aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Sparc/SparcAsmPrinter.cpp
blob: 30e09ee8fdcdc3c2b4eb7ecd815eb934153053a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
//===-- SparcV8AsmPrinter.cpp - SparcV8 LLVM assembly writer --------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format Sparc V8 assembly language.
//
//===----------------------------------------------------------------------===//

#include "SparcV8.h"
#include "SparcV8InstrInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include <cctype>
using namespace llvm;

namespace {
  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");

  struct V8Printer : public MachineFunctionPass {
    /// Output stream on which we're printing assembly code.
    ///
    std::ostream &O;

    /// Target machine description which we query for reg. names, data
    /// layout, etc.
    ///
    TargetMachine &TM;

    /// Name-mangler for global names.
    ///
    Mangler *Mang;

    V8Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }

    /// We name each basic block in a Function with a unique number, so
    /// that we can consistently refer to them later. This is cleared
    /// at the beginning of each call to runOnMachineFunction().
    ///
    typedef std::map<const Value *, unsigned> ValueMapTy;
    ValueMapTy NumberForBB;

    /// Cache of mangled name for current function. This is
    /// recalculated at the beginning of each call to
    /// runOnMachineFunction().
    ///
    std::string CurrentFnName;

    virtual const char *getPassName() const {
      return "SparcV8 Assembly Printer";
    }

    void emitConstantValueOnly(const Constant *CV);
    void emitGlobalConstant(const Constant *CV);
    void printConstantPool(MachineConstantPool *MCP);
    void printOperand(const MachineInstr *MI, int opNum);
    void printBaseOffsetPair (const MachineInstr *MI, int i, bool brackets=true);
    void printMachineInstruction(const MachineInstr *MI);
    bool runOnMachineFunction(MachineFunction &F);    
    bool doInitialization(Module &M);
    bool doFinalization(Module &M);
  };
} // end of anonymous namespace

/// createSparcV8CodePrinterPass - Returns a pass that prints the SparcV8
/// assembly code for a MachineFunction to the given output stream,
/// using the given target machine description.  This should work
/// regardless of whether the function is in SSA form.
///
FunctionPass *llvm::createSparcV8CodePrinterPass (std::ostream &o,
                                                  TargetMachine &tm) {
  return new V8Printer(o, tm);
}

/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
  return (X&7)+'0';
}

/// getAsCString - Return the specified array as a C compatible
/// string, only if the predicate isStringCompatible is true.
///
static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
  assert(CVA->isString() && "Array is not string compatible!");

  O << "\"";
  for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();

    if (C == '"') {
      O << "\\\"";
    } else if (C == '\\') {
      O << "\\\\";
    } else if (isprint(C)) {
      O << C;
    } else {
      switch(C) {
      case '\b': O << "\\b"; break;
      case '\f': O << "\\f"; break;
      case '\n': O << "\\n"; break;
      case '\r': O << "\\r"; break;
      case '\t': O << "\\t"; break;
      default:
        O << '\\';
        O << toOctal(C >> 6);
        O << toOctal(C >> 3);
        O << toOctal(C >> 0);
        break;
      }
    }
  }
  O << "\"";
}

// Print out the specified constant, without a storage class.  Only the
// constants valid in constant expressions can occur here.
void V8Printer::emitConstantValueOnly(const Constant *CV) {
  if (CV->isNullValue() || isa<UndefValue> (CV))
    O << "0";
  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
    assert(CB == ConstantBool::True);
    O << "1";
  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
    if (((CI->getValue() << 32) >> 32) == CI->getValue())
      O << CI->getValue();
    else
      O << (unsigned long long)CI->getValue();
  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
    O << CI->getValue();
  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
    // This is a constant address for a global variable or function.  Use the
    // name of the variable or function as the address value.
    O << Mang->getValueName(GV);
  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    const TargetData &TD = TM.getTargetData();
    switch(CE->getOpcode()) {
    case Instruction::GetElementPtr: {
      // generate a symbolic expression for the byte address
      const Constant *ptrVal = CE->getOperand(0);
      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
        O << "(";
        emitConstantValueOnly(ptrVal);
        O << ") + " << Offset;
      } else {
        emitConstantValueOnly(ptrVal);
      }
      break;
    }
    case Instruction::Cast: {
      // Support only non-converting or widening casts for now, that is, ones
      // that do not involve a change in value.  This assertion is really gross,
      // and may not even be a complete check.
      Constant *Op = CE->getOperand(0);
      const Type *OpTy = Op->getType(), *Ty = CE->getType();

