aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/InstrSelection/InstrSelectionSupport.cpp
blob: db9058f3b3e8da082aa65420527d037aace2322d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
//===-- InstrSelectionSupport.cpp -----------------------------------------===//
//
// Target-independent instruction selection code.  See SparcInstrSelection.cpp
// for usage.
// 
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrAnnot.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
using std::vector;

//*************************** Local Functions ******************************/


// Generate code to load the constant into a TmpInstruction (virtual reg) and
// returns the virtual register.
// 
static TmpInstruction*
InsertCodeToLoadConstant(Function *F,
                         Value* opValue,
                         Instruction* vmInstr,
                         vector<MachineInstr*>& loadConstVec,
                         TargetMachine& target)
{
  // Create a tmp virtual register to hold the constant.
  TmpInstruction* tmpReg = new TmpInstruction(opValue);
  MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
  mcfi.addTemp(tmpReg);
  
  target.getInstrInfo().CreateCodeToLoadConst(target, F, opValue, tmpReg,
                                              loadConstVec, mcfi);
  
  // Record the mapping from the tmp VM instruction to machine instruction.
  // Do this for all machine instructions that were not mapped to any
  // other temp values created by 
  // tmpReg->addMachineInstruction(loadConstVec.back());
  
  return tmpReg;
}


//---------------------------------------------------------------------------
// Function GetConstantValueAsUnsignedInt
// Function GetConstantValueAsSignedInt
// 
// Convenience functions to get the value of an integral constant, for an
// appropriate integer or non-integer type that can be held in a signed
// or unsigned integer respectively.  The type of the argument must be
// the following:
//      Signed or unsigned integer
//      Boolean
//      Pointer
// 
// isValidConstant is set to true if a valid constant was found.
//---------------------------------------------------------------------------

uint64_t
GetConstantValueAsUnsignedInt(const Value *V,
                              bool &isValidConstant)
{
  isValidConstant = true;

  if (isa<Constant>(V))
    if (const ConstantBool *CB = dyn_cast<ConstantBool>(V))
      return (int64_t)CB->getValue();
    else if (const ConstantSInt *CS = dyn_cast<ConstantSInt>(V))
      return (uint64_t)CS->getValue();
    else if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(V))
      return CU->getValue();

  isValidConstant = false;
  return 0;
}

int64_t
GetConstantValueAsSignedInt(const Value *V,
                            bool &isValidConstant)
{
  uint64_t C = GetConstantValueAsUnsignedInt(V, isValidConstant);
  if (isValidConstant) {
    if (V->getType()->isSigned() || C < INT64_MAX) // safe to cast to signed
      return (int64_t) C;
    else
      isValidConstant = false;
  }
  return 0;
}


//---------------------------------------------------------------------------
// Function: FoldGetElemChain
// 
// Purpose:
//   Fold a chain of GetElementPtr instructions containing only
//   constant offsets into an equivalent (Pointer, IndexVector) pair.
//   Returns the pointer Value, and stores the resulting IndexVector
//   in argument chainIdxVec. This is a helper function for
//   FoldConstantIndices that does the actual folding. 
//---------------------------------------------------------------------------


// Check for a constant 0.
inline bool
IsZero(Value* idx)
{
  return (idx == ConstantSInt::getNullValue(idx->getType()));
}

static Value*
FoldGetElemChain(InstrTreeNode* ptrNode, vector<Value*>& chainIdxVec,
                 bool lastInstHasLeadingNonZero)
{
  InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
  GetElementPtrInst* gepInst =
    dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0);

  // ptr value is not computed in this tree or ptr value does not come from GEP
  // instruction
  if (gepInst == NULL)
    return NULL;

  // Return NULL if we don't fold any instructions in.
  Value* ptrVal = NULL;

  // Now chase the chain of getElementInstr instructions, if any.
  // Check for any non-constant indices and stop there.
  // Also, stop if the first index of child is a non-zero array index
  // and the last index of the current node is a non-array index:
  // in that case, a non-array declared type is being accessed as an array
  // which is not type-safe, but could be legal.
  // 
  InstructionNode* ptrChild = gepNode;
  while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
                      ptrChild->getOpLabel() == GetElemPtrIdx))
    {
      // Child is a GetElemPtr instruction
      gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
      User::op_iterator OI, firstIdx = gepInst->idx_begin();
      User::op_iterator lastIdx = gepInst->idx_end();
      bool allConstantOffsets = true;

