1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
|
//===-- InstSelectSimple.cpp - A simple instruction selector for SparcV8 --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a simple peephole instruction selector for the V8 target
//
//===----------------------------------------------------------------------===//
#include "SparcV8.h"
#include "SparcV8InstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CFG.h"
using namespace llvm;
namespace {
struct V8ISel : public FunctionPass, public InstVisitor<V8ISel> {
TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
// MBBMap - Mapping between LLVM BB -> Machine BB
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
V8ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &Fn);
virtual const char *getPassName() const {
return "SparcV8 Simple Instruction Selection";
}
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd, unsigned TargetReg);
/// emitCastOperation - Common code shared between visitCastInst and
/// constant expression cast support.
///
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Value *Src, const Type *DestTy, unsigned TargetReg);
/// emitIntegerCast, emitFPToIntegerCast - Helper methods for
/// emitCastOperation.
///
unsigned emitIntegerCast (MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
const Type *oldTy, unsigned SrcReg,
const Type *newTy, unsigned DestReg);
void emitFPToIntegerCast (MachineBasicBlock *BB,
MachineBasicBlock::iterator IP, const Type *oldTy,
unsigned SrcReg, const Type *newTy,
unsigned DestReg);
/// visitBasicBlock - This method is called when we are visiting a new basic
/// block. This simply creates a new MachineBasicBlock to emit code into
/// and adds it to the current MachineFunction. Subsequent visit* for
/// instructions will be invoked for all instructions in the basic block.
///
void visitBasicBlock(BasicBlock &LLVM_BB) {
BB = MBBMap[&LLVM_BB];
}
void visitBinaryOperator(Instruction &I);
void visitShiftInst (ShiftInst &SI) { visitBinaryOperator (SI); }
void visitSetCondInst(SetCondInst &I);
void visitCallInst(CallInst &I);
void visitReturnInst(ReturnInst &I);
void visitBranchInst(BranchInst &I);
void visitUnreachableInst(UnreachableInst &I) {}
void visitCastInst(CastInst &I);
void visitLoadInst(LoadInst &I);
void visitStoreInst(StoreInst &I);
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitAllocaInst(AllocaInst &I);
void visitInstruction(Instruction &I) {
std::cerr << "Unhandled instruction: " << I;
abort();
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
void LowerUnknownIntrinsicFunctionCalls(Function &F);
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI);
void LoadArgumentsToVirtualRegs(Function *F);
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
/// because we have to generate our sources into the source basic blocks,
/// not the current one.
///
void SelectPHINodes();
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Constant *C, unsigned R);
/// makeAnotherReg - This method returns the next register number we haven't
/// yet used.
///
/// Long values are handled somewhat specially. They are always allocated
/// as pairs of 32 bit integer values. The register number returned is the
/// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
/// of the long value.
///
unsigned makeAnotherReg(const Type *Ty) {
assert(dynamic_cast<const SparcV8RegisterInfo*>(TM.getRegisterInfo()) &&
"Current target doesn't have SparcV8 reg info??");
const SparcV8RegisterInfo *MRI =
static_cast<const SparcV8RegisterInfo*>(TM.getRegisterInfo());
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
// Create the lower part
F->getSSARegMap()->createVirtualRegister(RC);
// Create the upper part.
return F->getSSARegMap()->createVirtualRegister(RC)-1;
}
// Add the mapping of regnumber => reg class to MachineFunction
const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
return F->getSSARegMap()->createVirtualRegister(RC);
}
unsigned getReg(Value &V) { return getReg (&V); } // allow refs.
unsigned getReg(Value *V) {
// Just append to the end of the current bb.
MachineBasicBlock::iterator It = BB->end();
return getReg(V, BB, It);
}
unsigned getReg(Value *V, MachineBasicBlock *MBB,
MachineBasicBlock::iterator IPt) {
unsigned &Reg = RegMap[V];
if (Reg == 0) {
Reg = makeAnotherReg(V->getType());
RegMap[V] = Reg;
}
// If this operand is a constant, emit the code to copy the constant into
// the register here...
//
if (Constant *C = dyn_cast<Constant>(V)) {
copyConstantToRegister(MBB, IPt, C, Reg);
RegMap.erase(V); // Assign a new name to this constant if ref'd again
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// Move the address of the global into the register
unsigned TmpReg = makeAnotherReg(V->getType());
BuildMI (*MBB, IPt, V8::SETHIi, 1, TmpReg).addGlobalAddress (GV);
BuildMI (*MBB, IPt, V8::ORri, 2, Reg).addReg (TmpReg)
.addGlobalAddress (GV);
RegMap.erase(V); // Assign a new name to this address if ref'd again
}
return Reg;
}
};
}
FunctionPass *llvm::createSparcV8SimpleInstructionSelector(TargetMachine &TM) {
return new V8ISel(TM);
}
enum TypeClass {
cByte, cShort, cInt, cLong, cFloat, cDouble
};
static TypeClass getClass (const Type *T) {
switch (T->getTypeID()) {
case Type::UByteTyID: case Type::SByteTyID: return cByte;
case Type::UShortTyID: case Type::ShortTyID: return cShort;
case Type::PointerTyID:
case Type::UIntTyID: case Type::IntTyID: return cInt;
case Type::ULongTyID: case Type::LongTyID: return cLong;
case Type::FloatTyID: return cFloat;
case Type::DoubleTyID: return cDouble;
default:
assert (0 && "Type of unknown class passed to getClass?");
return cByte;
}
}
static TypeClass getClassB(const Type *T) {
if (T == Type::BoolTy) return cByte;
return getClass(T);
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void V8ISel::copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Constant *C, unsigned R) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr:
emitGEPOperation(MBB, IP, CE->getOperand(0),
CE->op_begin()+1, CE->op_end(), R);
return;
case Instruction::Cast:
emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
return;
default:
std::cerr << "Copying this constant expr not yet handled: " << *CE;
abort();
}
} else if (isa<UndefValue>(C)) {
BuildMI(*MBB, IP, V8::IMPLICIT_DEF, 0, R);
if (getClassB (C->getType ()) == cLong)
BuildMI(*MBB, IP, V8::IMPLICIT_DEF, 0, R+1);
return;
}
if (C->getType()->isIntegral ()) {
uint64_t Val;
unsigned Class = getClassB (C->getType ());
if (Class == cLong) {
unsigned TmpReg = makeAnotherReg (Type::IntTy);
unsigned TmpReg2 = makeAnotherReg (Type::IntTy);
// Copy the value into the register pair.