      // Pointers on ILP32 machines can be losslessly converted back and
      // forth into 32-bit or wider integers, regardless of signedness.
      assert(((isa<PointerType>(OpTy)
               && (Ty == Type::LongTy || Ty == Type::ULongTy
                   || Ty == Type::IntTy || Ty == Type::UIntTy))
              || (isa<PointerType>(Ty)
                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
                   && OpTy->isLosslesslyConvertibleTo(Ty))))
             && "FIXME: Don't yet support this kind of constant cast expr");
      O << "(";
      emitConstantValueOnly(Op);
      O << ")";
      break;
    }
    case Instruction::Add:
      O << "(";
      emitConstantValueOnly(CE->getOperand(0));
      O << ") + (";
      emitConstantValueOnly(CE->getOperand(1));
      O << ")";
      break;
    default:
      assert(0 && "Unsupported operator!");
    }
  } else {
    assert(0 && "Unknown constant value!");
  }
}

// Print a constant value or values, with the appropriate storage class as a
// prefix.
void V8Printer::emitGlobalConstant(const Constant *CV) {  
  const TargetData &TD = TM.getTargetData();

  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
    if (CVA->isString()) {
      O << "\t.ascii\t";
      printAsCString(O, CVA);
      O << "\n";
    } else { // Not a string.  Print the values in successive locations
      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; i++)
        emitGlobalConstant(CVA->getOperand(i));
    }
    return;
  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
    // Print the fields in successive locations. Pad to align if needed!
    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
    unsigned sizeSoFar = 0;
    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; i++) {
      const Constant* field = CVS->getOperand(i);

      // Check if padding is needed and insert one or more 0s.
      unsigned fieldSize = TD.getTypeSize(field->getType());
      unsigned padSize = ((i == e-1? cvsLayout->StructSize
                           : cvsLayout->MemberOffsets[i+1])
                          - cvsLayout->MemberOffsets[i]) - fieldSize;
      sizeSoFar += fieldSize + padSize;

      // Now print the actual field value
      emitGlobalConstant(field);

      // Insert the field padding unless it's zero bytes...
      if (padSize)
        O << "\t.skip\t " << padSize << "\n";      
    }
    assert(sizeSoFar == cvsLayout->StructSize &&
           "Layout of constant struct may be incorrect!");
    return;
  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    // FP Constants are printed as integer constants to avoid losing
    // precision...
    double Val = CFP->getValue();
    switch (CFP->getType()->getTypeID()) {
    default: assert(0 && "Unknown floating point type!");
    case Type::FloatTyID: {
      union FU {                            // Abide by C TBAA rules
        float FVal;
        unsigned UVal;
      } U;
      U.FVal = Val;
      O << ".long\t" << U.UVal << "\t! float " << Val << "\n";
      return;
    }
    case Type::DoubleTyID: {
      union DU {                            // Abide by C TBAA rules
        double FVal;
        uint64_t UVal;
      } U;
      U.FVal = Val;
      O << ".word\t0x" << std::hex << (U.UVal >> 32) << std::dec << "\t! double " << Val << "\n";
      O << ".word\t0x" << std::hex << (U.UVal & 0xffffffffUL) << std::dec << "\t! double " << Val << "\n";
      return;
    }
    }
  } else if (isa<UndefValue> (CV)) {
    unsigned size = TD.getTypeSize (CV->getType ());
    O << "\t.skip\t " << size << "\n";      
    return;
  }