      // The first index of every GEP must be an array index.
      assert((*firstIdx)->getType() == Type::LongTy &&
             "INTERNAL ERROR: Structure index for a pointer type!");

      // If the last instruction had a leading non-zero index, check if the
      // current one references a sequential (i.e., indexable) type.
      // If not, the code is not type-safe and we would create an illegal GEP
      // by folding them, so don't fold any more instructions.
      // 
      if (lastInstHasLeadingNonZero)
        if (! isa<SequentialType>(gepInst->getType()->getElementType()))
          break;   // cannot fold in any preceding getElementPtr instrs.

      // Check that all offsets are constant for this instruction
      for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI)
        allConstantOffsets = isa<ConstantInt>(*OI);

      if (allConstantOffsets)
        { // Get pointer value out of ptrChild.
          ptrVal = gepInst->getPointerOperand();

          // Remember if it has leading zero index: it will be discarded later.
          lastInstHasLeadingNonZero = ! IsZero(*firstIdx);

          // Insert its index vector at the start, skipping any leading [0]
          chainIdxVec.insert(chainIdxVec.begin(),
                             firstIdx + !lastInstHasLeadingNonZero, lastIdx);

          // Mark the folded node so no code is generated for it.
          ((InstructionNode*) ptrChild)->markFoldedIntoParent();

          // Get the previous GEP instruction and continue trying to fold
          ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild());
        }
      else // cannot fold this getElementPtr instr. or any preceding ones
        break;
    }

  // If the first getElementPtr instruction had a leading [0], add it back.
  // Note that this instruction is the *last* one successfully folded above.
  if (ptrVal && ! lastInstHasLeadingNonZero) 
    chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0));

  return ptrVal;
}


//---------------------------------------------------------------------------
// Function: GetGEPInstArgs
// 
// Purpose:
//   Helper function for GetMemInstArgs that handles the final getElementPtr
//   instruction used by (or same as) the memory operation.
//   Extracts the indices of the current instruction and tries to fold in
//   preceding ones if all indices of the current one are constant.
//---------------------------------------------------------------------------

Value*
GetGEPInstArgs(InstructionNode* gepNode,
               vector<Value*>& idxVec,
               bool& allConstantIndices)
{
  allConstantIndices = true;
  GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction());

  // Default pointer is the one from the current instruction.
  Value* ptrVal = gepI->getPointerOperand();
  InstrTreeNode* ptrChild = gepNode->leftChild(); 

  // Extract the index vector of the GEP instructin.
  // If all indices are constant and first index is zero, try to fold
  // in preceding GEPs with all constant indices.
  for (User::op_iterator OI=gepI->idx_begin(),  OE=gepI->idx_end();
       allConstantIndices && OI != OE; ++OI)
    if (! isa<Constant>(*OI))
      allConstantIndices = false;     // note: this also terminates loop!

  // If we have only constant indices, fold chains of constant indices
  // in this and any preceding GetElemPtr instructions.
  bool foldedGEPs = false;
  bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin());
  if (allConstantIndices)
    if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx))
      {
        ptrVal = newPtr;
        foldedGEPs = true;
      }

  // Append the index vector of the current instruction.
  // Skip the leading [0] index if preceding GEPs were folded into this.
  idxVec.insert(idxVec.end(),
                gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx),
                gepI->idx_end());

  return ptrVal;
}

//---------------------------------------------------------------------------
// Function: GetMemInstArgs
// 
// Purpose:
//   Get the pointer value and the index vector for a memory operation
//   (GetElementPtr, Load, or Store).  If all indices of the given memory
//   operation are constant, fold in constant indices in a chain of
//   preceding GetElementPtr instructions (if any), and return the
//   pointer value of the first instruction in the chain.
//   All folded instructions are marked so no code is generated for them.
//
// Return values:
//   Returns the pointer Value to use.
//   Returns the resulting IndexVector in idxVec.
//   Returns true/false in allConstantIndices if all indices are/aren't const.
//---------------------------------------------------------------------------