// R = top(more-significant) half, R+1 = bottom(less-significant) half
uint64_t Val = cast<ConstantInt>(C)->getRawValue();
copyConstantToRegister(MBB, IP, ConstantUInt::get(Type::UIntTy,
Val >> 32), R);
copyConstantToRegister(MBB, IP, ConstantUInt::get(Type::UIntTy,
Val & 0xffffffffU), R+1);
return;
}
assert(Class <= cInt && "Type not handled yet!");
if (C->getType() == Type::BoolTy) {
Val = (C == ConstantBool::True);
} else {
ConstantInt *CI = cast<ConstantInt> (C);
Val = CI->getRawValue ();
}
switch (Class) {
case cByte: Val = (int8_t) Val; break;
case cShort: Val = (int16_t) Val; break;
case cInt: Val = (int32_t) Val; break;
default:
std::cerr << "Offending constant: " << *C << "\n";
assert (0 && "Can't copy this kind of constant into register yet");
return;
}
if (Val == 0) {
BuildMI (*MBB, IP, V8::ORrr, 2, R).addReg (V8::G0).addReg(V8::G0);
} else if (((int64_t)Val >= -4096) && ((int64_t)Val <= 4095)) {
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addSImm(Val);
} else {
unsigned TmpReg = makeAnotherReg (C->getType ());
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg)
.addSImm (((uint32_t) Val) >> 10);
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg)
.addSImm (((uint32_t) Val) & 0x03ff);
return;
}
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
// We need to spill the constant to memory...
MachineConstantPool *CP = F->getConstantPool();
unsigned CPI = CP->getConstantPoolIndex(CFP);
const Type *Ty = CFP->getType();
unsigned TmpReg = makeAnotherReg (Type::UIntTy);
unsigned AddrReg = makeAnotherReg (Type::UIntTy);
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
unsigned LoadOpcode = Ty == Type::FloatTy ? V8::LDFri : V8::LDDFri;
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addConstantPoolIndex (CPI);
BuildMI (*MBB, IP, V8::ORri, 2, AddrReg).addReg (TmpReg)
.addConstantPoolIndex (CPI);
BuildMI (*MBB, IP, LoadOpcode, 2, R).addReg (AddrReg).addSImm (0);
} else if (isa<ConstantPointerNull>(C)) {
// Copy zero (null pointer) to the register.
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addSImm (0);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
// Copy it with a SETHI/OR pair; the JIT + asmwriter should recognize
// that SETHI %reg,global == SETHI %reg,%hi(global) and
// OR %reg,global,%reg == OR %reg,%lo(global),%reg.
unsigned TmpReg = makeAnotherReg (C->getType ());
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addGlobalAddress(GV);
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg(TmpReg).addGlobalAddress(GV);
} else {
std::cerr << "Offending constant: " << *C << "\n";
assert (0 && "Can't copy this kind of constant into register yet");
}
}
void V8ISel::LoadArgumentsToVirtualRegs (Function *LF) {
static const unsigned IncomingArgRegs[] = { V8::I0, V8::I1, V8::I2,
V8::I3, V8::I4, V8::I5 };
// Add IMPLICIT_DEFs of input regs.
unsigned ArgNo = 0;
for (Function::aiterator I = LF->abegin(), E = LF->aend();
I != E && ArgNo < 6; ++I, ++ArgNo) {
switch (getClassB(I->getType())) {
case cByte:
case cShort:
case cInt:
case cFloat:
BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgNo]);
break;
case cDouble:
case cLong:
// Double and Long use register pairs.
BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgNo]);
++ArgNo;
if (ArgNo < 6)
BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgNo]);
break;
default:
assert (0 && "type not handled");
return;
}
}
// Copy args out of their incoming hard regs or stack slots into virtual regs.
const unsigned *IAREnd = &IncomingArgRegs[6];
const unsigned *IAR = &IncomingArgRegs[0];
unsigned ArgOffset = 68;
for (Function::aiterator I = LF->abegin(), E = LF->aend(); I != E; ++I) {
Argument &A = *I;
unsigned ArgReg = getReg (A);
if (getClassB (A.getType ()) < cLong) {
// Get it out of the incoming arg register
if (ArgOffset < 92) {
assert (IAR != IAREnd
&& "About to dereference past end of IncomingArgRegs");
BuildMI (BB, V8::ORrr, 2, ArgReg).addReg (V8::G0).addReg (*IAR++);
} else {
int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset);
BuildMI (BB, V8::LD, 3, ArgReg).addFrameIndex (FI).addSImm (0);
}
ArgOffset += 4;
} else if (getClassB (A.getType ()) == cFloat) {
if (ArgOffset < 92) {
// Single-fp args are passed in integer registers; go through
// memory to get them out of integer registers and back into fp. (Bleh!)
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign);
assert (IAR != IAREnd
&& "About to dereference past end of IncomingArgRegs");
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (*IAR++);
BuildMI (BB, V8::LDFri, 2, ArgReg).addFrameIndex (FI).addSImm (0);
} else {
int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset);
BuildMI (BB, V8::LDFri, 3, ArgReg).addFrameIndex (FI).addSImm (0);
}
ArgOffset += 4;
} else if (getClassB (A.getType ()) == cDouble) {
// Double-fp args are passed in pairs of integer registers; go through
// memory to get them out of integer registers and back into fp. (Bleh!)