  const Type *type = CV->getType();
  O << "\t";
  switch (type->getTypeID()) {
  case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
    O << ".byte";
    break;
  case Type::UShortTyID: case Type::ShortTyID:
    O << ".word";
    break;
  case Type::FloatTyID: case Type::PointerTyID:
  case Type::UIntTyID: case Type::IntTyID:
    O << ".long";
    break;
  case Type::DoubleTyID:
  case Type::ULongTyID: case Type::LongTyID:
    O << ".quad";
    break;
  default:
    assert (0 && "Can't handle printing this type of thing");
    break;
  }
  O << "\t";
  emitConstantValueOnly(CV);
  O << "\n";
}

/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void V8Printer::printConstantPool(MachineConstantPool *MCP) {
  const std::vector<Constant*> &CP = MCP->getConstants();
  const TargetData &TD = TM.getTargetData();
 
  if (CP.empty()) return;

  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
    O << "\t.section \".rodata\"\n";
    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
      << "\n";
    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t!"
      << *CP[i] << "\n";
    emitGlobalConstant(CP[i]);
  }
}

/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool V8Printer::runOnMachineFunction(MachineFunction &MF) {
  // BBNumber is used here so that a given Printer will never give two
  // BBs the same name. (If you have a better way, please let me know!)
  static unsigned BBNumber = 0;

  O << "\n\n";
  // What's my mangled name?
  CurrentFnName = Mang->getValueName(MF.getFunction());

  // Print out constants referenced by the function
  printConstantPool(MF.getConstantPool());

  // Print out labels for the function.
  O << "\t.text\n";
  O << "\t.align 16\n";
  O << "\t.globl\t" << CurrentFnName << "\n";
  O << "\t.type\t" << CurrentFnName << ", #function\n";
  O << CurrentFnName << ":\n";

  // Number each basic block so that we can consistently refer to them
  // in PC-relative references.
  NumberForBB.clear();
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    NumberForBB[I->getBasicBlock()] = BBNumber++;
  }

  // Print out code for the function.
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    // Print a label for the basic block.
    O << ".LBB" << Mang->getValueName(MF.getFunction ())
      << "_" << I->getNumber () << ":\t! "
      << I->getBasicBlock ()->getName () << "\n";
    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
	 II != E; ++II) {
      // Print the assembly for the instruction.
      O << "\t";
      printMachineInstruction(II);
    }
  }

  // We didn't modify anything.
  return false;
}

void V8Printer::printOperand(const MachineInstr *MI, int opNum) {
  const MachineOperand &MO = MI->getOperand (opNum);
  const MRegisterInfo &RI = *TM.getRegisterInfo();
  bool CloseParen = false;
  if (MI->getOpcode() == V8::SETHIi && !MO.isRegister() && !MO.isImmediate()) {
    O << "%hi(";
    CloseParen = true;
  } else if (MI->getOpcode() ==V8::ORri &&!MO.isRegister() &&!MO.isImmediate())
  {
    O << "%lo(";
    CloseParen = true;
  }
  switch (MO.getType()) {
  case MachineOperand::MO_VirtualRegister:
    if (Value *V = MO.getVRegValueOrNull()) {
      O << "<" << V->getName() << ">";
      break;
    }
    // FALLTHROUGH
  case MachineOperand::MO_MachineRegister:
    if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
      O << "%" << LowercaseString (RI.get(MO.getReg()).Name);
    else
      O << "%reg" << MO.getReg();
    break;