Value*
GetMemInstArgs(InstructionNode* memInstrNode,
               vector<Value*>& idxVec,
               bool& allConstantIndices)
{
  allConstantIndices = false;
  Instruction* memInst = memInstrNode->getInstruction();
  assert(idxVec.size() == 0 && "Need empty vector to return indices");

  // If there is a GetElemPtr instruction to fold in to this instr,
  // it must be in the left child for Load and GetElemPtr, and in the
  // right child for Store instructions.
  InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store
                             ? memInstrNode->rightChild()
                             : memInstrNode->leftChild()); 
  
  // Default pointer is the one from the current instruction.
  Value* ptrVal = ptrChild->getValue(); 

  // Find the "last" GetElemPtr instruction: this one or the immediate child.
  // There will be none if this is a load or a store from a scalar pointer.
  InstructionNode* gepNode = NULL;
  if (isa<GetElementPtrInst>(memInst))
    gepNode = memInstrNode;
  else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal))
    { // Child of load/store is a GEP and memInst is its only use.
      // Use its indices and mark it as folded.
      gepNode = cast<InstructionNode>(ptrChild);
      gepNode->markFoldedIntoParent();
    }

  // If there are no indices, return the current pointer.
  // Else extract the pointer from the GEP and fold the indices.
  return (gepNode)? GetGEPInstArgs(gepNode, idxVec, allConstantIndices)
                  : ptrVal;
}


//------------------------------------------------------------------------ 
// Function Set2OperandsFromInstr
// Function Set3OperandsFromInstr
// 
// For the common case of 2- and 3-operand arithmetic/logical instructions,
// set the m/c instr. operands directly from the VM instruction's operands.
// Check whether the first or second operand is 0 and can use a dedicated "0"
// register.
// Check whether the second operand should use an immediate field or register.
// (First and third operands are never immediates for such instructions.)
// 
// Arguments:
// canDiscardResult: Specifies that the result operand can be discarded
//		     by using the dedicated "0"
// 
// op1position, op2position and resultPosition: Specify in which position
//		     in the machine instruction the 3 operands (arg1, arg2
//		     and result) should go.
// 
//------------------------------------------------------------------------ 

void
Set2OperandsFromInstr(MachineInstr* minstr,
		      InstructionNode* vmInstrNode,
		      const TargetMachine& target,
		      bool canDiscardResult,
		      int op1Position,
		      int resultPosition)
{
  Set3OperandsFromInstr(minstr, vmInstrNode, target,
			canDiscardResult, op1Position,
			/*op2Position*/ -1, resultPosition);
}


void
Set3OperandsFromInstr(MachineInstr* minstr,
		      InstructionNode* vmInstrNode,
		      const TargetMachine& target,
		      bool canDiscardResult,
		      int op1Position,
		      int op2Position,
		      int resultPosition)
{
  assert(op1Position >= 0);
  assert(resultPosition >= 0);
  
  // operand 1
  minstr->SetMachineOperandVal(op1Position, MachineOperand::MO_VirtualRegister,
			    vmInstrNode->leftChild()->getValue());   
  
  // operand 2 (if any)
  if (op2Position >= 0)
    minstr->SetMachineOperandVal(op2Position, MachineOperand::MO_VirtualRegister,
			      vmInstrNode->rightChild()->getValue());   
  
  // result operand: if it can be discarded, use a dead register if one exists
  if (canDiscardResult && target.getRegInfo().getZeroRegNum() >= 0)
    minstr->SetMachineOperandReg(resultPosition,
			      target.getRegInfo().getZeroRegNum());
  else
    minstr->SetMachineOperandVal(resultPosition,
			      MachineOperand::MO_VirtualRegister, vmInstrNode->getValue());
}