// We'd like to 'ldd' these right out of the incoming-args area,
// but it might not be 8-byte aligned (e.g., call x(int x, double d)).
unsigned DblAlign = TM.getTargetData().getDoubleAlignment();
int FI = F->getFrameInfo()->CreateStackObject(8, DblAlign);
if (ArgOffset < 92 && IAR != IAREnd) {
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (*IAR++);
} else {
unsigned TempReg = makeAnotherReg (Type::IntTy);
BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (0);
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (TempReg);
}
ArgOffset += 4;
if (ArgOffset < 92 && IAR != IAREnd) {
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (4).addReg (*IAR++);
} else {
unsigned TempReg = makeAnotherReg (Type::IntTy);
BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (4);
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (4).addReg (TempReg);
}
ArgOffset += 4;
BuildMI (BB, V8::LDDFri, 2, ArgReg).addFrameIndex (FI).addSImm (0);
} else if (getClassB (A.getType ()) == cLong) {
// do the first half...
if (ArgOffset < 92) {
assert (IAR != IAREnd
&& "About to dereference past end of IncomingArgRegs");
BuildMI (BB, V8::ORrr, 2, ArgReg).addReg (V8::G0).addReg (*IAR++);
} else {
int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset);
BuildMI (BB, V8::LD, 2, ArgReg).addFrameIndex (FI).addSImm (0);
}
ArgOffset += 4;
// ...then do the second half
if (ArgOffset < 92) {
assert (IAR != IAREnd
&& "About to dereference past end of IncomingArgRegs");
BuildMI (BB, V8::ORrr, 2, ArgReg+1).addReg (V8::G0).addReg (*IAR++);
} else {
int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset);
BuildMI (BB, V8::LD, 2, ArgReg+1).addFrameIndex (FI).addSImm (0);
}
ArgOffset += 4;
} else {
assert (0 && "Unknown class?!");
}
}
}
void V8ISel::SelectPHINodes() {
const TargetInstrInfo &TII = *TM.getInstrInfo();
const Function &LF = *F->getFunction(); // The LLVM function...
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
const BasicBlock *BB = I;
MachineBasicBlock &MBB = *MBBMap[I];
// Loop over all of the PHI nodes in the LLVM basic block...
MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
for (BasicBlock::const_iterator I = BB->begin();
PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
// Create a new machine instr PHI node, and insert it.
unsigned PHIReg = getReg(*PN);
MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
V8::PHI, PN->getNumOperands(), PHIReg);
MachineInstr *LongPhiMI = 0;
if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
LongPhiMI = BuildMI(MBB, PHIInsertPoint,
V8::PHI, PN->getNumOperands(), PHIReg+1);
// PHIValues - Map of blocks to incoming virtual registers. We use this
// so that we only initialize one incoming value for a particular block,
// even if the block has multiple entries in the PHI node.
//
std::map<MachineBasicBlock*, unsigned> PHIValues;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
MachineBasicBlock *PredMBB = 0;
for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
PE = MBB.pred_end (); PI != PE; ++PI)
if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
PredMBB = *PI;
break;
}
assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
unsigned ValReg;
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
PHIValues.lower_bound(PredMBB);
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
// We already inserted an initialization of the register for this
// predecessor. Recycle it.
ValReg = EntryIt->second;
} else {
// Get the incoming value into a virtual register.
//
Value *Val = PN->getIncomingValue(i);
// If this is a constant or GlobalValue, we may have to insert code
// into the basic block to compute it into a virtual register.
if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
isa<GlobalValue>(Val)) {
// Simple constants get emitted at the end of the basic block,
// before any terminator instructions. We "know" that the code to
// move a constant into a register will never clobber any flags.
ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
} else {
// Because we don't want to clobber any values which might be in
// physical registers with the computation of this constant (which
// might be arbitrarily complex if it is a constant expression),
// just insert the computation at the top of the basic block.
MachineBasicBlock::iterator PI = PredMBB->begin();
// Skip over any PHI nodes though!
while (PI != PredMBB->end() && PI->getOpcode() == V8::PHI)
++PI;
ValReg = getReg(Val, PredMBB, PI);
}
// Remember that we inserted a value for this PHI for this predecessor
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
}
PhiMI->addRegOperand(ValReg);
PhiMI->addMachineBasicBlockOperand(PredMBB);
if (LongPhiMI) {
LongPhiMI->addRegOperand(ValReg+1);
LongPhiMI->addMachineBasicBlockOperand(PredMBB);
}
}
// Now that we emitted all of the incoming values for the PHI node, make
// sure to reposition the InsertPoint after the PHI that we just added.
// This is needed because we might have inserted a constant into this
// block, right after the PHI's which is before the old insert point!
PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
++PHIInsertPoint;
}
}
}
bool V8ISel::runOnFunction(Function &Fn) {
// First pass over the function, lower any unknown intrinsic functions
// with the IntrinsicLowering class.
LowerUnknownIntrinsicFunctionCalls(Fn);
F = &MachineFunction::construct(&Fn, TM);
// Create all of the machine basic blocks for the function...
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
BB = &F->front();
// Set up a frame object for the return address. This is used by the
// llvm.returnaddress & llvm.frameaddress intrinisics.
//ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
// Copy incoming arguments off of the stack and out of fixed registers.
LoadArgumentsToVirtualRegs(&Fn);
// Instruction select everything except PHI nodes
visit(Fn);
// Select the PHI nodes
SelectPHINodes();
RegMap.clear();
MBBMap.clear();
F = 0;
// We always build a machine code representation for the function
return true;
}
void V8ISel::visitCastInst(CastInst &I) {
Value *Op = I.getOperand(0);
unsigned DestReg = getReg(I);
MachineBasicBlock::iterator MI = BB->end();
emitCastOperation(BB, MI, Op, I.getType(), DestReg);
}
unsigned V8ISel::emitIntegerCast (MachineBasicBlock *BB,
MachineBasicBlock::iterator IP, const Type *oldTy,
unsigned SrcReg, const Type *newTy,
unsigned DestReg) {
if (oldTy == newTy) {
// No-op cast - just emit a copy; assume the reg. allocator will zap it.
