 1:
return n;
default:
return fib(n-1) + fib(n-2);
}
}
//===---------------------------------------------------------------------===//
Tail recursion elimination should handle:
int pow2m1(int n) {
if (n == 0)
return 0;
return 2 * pow2m1 (n - 1) + 1;
}
Also, multiplies can be turned into SHL's, so they should be handled as if
they were associative. "return foo() << 1" can be tail recursion eliminated.
//===---------------------------------------------------------------------===//
Argument promotion should promote arguments for recursive functions, like
this:
; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
define internal i32 @foo(i32* %x) {
entry:
%tmp = load i32* %x ; <i32> [#uses=0]
%tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
ret i32 %tmp.foo
}
define i32 @bar(i32* %x) {
entry:
%tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
ret i32 %tmp3
}
//===---------------------------------------------------------------------===//
"basicaa" should know how to look through "or" instructions that act like add
instructions. For example in this code, the x*4+1 is turned into x*4 | 1, and
basicaa can't analyze the array subscript, leading to duplicated loads in the
generated code:
void test(int X, int Y, int a[]) {
int i;
for (i=2; i<1000; i+=4) {
a[i+0] = a[i-1+0]*a[i-2+0];
a[i+1] = a[i-1+1]*a[i-2+1];
a[i+2] = a[i-1+2]*a[i-2+2];
a[i+3] = a[i-1+3]*a[i-2+3];
}
}
//===---------------------------------------------------------------------===//
We should investigate an instruction sinking pass. Consider this silly
example in pic mode:
#include <assert.h>
void foo(int x) {
assert(x);
//...
}
we compile this to:
_foo:
subl $28, %esp
call "L1$pb"
"L1$pb":
popl %eax
cmpl $0, 32(%esp)
je LBB1_2 # cond_true
LBB1_1: # return
# ...
addl $28, %esp
ret
LBB1_2: # cond_true
...
The PIC base computation (call+popl) is only used on one path through the
code, but is currently always computed in the entry block. It would be
better to sink the picbase computation down into the block for the
assertion, as it is the only one that uses it. This happens for a lot of
code with early outs.
Another example is loads of arguments, which are usually emitted into the
entry block on targets like x86. If not used in all paths through a
function, they should be sunk into the ones that do.
In this case, whole-function-isel would also handle this.
//===---------------------------------------------------------------------===//
Investigate lowering of sparse switch statements into perfect hash tables:
http://burtleburtle.net/bob/hash/perfect.html
//===---------------------------------------------------------------------===//
We should turn things like "load+fabs+store" and "load+fneg+store" into the
corresponding integer operations. On a yonah, this loop:
double a[256];
void foo() {
int i, b;
for (b = 0; b < 10000000; b++)
for (i = 0; i < 256; i++)
a[i] = -a[i];
}
is twice as slow as this loop:
long long a[256];
void foo() {
int i, b;
for (b = 0; b < 10000000; b++)
for (i = 0; i < 256; i++)
a[i] ^= (1ULL << 63);
}
and I suspect other processors are similar. On X86 in particular this is a
big win because doing this with integers allows the use of read/modify/write
instructions.
//===---------------------------------------------------------------------===//
DAG Combiner should try to combine small loads into larger loads when
profitable. For example, we compile this C++ example:
struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
extern THotKey m_HotKey;
THotKey GetHotKey () { return m_HotKey; }
into (-O3 -fno-exceptions -static -fomit-frame-pointer):
__Z9GetHotKeyv:
pushl %esi
movl 8(%esp), %eax
movb _m_HotKey+3, %cl
movb _m_HotKey+4, %dl
movb _m_HotKey+2, %ch
movw _m_HotKey, %si
movw %si, (%eax)
movb %ch, 2(%eax)
movb %cl, 3(%eax)
movb %dl, 4(%eax)
popl %esi
ret $4
GCC produces:
__Z9GetHotKeyv:
movl _m_HotKey, %edx
movl 4(%esp), %eax
movl %edx, (%eax)
movzwl _m_HotKey+4, %edx
movw %dx, 4(%eax)
ret $4
The LLVM IR contains the needed alignment info, so we should be able to
merge the loads and stores into 4-byte loads:
%struct.THotKey = type { i16, i8, i8, i8 }
define void @_Z9GetHotKeyv(%struct.THotKey* sret %agg.result) nounwind {
...
%tmp2 = load i16* getelementptr (@m_HotKey, i32 0, i32 0), align 8
%tmp5 = load i8* getelementptr (@m_HotKey, i32 0, i32 1), align 2
%tmp8 = load i8* getelementptr (@m_HotKey, i32 0, i32 2), align 1
%tmp11 = load i8* getelementptr (@m_HotKey, i32 0, i32 3), align 2
Alternatively, we should use a small amount of base-offset alias analysis
to make it so the scheduler doesn't need to hold all the loads in regs at
once.
//===---------------------------------------------------------------------===//
We should extend parameter attributes to capture more information about
pointer parameters for alias analysis. Some ideas:
1. Add a "nocapture" attribute, which indicates that the callee does not store
the address of the parameter into a global or any other memory location
visible to the callee. This can be used to make basicaa and other analyses
more powerful. It is true for things like memcpy, strcat, and many other
things, including structs passed by value, most C++ references, etc.
