aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/Sparc/SparcCallingConv.td
blob: dfaaabf344a3ad692d71967d7a1d5982bdea287d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
//===-- SparcCallingConv.td - Calling Conventions Sparc ----*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for the Sparc architectures.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// SPARC v8 32-bit.
//===----------------------------------------------------------------------===//

def CC_Sparc32 : CallingConv<[
  // Custom assign SRet to [sp+64].
  CCIfSRet<CCCustom<"CC_Sparc_Assign_SRet">>,
  // i32 f32 arguments get passed in integer registers if there is space.
  CCIfType<[i32, f32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
  // f64 arguments are split and passed through registers or through stack.
  CCIfType<[f64], CCCustom<"CC_Sparc_Assign_f64">>,

  // Alternatively, they are assigned to the stack in 4-byte aligned units.
  CCAssignToStack<4, 4>
]>;

def RetCC_Sparc32 : CallingConv<[
  CCIfType<[i32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
  CCIfType<[f32], CCAssignToReg<[F0, F1, F2, F3]>>,
  CCIfType<[f64], CCAssignToReg<[D0, D1]>>
]>;


//===----------------------------------------------------------------------===//
// SPARC v9 64-bit.
//===----------------------------------------------------------------------===//
//
// The 64-bit ABI conceptually assigns all function arguments to a parameter
// array starting at [%fp+BIAS+128] in the callee's stack frame. All arguments
// occupy a multiple of 8 bytes in the array. Integer arguments are extended to
// 64 bits by the caller. Floats are right-aligned in their 8-byte slot, the
// first 4 bytes in the slot are undefined.
//
// The integer registers %i0 to %i5 shadow the first 48 bytes of the parameter
// array at fixed offsets. Integer arguments are promoted to registers when
// possible.
//
// The floating point registers %f0 to %f31 shadow the first 128 bytes of the
// parameter array at fixed offsets. Float and double parameters are promoted
// to these registers when possible.
//
// Structs up to 16 bytes in size are passed by value. They are right-aligned
// in one or two 8-byte slots in the parameter array. Struct members are
// promoted to both floating point and integer registers when possible. A
// struct containing two floats would thus be passed in %f0 and %f1, while two
// float function arguments would occupy 8 bytes each, and be passed in %f1 and
// %f3.
//
// When a struct { int, float } is passed by value, the int goes in the high
// bits of an integer register while the float goes in a floating point
// register.
//
// The difference is encoded in LLVM IR using the inreg atttribute on function
// arguments:
//
//   C:   void f(float, float);
//   IR:  declare void f(float %f1, float %f3)
//
//   C:   void f(struct { float f0, f1; });
//   IR:  declare void f(float inreg %f0, float inreg %f1)
//
//   C:   void f(int, float);
//   IR:  declare void f(int signext %i0, float %f3)
//
//   C:   void f(struct { int i0high; float f1; });
//   IR:  declare void f(i32 inreg %i0high, float inreg %f1)
//
// Two ints in a struct are simply coerced to i64:
//
//   C:   void f(struct { int i0high, i0low; });
//   IR:  declare void f(i64 %i0.coerced)
//
// The frontend and backend divide the task of producing ABI compliant code for
// C functions. The C frontend will:
//
//  - Annotate integer arguments with zeroext or signext attributes.
//
//  - Split structs into one or two 64-bit sized chunks, or 32-bit chunks with
//    inreg attributes.
//
//  - Pass structs larger than 16 bytes indirectly with an explicit pointer
//    argument. The byval attribute is not used.
//
// The backend will:
//
//  - Assign all arguments to 64-bit aligned stack slots, 32-bits for inreg.
//
//  - Promote to integer or floating point registers depending on type.
//
// Function return values are passed exactly like function arguments, except a
// struct up to 32 bytes in size can be returned in registers.

// Function arguments AND most return values.
def CC_Sparc64 : CallingConv<[
  // The frontend uses the inreg flag to indicate i32 and float arguments from
  // structs. These arguments are not promoted to 64 bits, but they can still
  // be assigned to integer and float registers.
  CCIfInReg<CCIfType<[i32, f32], CCCustom<"CC_Sparc64_Half">>>,

  // All integers are promoted to i64 by the caller.
  CCIfType<[i32], CCPromoteToType<i64>>,

  // Custom assignment is required because stack space is reserved for all
  // arguments whether they are passed in registers or not.
  CCCustom<"CC_Sparc64_Full">
]>;

def RetCC_Sparc64 : CallingConv<[
  // A single f32 return value always goes in %f0. The ABI doesn't specify what
  // happens to multiple f32 return values outside a struct.
  CCIfType<[f32], CCCustom<"CC_Sparc64_Half">>,

  // Otherwise, return values are passed exactly like arguments.
  CCDelegateTo<CC_Sparc64>
]>;

// Callee-saved registers are handled by the register window mechanism.
def CSR : CalleeSavedRegs<(add)> {
  let OtherPreserved = (add (sequence "I%u", 0, 7),
                            (sequence "L%u", 0, 7));
}

// Callee-saved registers for calls with ReturnsTwice attribute.
def RTCSR : CalleeSavedRegs<(add)> {
  let OtherPreserved = (add I6, I7);
}