BuildMI (*BB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0).addReg(SrcReg);
return SrcReg;
}
// Emit left-shift, then right-shift to sign- or zero-extend.
unsigned TmpReg = makeAnotherReg (newTy);
unsigned shiftWidth = 32 - (8 * TM.getTargetData ().getTypeSize (newTy));
BuildMI (*BB, IP, V8::SLLri, 2, TmpReg).addZImm (shiftWidth).addReg(SrcReg);
if (newTy->isSigned ()) { // sign-extend with SRA
BuildMI(*BB, IP, V8::SRAri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg);
} else { // zero-extend with SRL
BuildMI(*BB, IP, V8::SRLri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg);
}
// Return the temp reg. in case this is one half of a cast to long.
return TmpReg;
}
void V8ISel::emitFPToIntegerCast (MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
const Type *oldTy, unsigned SrcReg,
const Type *newTy, unsigned DestReg) {
unsigned FPCastOpcode, FPStoreOpcode, FPSize, FPAlign;
unsigned oldTyClass = getClassB(oldTy);
if (oldTyClass == cFloat) {
FPCastOpcode = V8::FSTOI; FPStoreOpcode = V8::STFri; FPSize = 4;
FPAlign = TM.getTargetData().getFloatAlignment();
} else { // it's a double
FPCastOpcode = V8::FDTOI; FPStoreOpcode = V8::STDFri; FPSize = 8;
FPAlign = TM.getTargetData().getDoubleAlignment();
}
unsigned TempReg = makeAnotherReg (oldTy);
BuildMI (*BB, IP, FPCastOpcode, 1, TempReg).addReg (SrcReg);
int FI = F->getFrameInfo()->CreateStackObject(FPSize, FPAlign);
BuildMI (*BB, IP, FPStoreOpcode, 3).addFrameIndex (FI).addSImm (0)
.addReg (TempReg);
unsigned TempReg2 = makeAnotherReg (newTy);
BuildMI (*BB, IP, V8::LD, 3, TempReg2).addFrameIndex (FI).addSImm (0);
emitIntegerCast (BB, IP, Type::IntTy, TempReg2, newTy, DestReg);
}
/// emitCastOperation - Common code shared between visitCastInst and constant
/// expression cast support.
///
void V8ISel::emitCastOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP, Value *Src,
const Type *DestTy, unsigned DestReg) {
const Type *SrcTy = Src->getType();
unsigned SrcClass = getClassB(SrcTy);
unsigned DestClass = getClassB(DestTy);
unsigned SrcReg = getReg(Src, BB, IP);
const Type *oldTy = SrcTy;
const Type *newTy = DestTy;
unsigned oldTyClass = SrcClass;
unsigned newTyClass = DestClass;
if (oldTyClass < cLong && newTyClass < cLong) {
emitIntegerCast (BB, IP, oldTy, SrcReg, newTy, DestReg);
} else switch (newTyClass) {
case cByte:
case cShort:
case cInt:
switch (oldTyClass) {
case cLong:
// Treat it like a cast from the lower half of the value.
emitIntegerCast (BB, IP, Type::IntTy, SrcReg+1, newTy, DestReg);
break;
case cFloat:
case cDouble:
emitFPToIntegerCast (BB, IP, oldTy, SrcReg, newTy, DestReg);
break;
default: goto not_yet;
}
return;
case cFloat:
switch (oldTyClass) {
case cLong: goto not_yet;
case cFloat:
BuildMI (*BB, IP, V8::FMOVS, 1, DestReg).addReg (SrcReg);
break;
case cDouble:
BuildMI (*BB, IP, V8::FDTOS, 1, DestReg).addReg (SrcReg);
break;
default: {
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
// cast integer type to float. Store it to a stack slot and then load
// it using ldf into a floating point register. then do fitos.
unsigned TmpReg = makeAnotherReg (newTy);
int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign);
BuildMI (*BB, IP, V8::ST, 3).addFrameIndex (FI).addSImm (0)
.addReg (SrcReg);
BuildMI (*BB, IP, V8::LDFri, 2, TmpReg).addFrameIndex (FI).addSImm (0);
BuildMI (*BB, IP, V8::FITOS, 1, DestReg).addReg(TmpReg);
break;
}
}
return;
case cDouble:
switch (oldTyClass) {
case cLong: goto not_yet;
case cFloat:
BuildMI (*BB, IP, V8::FSTOD, 1, DestReg).addReg (SrcReg);
break;
case cDouble: // use double move pseudo-instr
BuildMI (*BB, IP, V8::FpMOVD, 1, DestReg).addReg (SrcReg);
break;
default: {
unsigned DoubleAlignment = TM.getTargetData().getDoubleAlignment();
unsigned TmpReg = makeAnotherReg (newTy);
int FI = F->getFrameInfo()->CreateStackObject(8, DoubleAlignment);
BuildMI (*BB, IP, V8::ST, 3).addFrameIndex (FI).addSImm (0)
.addReg (SrcReg);
BuildMI (*BB, IP, V8::LDDFri, 2, TmpReg).addFrameIndex (FI).addSImm (0);
BuildMI (*BB, IP, V8::FITOD, 1, DestReg).addReg(TmpReg);
break;
}
}
return;
case cLong:
switch (oldTyClass) {
case cByte:
case cShort:
case cInt: {
// Cast to (u)int in the bottom half, and sign(zero) extend in the top
// half.
const Type *OldHalfTy = oldTy->isSigned() ? Type::IntTy : Type::UIntTy;
const Type *NewHalfTy = newTy->isSigned() ? Type::IntTy : Type::UIntTy;
unsigned TempReg = emitIntegerCast (BB, IP, OldHalfTy, SrcReg,
NewHalfTy, DestReg+1);
if (newTy->isSigned ()) {
BuildMI (*BB, IP, V8::SRAri, 2, DestReg).addReg (TempReg)
.addZImm (31);
} else {
BuildMI (*BB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0)
.addReg (V8::G0);
}
break;
}
case cLong:
// Just copy both halves.