2. Generalize readonly to be set on parameters. This is important mod/ref
info for the function, which is important for basicaa and others. It can
also be used by the inliner to avoid inserting a memcpy for byval
arguments when the function is inlined.
These functions can be inferred by various analysis passes such as the
globalsmodrefaa pass. Note that getting #2 right is actually really tricky.
Consider this code:
struct S; S G;
void caller(S byvalarg) { G.field = 1; ... }
void callee() { caller(G); }
The fact that the caller does not modify byval arg is not enough, we need
to know that it doesn't modify G either. This is very tricky.
//===---------------------------------------------------------------------===//
We should add an FRINT node to the DAG to model targets that have legal
implementations of ceil/floor/rint.
//===---------------------------------------------------------------------===//
This GCC bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34043
contains a testcase that compiles down to:
%struct.XMM128 = type { <4 x float> }
..
%src = alloca %struct.XMM128
..
%tmp6263 = bitcast %struct.XMM128* %src to <2 x i64>*
%tmp65 = getelementptr %struct.XMM128* %src, i32 0, i32 0
store <2 x i64> %tmp5899, <2 x i64>* %tmp6263, align 16
%tmp66 = load <4 x float>* %tmp65, align 16
%tmp71 = add <4 x float> %tmp66, %tmp66
If the mid-level optimizer turned the bitcast of pointer + store of tmp5899
into a bitcast of the vector value and a store to the pointer, then the
store->load could be easily removed.
//===---------------------------------------------------------------------===//
Consider:
int test() {
long long input[8] = {1,1,1,1,1,1,1,1};
foo(input);
}
We currently compile this into a memcpy from a global array since the
initializer is fairly large and not memset'able. This is good, but the memcpy
gets lowered to load/stores in the code generator. This is also ok, except
that the codegen lowering for memcpy doesn't handle the case when the source
is a constant global. This gives us atrocious code like this:
call "L1$pb"
"L1$pb":
popl %eax
movl _C.0.1444-"L1$pb"+32(%eax), %ecx
movl %ecx, 40(%esp)
movl _C.0.1444-"L1$pb"+20(%eax), %ecx
movl %ecx, 28(%esp)
movl _C.0.1444-"L1$pb"+36(%eax), %ecx
movl %ecx, 44(%esp)
movl _C.0.1444-"L1$pb"+44(%eax), %ecx
movl %ecx, 52(%esp)
movl _C.0.1444-"L1$pb"+40(%eax), %ecx
movl %ecx, 48(%esp)
movl _C.0.1444-"L1$pb"+12(%eax), %ecx
movl %ecx, 20(%esp)
movl _C.0.1444-"L1$pb"+4(%eax), %ecx
...
instead of:
movl $1, 16(%esp)
movl $0, 20(%esp)
movl $1, 24(%esp)
movl $0, 28(%esp)
movl $1, 32(%esp)
movl $0, 36(%esp)
...
//===---------------------------------------------------------------------===//
http://llvm.org/PR717:
The following code should compile into "ret int undef". Instead, LLVM
produces "ret int 0":
int f() {
int x = 4;
int y;
if (x == 3) y = 0;
return y;
}
//===---------------------------------------------------------------------===//
The loop unroller should partially unroll loops (instead of peeling them)
when code growth isn't too bad and when an unroll count allows simplification
of some code within the loop. One trivial example is:
#include <stdio.h>
int main() {
int nRet = 17;
int nLoop;
for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
if ( nLoop & 1 )
nRet += 2;
else
nRet -= 1;
}
return nRet;
}
Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
reduction in code size. The resultant code would then also be suitable for
exit value computation.
//===---------------------------------------------------------------------===//
We miss a bunch of rotate opportunities on various targets, including ppc, x86,
etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate
matching code in dag combine doesn't look through truncates aggressively
enough. Here are some testcases reduces from GCC PR17886:
unsigned long long f(unsigned long long x, int y) {
return (x << y) | (x >> 64-y);
}
unsigned f2(unsigned x, int y){
return (x << y) | (x >> 32-y);
}
unsigned long long f3(unsigned long long x){
int y = 9;
return (x << y) | (x >> 64-y);
}
unsigned f4(unsigned x){
int y = 10;
return (x << y) | (x >> 32-y);
}
unsigned long long f5(unsigned long long x, unsigned long long y) {
return (x << 8) | ((y >> 48) & 0xffull);
}
unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
switch(z) {
case 1:
return (x << 8) | ((y >> 48) & 0xffull);
case 2:
return (x << 16) | ((y >> 40) & 0xffffull);
case 3:
return (x << 24) | ((y >> 32) & 0xffffffull);
case 4:
return (x << 32) | ((y >> 24) & 0xffffffffull);
default:
return (x << 40) | ((y >> 16) & 0xffffffffffull);
}
}
On X86-64, we only handle f3/f4 right. On x86-32, several of these
generate truly horrible code, instead of using shld and friends. On
ARM, we end up with calls to L___lshrdi3/L___ashldi3 in f, which is
badness. PPC64 misses f, f5 and f6. CellSPU aborts in isel.