  case MachineOperand::MO_SignExtendedImmed:
  case MachineOperand::MO_UnextendedImmed:
    O << (int)MO.getImmedValue();
    break;
  case MachineOperand::MO_MachineBasicBlock: {
    MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
    O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
      << "_" << MBBOp->getNumber () << "\t! "
      << MBBOp->getBasicBlock ()->getName ();
    return;
  }
  case MachineOperand::MO_PCRelativeDisp:
    std::cerr << "Shouldn't use addPCDisp() when building SparcV8 MachineInstrs";
    abort ();
    return;
  case MachineOperand::MO_GlobalAddress:
    O << Mang->getValueName(MO.getGlobal());
    break;
  case MachineOperand::MO_ExternalSymbol:
    O << MO.getSymbolName();
    break;
  case MachineOperand::MO_ConstantPoolIndex:
    O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex();
    break;
  default:
    O << "<unknown operand type>"; abort (); break;    
  }
  if (CloseParen) O << ")";
}

static bool isLoadInstruction (const MachineInstr *MI) {
  switch (MI->getOpcode ()) {
  case V8::LDSB:
  case V8::LDSH:
  case V8::LDUB:
  case V8::LDUH:
  case V8::LD:
  case V8::LDD:
  case V8::LDFrr:
  case V8::LDFri:
  case V8::LDDFrr:
  case V8::LDDFri:
    return true;
  default:
    return false;
  }
}

static bool isStoreInstruction (const MachineInstr *MI) {
  switch (MI->getOpcode ()) {
  case V8::STB:
  case V8::STH:
  case V8::ST:
  case V8::STD:
  case V8::STFrr:
  case V8::STFri:
  case V8::STDFrr:
  case V8::STDFri:
    return true;
  default:
    return false;
  }
}

static bool isPseudoInstruction (const MachineInstr *MI) {
  switch (MI->getOpcode ()) {
  case V8::PHI:
  case V8::ADJCALLSTACKUP:
  case V8::ADJCALLSTACKDOWN:
  case V8::IMPLICIT_USE:
  case V8::IMPLICIT_DEF:
    return true;
  default:
    return false;
  }
}

/// printBaseOffsetPair - Print two consecutive operands of MI, starting at #i,
/// which form a base + offset pair (which may have brackets around it, if
/// brackets is true, or may be in the form base - constant, if offset is a
/// negative constant).
///
void V8Printer::printBaseOffsetPair (const MachineInstr *MI, int i,
                                     bool brackets) {
  if (brackets) O << "[";
  printOperand (MI, i);
  if (MI->getOperand (i + 1).isImmediate()) {
    int Val = (int) MI->getOperand (i + 1).getImmedValue ();
    if (Val != 0) {
      O << ((Val >= 0) ? " + " : " - ");
      O << ((Val >= 0) ? Val : -Val);
    }
  } else {
    O << " + ";
    printOperand (MI, i + 1);
  }
  if (brackets) O << "]";
}

/// printMachineInstruction -- Print out a single SparcV8 LLVM instruction
/// MI in GAS syntax to the current output stream.
///
void V8Printer::printMachineInstruction(const MachineInstr *MI) {
  unsigned Opcode = MI->getOpcode();
  const TargetInstrInfo &TII = *TM.getInstrInfo();
  const TargetInstrDescriptor &Desc = TII.get(Opcode);

  // If it's a pseudo-instruction, comment it out.
  if (isPseudoInstruction (MI))
    O << "! ";

  O << Desc.Name << " ";
  
  // Printing memory instructions is a special case.
  // for loads:  %dest = op %base, offset --> op [%base + offset], %dest
  // for stores: op %base, offset, %src   --> op %src, [%base + offset]
  if (isLoadInstruction (MI)) {
    printBaseOffsetPair (MI, 1);
    O << ", ";
    printOperand (MI, 0);
    O << "\n";
    return;
  } else if (isStoreInstruction (MI)) {
    printOperand (MI, 2);
    O << ", ";
    printBaseOffsetPair (MI, 0);
    O << "\n";
    return;
  } else if (Opcode == V8::JMPLrr) {
    printBaseOffsetPair (MI, 1, false);
    O << ", ";
    printOperand (MI, 0);
    O << "\n";
    return;
  }