BuildMI (*BB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0).addReg (SrcReg);
BuildMI (*BB, IP, V8::ORrr, 2, DestReg+1).addReg (V8::G0)
.addReg (SrcReg+1);
break;
default: goto not_yet;
}
return;
default: goto not_yet;
}
return;
not_yet:
std::cerr << "Sorry, cast still unsupported: SrcTy = " << *SrcTy
<< ", DestTy = " << *DestTy << "\n";
abort ();
}
void V8ISel::visitLoadInst(LoadInst &I) {
unsigned DestReg = getReg (I);
unsigned PtrReg = getReg (I.getOperand (0));
switch (getClassB (I.getType ())) {
case cByte:
if (I.getType ()->isSigned ())
BuildMI (BB, V8::LDSB, 2, DestReg).addReg (PtrReg).addSImm(0);
else
BuildMI (BB, V8::LDUB, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cShort:
if (I.getType ()->isSigned ())
BuildMI (BB, V8::LDSH, 2, DestReg).addReg (PtrReg).addSImm(0);
else
BuildMI (BB, V8::LDUH, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cInt:
BuildMI (BB, V8::LD, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cLong:
BuildMI (BB, V8::LD, 2, DestReg).addReg (PtrReg).addSImm(0);
BuildMI (BB, V8::LD, 2, DestReg+1).addReg (PtrReg).addSImm(4);
return;
case cFloat:
BuildMI (BB, V8::LDFri, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cDouble:
BuildMI (BB, V8::LDDFri, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
default:
std::cerr << "Load instruction not handled: " << I;
abort ();
return;
}
}
void V8ISel::visitStoreInst(StoreInst &I) {
Value *SrcVal = I.getOperand (0);
unsigned SrcReg = getReg (SrcVal);
unsigned PtrReg = getReg (I.getOperand (1));
switch (getClassB (SrcVal->getType ())) {
case cByte:
BuildMI (BB, V8::STB, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cShort:
BuildMI (BB, V8::STH, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cInt:
BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cLong:
BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (4).addReg (SrcReg+1);
return;
case cFloat:
BuildMI (BB, V8::STFri, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cDouble:
BuildMI (BB, V8::STDFri, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
default:
std::cerr << "Store instruction not handled: " << I;
abort ();
return;
}
}
void V8ISel::visitCallInst(CallInst &I) {
MachineInstr *TheCall;
// Is it an intrinsic function call?
if (Function *F = I.getCalledFunction()) {
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
visitIntrinsicCall(ID, I); // Special intrinsics are not handled here
return;
}
}
unsigned extraStack = 0;
// How much extra call stack will we need?
for (unsigned i = 7; i < I.getNumOperands (); ++i) {
switch (getClassB (I.getOperand (i)->getType ())) {
case cLong: extraStack += 8; break;
case cFloat: extraStack += 4; break;
case cDouble: extraStack += 8; break;
default: extraStack += 4; break;
}
}
// Round up extra stack size to the nearest doubleword.
if (extraStack) { extraStack = (extraStack + 7) & ~7; }
// Deal with args
static const unsigned OutgoingArgRegs[] = { V8::O0, V8::O1, V8::O2, V8::O3,
V8::O4, V8::O5 };
const unsigned *OAREnd = &OutgoingArgRegs[6];
const unsigned *OAR = &OutgoingArgRegs[0];
unsigned ArgOffset = 68;
if (extraStack) BuildMI (BB, V8::ADJCALLSTACKDOWN, 1).addImm (extraStack);
for (unsigned i = 1; i < I.getNumOperands (); ++i) {
unsigned ArgReg = getReg (I.getOperand (i));
if (getClassB (I.getOperand (i)->getType ()) < cLong) {
// Schlep it over into the incoming arg register
if (ArgOffset < 92) {
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::ORrr, 2, *OAR++).addReg (V8::G0).addReg (ArgReg);
} else {
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg);
}
ArgOffset += 4;
} else if (getClassB (I.getOperand (i)->getType ()) == cFloat) {
if (ArgOffset < 92) {
// Single-fp args are passed in integer registers; go through
// memory to get them out of FP registers. (Bleh!)
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign);
BuildMI (BB, V8::STFri, 3).addFrameIndex (FI).addSImm (0).addReg (ArgReg);
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::LD, 2, *OAR++).addFrameIndex (FI).addSImm (0);
} else {
BuildMI (BB, V8::STFri, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg);
}
ArgOffset += 4;
} else if (getClassB (I.getOperand (i)->getType ()) == cDouble) {
// Double-fp args are passed in pairs of integer registers; go through
// memory to get them out of FP registers. (Bleh!)
// We'd like to 'std' these right onto the outgoing-args area, but it might
// not be 8-byte aligned (e.g., call x(int x, double d)). sigh.
unsigned DblAlign = TM.getTargetData().getDoubleAlignment();
int FI = F->getFrameInfo()->CreateStackObject(8, DblAlign);
BuildMI (BB, V8::STDFri, 3).addFrameIndex (FI).addSImm (0).addReg (ArgReg);
if (ArgOffset < 92 && OAR != OAREnd) {
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::LD, 2, *OAR++).addFrameIndex (FI).addSImm (0);
} else {
unsigned TempReg = makeAnotherReg (Type::IntTy);
BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (0);
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (TempReg);
}
ArgOffset += 4;
if (ArgOffset < 92 && OAR != OAREnd) {
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::LD, 2, *OAR++).addFrameIndex (FI).addSImm (4);
} else {
unsigned TempReg = makeAnotherReg (Type::IntTy);
BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (4);
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (TempReg);
}
ArgOffset += 4;
} else if (getClassB (I.getOperand (i)->getType ()) == cLong) {
// do the first half...