//===---------------------------------------------------------------------===//
We do a number of simplifications in simplify libcalls to strength reduce
standard library functions, but we don't currently merge them together. For
example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only
be done safely if "b" isn't modified between the strlen and memcpy of course.
//===---------------------------------------------------------------------===//
We should be able to evaluate this loop:
int test(int x_offs) {
while (x_offs > 4)
x_offs -= 4;
return x_offs;
}
//===---------------------------------------------------------------------===//
Reassociate should turn things like:
int factorial(int X) {
return X*X*X*X*X*X*X*X;
}
into llvm.powi calls, allowing the code generator to produce balanced
multiplication trees.
//===---------------------------------------------------------------------===//
We generate a horrible libcall for llvm.powi. For example, we compile:
#include <cmath>
double f(double a) { return std::pow(a, 4); }
into:
__Z1fd:
subl $12, %esp
movsd 16(%esp), %xmm0
movsd %xmm0, (%esp)
movl $4, 8(%esp)
call L___powidf2$stub
addl $12, %esp
ret
GCC produces:
__Z1fd:
subl $12, %esp
movsd 16(%esp), %xmm0
mulsd %xmm0, %xmm0
mulsd %xmm0, %xmm0
movsd %xmm0, (%esp)
fldl (%esp)
addl $12, %esp
ret
//===---------------------------------------------------------------------===//
We compile this program: (from GCC PR11680)
http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
Into code that runs the same speed in fast/slow modes, but both modes run 2x
slower than when compile with GCC (either 4.0 or 4.2):
$ llvm-g++ perf.cpp -O3 -fno-exceptions
$ time ./a.out fast
1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w
$ g++ perf.cpp -O3 -fno-exceptions
$ time ./a.out fast
0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w
It looks like we are making the same inlining decisions, so this may be raw
codegen badness or something else (haven't investigated).
//===---------------------------------------------------------------------===//
We miss some instcombines for stuff like this:
void bar (void);
void foo (unsigned int a) {
/* This one is equivalent to a >= (3 << 2). */
if ((a >> 2) >= 3)
bar ();
}
A few other related ones are in GCC PR14753.
//===---------------------------------------------------------------------===//
Divisibility by constant can be simplified (according to GCC PR12849) from
being a mulhi to being a mul lo (cheaper). Testcase:
void bar(unsigned n) {
if (n % 3 == 0)
true();
}
I think this basically amounts to a dag combine to simplify comparisons against
multiply hi's into a comparison against the mullo.
//===---------------------------------------------------------------------===//
SROA is not promoting the union on the stack in this example, we should end
up with no allocas.
union vec2d {
double e[2];
double v __attribute__((vector_size(16)));
};
typedef union vec2d vec2d;
static vec2d a={{1,2}}, b={{3,4}};
vec2d foo () {
return (vec2d){ .v = a.v + b.v * (vec2d){{5,5}}.v };
}
//===---------------------------------------------------------------------===//
This C++ file:
void g(); struct A { int n; int m; A& operator++(void) { ++n; if (n == m) g();
return *this; } A() : n(0), m(0) { } friend bool operator!=(A const& a1,
A const& a2) { return a1.n != a2.n; } }; void testfunction(A& iter) { A const
end; while (iter != end) ++iter; }
Compiles down to:
bb: ; preds = %bb3.backedge, %bb.nph
%.rle = phi i32 [ %1, %bb.nph ], [ %7, %bb3.backedge ] ; <i32> [#uses=1]
%4 = add i32 %.rle, 1 ; <i32> [#uses=2]
store i32 %4, i32* %0, align 4
%5 = load i32* %3, align 4 ; <i32> [#uses=1]
%6 = icmp eq i32 %4, %5 ; <i1> [#uses=1]
br i1 %6, label %bb1, label %bb3.backedge
bb1: ; preds = %bb
tail call void @_Z1gv()
br label %bb3.backedge
bb3.backedge: ; preds = %bb, %bb1
%7 = load i32* %0, align 4 ; <i32> [#uses=2]
The %7 load is partially redundant with the store of %4 to %0, GVN's PRE
should remove it, but it doesn't apply to memory objects.
//===---------------------------------------------------------------------===//
Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
bunch of other stuff from this example (see PR1604):
#include <cstdio>
struct test {
int val;
virtual ~test() {}
};
int main() {
test t;
std::scanf("%d", &t.val);
std::printf("%d\n", t.val);
}
//===---------------------------------------------------------------------===//
Instcombine will merge comparisons like (x >= 10) && (x < 20) by producing (x -
10) u< 10, but only when the comparisons have matching sign.
This could be converted with a similiar technique. (PR1941)
define i1 @test(i8 %x) {
%A = icmp uge i8 %x, 5
%B = icmp slt i8 %x, 20
%C = and i1 %A, %B
ret i1 %C
}
//===---------------------------------------------------------------------===//
|