  // print non-immediate, non-register-def operands
  // then print immediate operands
  // then print register-def operands.
  std::vector<int> print_order;
  for (unsigned i = 0; i < MI->getNumOperands (); ++i)
    if (!(MI->getOperand (i).isImmediate ()
          || (MI->getOperand (i).isRegister ()
              && MI->getOperand (i).isDef ())))
      print_order.push_back (i);
  for (unsigned i = 0; i < MI->getNumOperands (); ++i)
    if (MI->getOperand (i).isImmediate ())
      print_order.push_back (i);
  for (unsigned i = 0; i < MI->getNumOperands (); ++i)
    if (MI->getOperand (i).isRegister () && MI->getOperand (i).isDef ())
      print_order.push_back (i);
  for (unsigned i = 0, e = print_order.size (); i != e; ++i) { 
    printOperand (MI, print_order[i]);
    if (i != (print_order.size () - 1))
      O << ", ";
  }
  O << "\n";
}

bool V8Printer::doInitialization(Module &M) {
  Mang = new Mangler(M);
  return false; // success
}

// SwitchSection - Switch to the specified section of the executable if we are
// not already in it!
//
static void SwitchSection(std::ostream &OS, std::string &CurSection,
                          const char *NewSection) {
  if (CurSection != NewSection) {
    CurSection = NewSection;
    if (!CurSection.empty())
      OS << "\t.section \"" << NewSection << "\"\n";
  }
}

bool V8Printer::doFinalization(Module &M) {
  const TargetData &TD = TM.getTargetData();
  std::string CurSection;

  // Print out module-level global variables here.
  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
    if (I->hasInitializer()) {   // External global require no code
      O << "\n\n";
      std::string name = Mang->getValueName(I);
      Constant *C = I->getInitializer();
      unsigned Size = TD.getTypeSize(C->getType());
      unsigned Align = TD.getTypeAlignment(C->getType());

      if (C->isNullValue() && 
          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
        SwitchSection(O, CurSection, ".data");
        if (I->hasInternalLinkage())
          O << "\t.local " << name << "\n";
        
        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
          << "," << (unsigned)TD.getTypeAlignment(C->getType());
        O << "\t\t! ";
        WriteAsOperand(O, I, true, true, &M);
        O << "\n";
      } else {
        switch (I->getLinkage()) {
        case GlobalValue::LinkOnceLinkage:
        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
          // Nonnull linkonce -> weak
          O << "\t.weak " << name << "\n";
          SwitchSection(O, CurSection, "");
          O << "\t.section\t\".llvm.linkonce.d." << name << "\",\"aw\",@progbits\n";
          break;
        
        case GlobalValue::AppendingLinkage:
          // FIXME: appending linkage variables should go into a section of
          // their name or something.  For now, just emit them as external.
        case GlobalValue::ExternalLinkage:
          // If external or appending, declare as a global symbol
          O << "\t.globl " << name << "\n";
          // FALL THROUGH
        case GlobalValue::InternalLinkage:
          if (C->isNullValue())
            SwitchSection(O, CurSection, ".bss");
          else
            SwitchSection(O, CurSection, ".data");
          break;
        case GlobalValue::GhostLinkage:
          std::cerr << "Should not have any unmaterialized functions!\n";
          abort();
        }

        O << "\t.align " << Align << "\n";
        O << "\t.type " << name << ",#object\n";
        O << "\t.size " << name << "," << Size << "\n";
        O << name << ":\t\t\t\t! ";
        WriteAsOperand(O, I, true, true, &M);
        O << " = ";
        WriteAsOperand(O, C, false, false, &M);
        O << "\n";
        emitGlobalConstant(C);
      }
    }

  delete Mang;
  return false; // success
}