if (ArgOffset < 92) {
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::ORrr, 2, *OAR++).addReg (V8::G0).addReg (ArgReg);
} else {
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg);
}
ArgOffset += 4;
// ...then do the second half
if (ArgOffset < 92) {
assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs");
BuildMI (BB, V8::ORrr, 2, *OAR++).addReg (V8::G0).addReg (ArgReg+1);
} else {
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg+1);
}
ArgOffset += 4;
} else {
assert (0 && "Unknown class?!");
}
}
// Emit call instruction
if (Function *F = I.getCalledFunction ()) {
BuildMI (BB, V8::CALL, 1).addGlobalAddress (F, true);
} else { // Emit an indirect call...
unsigned Reg = getReg (I.getCalledValue ());
BuildMI (BB, V8::JMPLrr, 3, V8::O7).addReg (Reg).addReg (V8::G0);
}
if (extraStack) BuildMI (BB, V8::ADJCALLSTACKUP, 1).addImm (extraStack);
// Deal w/ return value: schlep it over into the destination register
if (I.getType () == Type::VoidTy)
return;
unsigned DestReg = getReg (I);
switch (getClassB (I.getType ())) {
case cByte:
case cShort:
case cInt:
BuildMI (BB, V8::ORrr, 2, DestReg).addReg(V8::G0).addReg(V8::O0);
break;
case cFloat:
BuildMI (BB, V8::FMOVS, 2, DestReg).addReg(V8::F0);
break;
case cDouble:
BuildMI (BB, V8::FpMOVD, 2, DestReg).addReg(V8::D0);
break;
case cLong:
BuildMI (BB, V8::ORrr, 2, DestReg).addReg(V8::G0).addReg(V8::O0);
BuildMI (BB, V8::ORrr, 2, DestReg+1).addReg(V8::G0).addReg(V8::O1);
break;
default:
std::cerr << "Return type of call instruction not handled: " << I;
abort ();
}
}
void V8ISel::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands () == 1) {
unsigned RetValReg = getReg (I.getOperand (0));
switch (getClassB (I.getOperand (0)->getType ())) {
case cByte:
case cShort:
case cInt:
// Schlep it over into i0 (where it will become o0 after restore).
BuildMI (BB, V8::ORrr, 2, V8::I0).addReg(V8::G0).addReg(RetValReg);
break;
case cFloat:
BuildMI (BB, V8::FMOVS, 1, V8::F0).addReg(RetValReg);
break;
case cDouble:
BuildMI (BB, V8::FpMOVD, 1, V8::D0).addReg(RetValReg);
break;
case cLong:
BuildMI (BB, V8::ORrr, 2, V8::I0).addReg(V8::G0).addReg(RetValReg);
BuildMI (BB, V8::ORrr, 2, V8::I1).addReg(V8::G0).addReg(RetValReg+1);
break;
default:
std::cerr << "Return instruction of this type not handled: " << I;
abort ();
}
}
// Just emit a 'retl' instruction to return.
BuildMI(BB, V8::RETL, 0);
return;
}
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
Function::iterator I = BB; ++I; // Get iterator to next block
return I != BB->getParent()->end() ? &*I : 0;
}
/// visitBranchInst - Handles conditional and unconditional branches.
///
void V8ISel::visitBranchInst(BranchInst &I) {
BasicBlock *takenSucc = I.getSuccessor (0);
MachineBasicBlock *takenSuccMBB = MBBMap[takenSucc];
BB->addSuccessor (takenSuccMBB);
if (I.isConditional()) { // conditional branch
BasicBlock *notTakenSucc = I.getSuccessor (1);
MachineBasicBlock *notTakenSuccMBB = MBBMap[notTakenSucc];
BB->addSuccessor (notTakenSuccMBB);
// CondReg=(<condition>);
// If (CondReg==0) goto notTakenSuccMBB;
unsigned CondReg = getReg (I.getCondition ());
BuildMI (BB, V8::CMPri, 2).addSImm (0).addReg (CondReg);
BuildMI (BB, V8::BE, 1).addMBB (notTakenSuccMBB);
}
// goto takenSuccMBB;
BuildMI (BB, V8::BA, 1).addMBB (takenSuccMBB);
}
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void V8ISel::emitGEPOperation (MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd, unsigned TargetReg) {
const TargetData &TD = TM.getTargetData ();
const Type *Ty = Src->getType ();
unsigned basePtrReg = getReg (Src, MBB, IP);
// GEPs have zero or more indices; we must perform a struct access
// or array access for each one.
for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
++oi) {
Value *idx = *oi;
unsigned nextBasePtrReg = makeAnotherReg (Type::UIntTy);
if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
// It's a struct access. idx is the index into the structure,
// which names the field. Use the TargetData structure to
// pick out what the layout of the structure is in memory.
// Use the (constant) structure index's value to find the
// right byte offset from the StructLayout class's list of
// structure member offsets.
unsigned fieldIndex = cast<ConstantUInt> (idx)->getValue ();
unsigned memberOffset =
TD.getStructLayout (StTy)->MemberOffsets[fieldIndex];
// Emit an ADD to add memberOffset to the basePtr.
BuildMI (*MBB, IP, V8::ADDri, 2,
nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset);
// The next type is the member of the structure selected by the
// index.
Ty = StTy->getElementType (fieldIndex);
} else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
// It's an array or pointer access: [ArraySize x ElementType].
// We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
// must find the size of the pointed-to type (Not coincidentally, the next
// type is the type of the elements in the array).
Ty = SqTy->getElementType ();
unsigned elementSize = TD.getTypeSize (Ty);
unsigned idxReg = getReg (idx, MBB, IP);
unsigned OffsetReg = makeAnotherReg (Type::IntTy);
unsigned elementSizeReg = makeAnotherReg (Type::UIntTy);
copyConstantToRegister (MBB, IP,
ConstantUInt::get(Type::UIntTy, elementSize), elementSizeReg);
// Emit a SMUL to multiply the register holding the index by
// elementSize, putting the result in OffsetReg.