MachineOperand::MachineOperandType
ChooseRegOrImmed(int64_t intValue,
                 bool isSigned,
		 MachineOpCode opCode,
		 const TargetMachine& target,
		 bool canUseImmed,
		 unsigned int& getMachineRegNum,
		 int64_t& getImmedValue)
{
  MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister;
  getMachineRegNum = 0;
  getImmedValue = 0;

  if (canUseImmed &&
	   target.getInstrInfo().constantFitsInImmedField(opCode, intValue))
    {
      opType = isSigned? MachineOperand::MO_SignExtendedImmed
                       : MachineOperand::MO_UnextendedImmed;
      getImmedValue = intValue;
    }
  else if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0)
    {
      opType = MachineOperand::MO_MachineRegister;
      getMachineRegNum = target.getRegInfo().getZeroRegNum();
    }

  return opType;
}


MachineOperand::MachineOperandType
ChooseRegOrImmed(Value* val,
		 MachineOpCode opCode,
		 const TargetMachine& target,
		 bool canUseImmed,
		 unsigned int& getMachineRegNum,
		 int64_t& getImmedValue)
{
  getMachineRegNum = 0;
  getImmedValue = 0;

  // To use reg or immed, constant needs to be integer, bool, or a NULL pointer
  Constant *CPV = dyn_cast<Constant>(val);
  if (CPV == NULL ||
      (! CPV->getType()->isIntegral() &&
       ! (isa<PointerType>(CPV->getType()) && CPV->isNullValue())))
    return MachineOperand::MO_VirtualRegister;

  // Now get the constant value and check if it fits in the IMMED field.
  // Take advantage of the fact that the max unsigned value will rarely
  // fit into any IMMED field and ignore that case (i.e., cast smaller
  // unsigned constants to signed).
  // 
  int64_t intValue;
  if (isa<PointerType>(CPV->getType()))
    intValue = 0;                       // We checked above that it is NULL 
  else if (ConstantBool* CB = dyn_cast<ConstantBool>(CPV))
    intValue = (int64_t) CB->getValue();
  else if (CPV->getType()->isSigned())
    intValue = cast<ConstantSInt>(CPV)->getValue();
  else
    { // get the int value and sign-extend if original was less than 64 bits
      intValue = (int64_t) cast<ConstantUInt>(CPV)->getValue();
      switch(CPV->getType()->getPrimitiveID())
        {
        case Type::UByteTyID:  intValue = (int64_t) (int8_t) intValue; break;
        case Type::UShortTyID: intValue = (int64_t) (short)  intValue; break;
        case Type::UIntTyID:   intValue = (int64_t) (int)    intValue; break;
        default: break;
        }
    }

  return ChooseRegOrImmed(intValue, CPV->getType()->isSigned(),
                          opCode, target, canUseImmed,
                          getMachineRegNum, getImmedValue);
}


//---------------------------------------------------------------------------
// Function: FixConstantOperandsForInstr
// 
// Purpose:
// Special handling for constant operands of a machine instruction
// -- if the constant is 0, use the hardwired 0 register, if any;
// -- if the constant fits in the IMMEDIATE field, use that field;
// -- else create instructions to put the constant into a register, either
//    directly or by loading explicitly from the constant pool.
// 
// In the first 2 cases, the operand of `minstr' is modified in place.
// Returns a vector of machine instructions generated for operands that
// fall under case 3; these must be inserted before `minstr'.
//---------------------------------------------------------------------------

vector<MachineInstr*>
FixConstantOperandsForInstr(Instruction* vmInstr,
                            MachineInstr* minstr,
                            TargetMachine& target)
{
  vector<MachineInstr*> loadConstVec;
  
  MachineOpCode opCode = minstr->getOpCode();
  const TargetInstrInfo& instrInfo = target.getInstrInfo();
  int resultPos = instrInfo.getResultPos(opCode);
  int immedPos = instrInfo.getImmedConstantPos(opCode);

  Function *F = vmInstr->getParent()->getParent();

  for (unsigned op=0; op < minstr->getNumOperands(); op++)
    {
      const MachineOperand& mop = minstr->getOperand(op);
          