BuildMI (*MBB, IP, V8::SMULrr, 2,
OffsetReg).addReg (elementSizeReg).addReg (idxReg);
// Emit an ADD to add OffsetReg to the basePtr.
BuildMI (*MBB, IP, V8::ADDrr, 2,
nextBasePtrReg).addReg (basePtrReg).addReg (OffsetReg);
}
basePtrReg = nextBasePtrReg;
}
// After we have processed all the indices, the result is left in
// basePtrReg. Move it to the register where we were expected to
// put the answer.
BuildMI (BB, V8::ORrr, 1, TargetReg).addReg (V8::G0).addReg (basePtrReg);
}
void V8ISel::visitGetElementPtrInst (GetElementPtrInst &I) {
unsigned outputReg = getReg (I);
emitGEPOperation (BB, BB->end (), I.getOperand (0),
I.op_begin ()+1, I.op_end (), outputReg);
}
void V8ISel::visitBinaryOperator (Instruction &I) {
unsigned DestReg = getReg (I);
unsigned Op0Reg = getReg (I.getOperand (0));
unsigned Op1Reg = getReg (I.getOperand (1));
unsigned Class = getClassB (I.getType());
unsigned OpCase = ~0;
if (Class > cLong) {
switch (I.getOpcode ()) {
case Instruction::Add: OpCase = 0; break;
case Instruction::Sub: OpCase = 1; break;
case Instruction::Mul: OpCase = 2; break;
case Instruction::Div: OpCase = 3; break;
default: visitInstruction (I); return;
}
static unsigned Opcodes[] = { V8::FADDS, V8::FADDD,
V8::FSUBS, V8::FSUBD,
V8::FMULS, V8::FMULD,
V8::FDIVS, V8::FDIVD };
BuildMI (BB, Opcodes[2*OpCase + (Class - cFloat)], 2, DestReg)
.addReg (Op0Reg).addReg (Op1Reg);
return;
}
unsigned ResultReg = DestReg;
if (Class != cInt && Class != cLong)
ResultReg = makeAnotherReg (I.getType ());
if (Class == cLong) {
DEBUG (std::cerr << "Class = cLong\n");
DEBUG (std::cerr << "Op0Reg = " << Op0Reg << ", " << Op0Reg+1 << "\n");
DEBUG (std::cerr << "Op1Reg = " << Op1Reg << ", " << Op1Reg+1 << "\n");
DEBUG (std::cerr << "ResultReg = " << ResultReg << ", " << ResultReg+1 << "\n");
DEBUG (std::cerr << "DestReg = " << DestReg << ", " << DestReg+1 << "\n");
}
// FIXME: support long, ulong.
switch (I.getOpcode ()) {
case Instruction::Add: OpCase = 0; break;
case Instruction::Sub: OpCase = 1; break;
case Instruction::Mul: OpCase = 2; break;
case Instruction::And: OpCase = 3; break;
case Instruction::Or: OpCase = 4; break;
case Instruction::Xor: OpCase = 5; break;
case Instruction::Shl: OpCase = 6; break;
case Instruction::Shr: OpCase = 7+I.getType()->isSigned(); break;
case Instruction::Div:
case Instruction::Rem: {
unsigned Dest = ResultReg;
if (I.getOpcode() == Instruction::Rem)
Dest = makeAnotherReg(I.getType());
// FIXME: this is probably only right for 32 bit operands.
if (I.getType ()->isSigned()) {
unsigned Tmp = makeAnotherReg (I.getType ());
// Sign extend into the Y register
BuildMI (BB, V8::SRAri, 2, Tmp).addReg (Op0Reg).addZImm (31);
BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (Tmp).addReg (V8::G0);
BuildMI (BB, V8::SDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg);
} else {
// Zero extend into the Y register, ie, just set it to zero
BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (V8::G0).addReg (V8::G0);
BuildMI (BB, V8::UDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg);
}
if (I.getOpcode() == Instruction::Rem) {
unsigned Tmp = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SMULrr, 2, Tmp).addReg(Dest).addReg(Op1Reg);
BuildMI (BB, V8::SUBrr, 2, ResultReg).addReg(Op0Reg).addReg(Tmp);
}
break;
}
default:
visitInstruction (I);
return;
}
static const unsigned Opcodes[] = {
V8::ADDrr, V8::SUBrr, V8::SMULrr, V8::ANDrr, V8::ORrr, V8::XORrr,
V8::SLLrr, V8::SRLrr, V8::SRArr
};
if (OpCase != ~0U) {
BuildMI (BB, Opcodes[OpCase], 2, ResultReg).addReg (Op0Reg).addReg (Op1Reg);
}
switch (getClassB (I.getType ())) {
case cByte:
if (I.getType ()->isSigned ()) { // add byte
BuildMI (BB, V8::ANDri, 2, DestReg).addReg (ResultReg).addZImm (0xff);
} else { // add ubyte
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (24);
BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (24);
}
break;
case cShort:
if (I.getType ()->isSigned ()) { // add short
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16);
BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (16);
} else { // add ushort
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16);
BuildMI (BB, V8::SRLri, 2, DestReg).addReg (TmpReg).addZImm (16);
}
break;
case cInt:
// Nothing to do here.
break;
case cLong:
// Only support and, or, xor.
if (OpCase < 3 || OpCase > 5) {
visitInstruction (I);
return;
}
// Do the other half of the value:
BuildMI (BB, Opcodes[OpCase], 2, ResultReg+1).addReg (Op0Reg+1)
.addReg (Op1Reg+1);
break;
default:
visitInstruction (I);
}
}
void V8ISel::visitSetCondInst(SetCondInst &I) {
unsigned Op0Reg = getReg (I.getOperand (0));
unsigned Op1Reg = getReg (I.getOperand (1));
unsigned DestReg = getReg (I);
const Type *Ty = I.getOperand (0)->getType ();
// Compare the two values.
assert (getClass (Ty) != cLong && "can't setcc on longs yet");
if (getClass (Ty) < cLong) {
BuildMI(BB, V8::SUBCCrr, 2, V8::G0).addReg(Op0Reg).addReg(Op1Reg);
} else if (getClass (Ty) == cFloat) {
BuildMI(BB, V8::FCMPS, 2).addReg(Op0Reg).addReg(Op1Reg);
} else if (getClass (Ty) == cDouble) {
BuildMI(BB, V8::FCMPD, 2).addReg(Op0Reg).addReg(Op1Reg);
}
unsigned BranchIdx;
switch (I.getOpcode()) {
default: assert(0 && "Unknown setcc instruction!");
case Instruction::SetEQ: BranchIdx = 0; break;
case Instruction::SetNE: BranchIdx = 1; break;
case Instruction::SetLT: BranchIdx = 2; break;
case Instruction::SetGT: BranchIdx = 3; break;
case Instruction::SetLE: BranchIdx = 4; break;
case Instruction::SetGE: BranchIdx = 5; break;
}
unsigned Column = 0;
if (Ty->isSigned() && !Ty->isFloatingPoint()) Column = 1;
if (Ty->isFloatingPoint()) Column = 2;
static unsigned OpcodeTab[3*6] = {
// LLVM SparcV8
// unsigned signed fp
V8::BE, V8::BE, V8::FBE, // seteq = be be fbe
V8::BNE, V8::BNE, V8::FBNE, // setne = bne bne fbne
V8::BCS, V8::BL, V8::FBL, // setlt = bcs bl fbl
V8::BGU, V8::BG, V8::FBG, // setgt = bgu bg fbg
V8::BLEU, V8::BLE, V8::FBLE, // setle = bleu ble fble
V8::BCC, V8::BGE, V8::FBGE // setge = bcc bge fbge
};
unsigned Opcode = OpcodeTab[3*BranchIdx + Column];
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock ();
// thisMBB:
// ...
// subcc %reg0, %reg1, %g0
// bCC copy1MBB
// ba copy0MBB
// FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
// if we could insert other, non-terminator instructions after the
// bCC. But MBB->getFirstTerminator() can't understand this.
MachineBasicBlock *copy1MBB = new MachineBasicBlock (LLVM_BB);
F->getBasicBlockList ().push_back (copy1MBB);
BuildMI (BB, Opcode, 1).addMBB (copy1MBB);
MachineBasicBlock *copy0MBB = new MachineBasicBlock (LLVM_BB);
F->getBasicBlockList ().push_back (copy0MBB);
BuildMI (BB, V8::BA, 1).addMBB (copy0MBB);
// Update machine-CFG edges
BB->addSuccessor (copy1MBB);
BB->addSuccessor (copy0MBB);
// copy0MBB:
// %FalseValue = or %G0, 0
// ba sinkMBB
BB = copy0MBB;
unsigned FalseValue = makeAnotherReg (I.getType ());
BuildMI (BB, V8::ORri, 2, FalseValue).addReg (V8::G0).addZImm (0);
MachineBasicBlock *sinkMBB = new MachineBasicBlock (LLVM_BB);
F->getBasicBlockList ().push_back (sinkMBB);
BuildMI (BB, V8::BA, 1).addMBB (sinkMBB);
// Update machine-CFG edges
BB->addSuccessor (sinkMBB);
DEBUG (std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
DEBUG (std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
DEBUG (std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
DEBUG (std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
// copy1MBB:
// %TrueValue = or %G0, 1
// ba sinkMBB
BB = copy1MBB;
unsigned TrueValue = makeAnotherReg (I.getType ());
BuildMI (BB, V8::ORri, 2, TrueValue).addReg (V8::G0).addZImm (1);
BuildMI (BB, V8::BA, 1).addMBB (sinkMBB);
// Update machine-CFG edges
BB->addSuccessor (sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
// ...
BB = sinkMBB;
BuildMI (BB, V8::PHI, 4, DestReg).addReg (FalseValue)
.addMBB (copy0MBB).addReg (TrueValue).addMBB (copy1MBB);
}
void V8ISel::visitAllocaInst(AllocaInst &I) {
// Find the data size of the alloca inst's getAllocatedType.
const Type *Ty = I.getAllocatedType();
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
unsigned ArraySizeReg = getReg (I.getArraySize ());
unsigned TySizeReg = getReg (ConstantUInt::get (Type::UIntTy, TySize));
unsigned TmpReg1 = makeAnotherReg (Type::UIntTy);
unsigned TmpReg2 = makeAnotherReg (Type::UIntTy);
unsigned StackAdjReg = makeAnotherReg (Type::UIntTy);
// StackAdjReg = (ArraySize * TySize) rounded up to nearest doubleword boundary
BuildMI (BB, V8::UMULrr, 2, TmpReg1).addReg (ArraySizeReg).addReg (TySizeReg);
// Round up TmpReg1 to nearest doubleword boundary:
BuildMI (BB, V8::ADDri, 2, TmpReg2).addReg (TmpReg1).addSImm (7);
BuildMI (BB, V8::ANDri, 2, StackAdjReg).addReg (TmpReg2).addSImm (-8);
// Subtract size from stack pointer, thereby allocating some space.
BuildMI (BB, V8::SUBrr, 2, V8::SP).addReg (V8::SP).addReg (StackAdjReg);
// Put a pointer to the space into the result register, by copying
// the stack pointer.
BuildMI (BB, V8::ADDri, 2, getReg(I)).addReg (V8::SP).addSImm (96);
// Inform the Frame Information that we have just allocated a variable-sized
// object.
F->getFrameInfo()->CreateVariableSizedObject();
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
void V8ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(I++))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic: break;
default:
// All other intrinsic calls we must lower.
Instruction *Before = CI->getPrev();
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
if (Before) { // Move iterator to instruction after call
I = Before; ++I;
} else {
I = BB->begin();
}
}
}
void V8ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
unsigned TmpReg1, TmpReg2;
switch (ID) {
default: assert(0 && "Intrinsic not supported!");
}
}
|