      // Skip the result position, preallocated machine registers, or operands
      // that cannot be constants (CC regs or PC-relative displacements)
      if (resultPos == (int)op ||
          mop.getType() == MachineOperand::MO_MachineRegister ||
          mop.getType() == MachineOperand::MO_CCRegister ||
          mop.getType() == MachineOperand::MO_PCRelativeDisp)
        continue;

      bool constantThatMustBeLoaded = false;
      unsigned int machineRegNum = 0;
      int64_t immedValue = 0;
      Value* opValue = NULL;
      MachineOperand::MachineOperandType opType =
        MachineOperand::MO_VirtualRegister;

      // Operand may be a virtual register or a compile-time constant
      if (mop.getType() == MachineOperand::MO_VirtualRegister)
        {
          assert(mop.getVRegValue() != NULL);
          opValue = mop.getVRegValue();
          if (Constant *opConst = dyn_cast<Constant>(opValue))
            {
              opType = ChooseRegOrImmed(opConst, opCode, target,
                             (immedPos == (int)op), machineRegNum, immedValue);
              if (opType == MachineOperand::MO_VirtualRegister)
                constantThatMustBeLoaded = true;
            }
        }
      else
        {
          assert(mop.getType() == MachineOperand::MO_SignExtendedImmed ||
                 mop.getType() == MachineOperand::MO_UnextendedImmed);

          bool isSigned = (mop.getType() ==
                           MachineOperand::MO_SignExtendedImmed);

          // Bit-selection flags indicate an instruction that is extracting
          // bits from its operand so ignore this even if it is a big constant.
          if (mop.opHiBits32() || mop.opLoBits32() ||
              mop.opHiBits64() || mop.opLoBits64())
            continue;

          opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
                                    opCode, target, (immedPos == (int)op), 
                                    machineRegNum, immedValue);

          if (opType == mop.getType()) 
            continue;           // no change: this is the most common case

          if (opType == MachineOperand::MO_VirtualRegister)
            {
              constantThatMustBeLoaded = true;
              opValue = isSigned
                ? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
                : (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
            }
        }

      if (opType == MachineOperand::MO_MachineRegister)
        minstr->SetMachineOperandReg(op, machineRegNum);
      else if (opType == MachineOperand::MO_SignExtendedImmed ||
               opType == MachineOperand::MO_UnextendedImmed)
        minstr->SetMachineOperandConst(op, opType, immedValue);
      else if (constantThatMustBeLoaded ||
               (opValue && isa<GlobalValue>(opValue)))
        { // opValue is a constant that must be explicitly loaded into a reg
          assert(opValue);
          TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr,
                                                        loadConstVec, target);
          minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
                                       tmpReg);
        }
    }
  
  // Also, check for implicit operands used by the machine instruction
  // (no need to check those defined since they cannot be constants).
  // These include:
  // -- arguments to a Call
  // -- return value of a Return
  // Any such operand that is a constant value needs to be fixed also.
  // The current instructions with implicit refs (viz., Call and Return)
  // have no immediate fields, so the constant always needs to be loaded
  // into a register.
  // 
  bool isCall = instrInfo.isCall(opCode);
  unsigned lastCallArgNum = 0;          // unused if not a call
  CallArgsDescriptor* argDesc = NULL;   // unused if not a call
  if (isCall)
    argDesc = CallArgsDescriptor::get(minstr);
  
  for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
    if (isa<Constant>(minstr->getImplicitRef(i)) ||
        isa<GlobalValue>(minstr->getImplicitRef(i)))
      {
        Value* oldVal = minstr->getImplicitRef(i);
        TmpInstruction* tmpReg =
          InsertCodeToLoadConstant(F, oldVal, vmInstr, loadConstVec, target);
        minstr->setImplicitRef(i, tmpReg);
        
        if (isCall)
          { // find and replace the argument in the CallArgsDescriptor
            unsigned i=lastCallArgNum;
            while (argDesc->getArgInfo(i).getArgVal() != oldVal)
              ++i;
            assert(i < argDesc->getNumArgs() &&
                   "Constant operands to a call *must* be in the arg list");
            lastCallArgNum = i;
            argDesc->getArgInfo(i).replaceArgVal(tmpReg);
          }
      }
  
  return loadConstVec;
}