aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/RegAlloc/PhyRegAlloc.cpp
blob: 74834f0cdc9d97cb92629ec81faf0c9136b030dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
//===-- PhyRegAlloc.cpp ---------------------------------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
// 
// Traditional graph-coloring global register allocator currently used
// by the SPARC back-end.
//
// NOTE: This register allocator has some special support
// for the Reoptimizer, such as not saving some registers on calls to
// the first-level instrumentation function.
//
// NOTE 2: This register allocator can save its state in a global
// variable in the module it's working on. This feature is not
// thread-safe; if you have doubts, leave it turned off.
// 
//===----------------------------------------------------------------------===//

#include "AllocInfo.h"
#include "IGNode.h"
#include "PhyRegAlloc.h"
#include "RegAllocCommon.h"
#include "RegClass.h"
#include "../LiveVar/FunctionLiveVarInfo.h"
#include "../SparcV9InstrInfo.h"
#include "../SparcV9TmpInstr.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "../MachineInstrAnnot.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "Support/CommandLine.h"
#include "Support/SetOperations.h"
#include "Support/STLExtras.h"
#include <cmath>
#include <iostream>

namespace llvm {

RegAllocDebugLevel_t DEBUG_RA;

static cl::opt<RegAllocDebugLevel_t, true>
DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA),
        cl::desc("enable register allocation debugging information"),
        cl::values(
  clEnumValN(RA_DEBUG_None   ,     "n", "disable debug output"),
  clEnumValN(RA_DEBUG_Results,     "y", "debug output for allocation results"),
  clEnumValN(RA_DEBUG_Coloring,    "c", "debug output for graph coloring step"),
  clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"),
  clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"),
  clEnumValN(RA_DEBUG_Verbose,     "v", "extra debug output"),
                   clEnumValEnd));

/// The reoptimizer wants to be able to grovel through the register
/// allocator's state after it has done its job. This is a hack.
///
PhyRegAlloc::SavedStateMapTy ExportedFnAllocState;
bool SaveRegAllocState = false;
bool SaveStateToModule = true;
static cl::opt<bool, true>
SaveRegAllocStateOpt("save-ra-state", cl::Hidden,
                  cl::location (SaveRegAllocState),
                  cl::init(false),
                  cl::desc("write reg. allocator state into module"));

FunctionPass *getRegisterAllocator(TargetMachine &T) {
  return new PhyRegAlloc (T);
}

void PhyRegAlloc::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LoopInfo> ();
  AU.addRequired<FunctionLiveVarInfo> ();
}


/// Initialize interference graphs (one in each reg class) and IGNodeLists
/// (one in each IG). The actual nodes will be pushed later.
///
void PhyRegAlloc::createIGNodeListsAndIGs() {
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n";

  LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin();   
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();   

  for (; HMI != HMIEnd ; ++HMI ) {
    if (HMI->first) { 
      LiveRange *L = HMI->second;   // get the LiveRange
      if (!L) { 
        if (DEBUG_RA && !isa<ConstantIntegral> (HMI->first))
          std::cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: "
               << RAV(HMI->first) << "****\n";
        continue;
      }

      // if the Value * is not null, and LR is not yet written to the IGNodeList
      if (!(L->getUserIGNode())  ) {  
        RegClass *const RC =           // RegClass of first value in the LR
          RegClassList[ L->getRegClassID() ];
        RC->addLRToIG(L);              // add this LR to an IG
      }
    }
  }
    
  // init RegClassList
  for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
    RegClassList[rc]->createInterferenceGraph();

  if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "LRLists Created!\n";
}


/// Add all interferences for a given instruction.  Interference occurs only
/// if the LR of Def (Inst or Arg) is of the same reg class as that of live
/// var. The live var passed to this function is the LVset AFTER the
/// instruction.
///
void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet,
				  bool isCallInst) {
  ValueSet::const_iterator LIt = LVSet->begin();

  // get the live range of instruction
  const LiveRange *const LROfDef = LRI->getLiveRangeForValue( Def );   

  IGNode *const IGNodeOfDef = LROfDef->getUserIGNode();
  assert( IGNodeOfDef );

  RegClass *const RCOfDef = LROfDef->getRegClass(); 

  // for each live var in live variable set
  for ( ; LIt != LVSet->end(); ++LIt) {

    if (DEBUG_RA >= RA_DEBUG_Verbose)
      std::cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> ";

    //  get the live range corresponding to live var
    LiveRange *LROfVar = LRI->getLiveRangeForValue(*LIt);

    // LROfVar can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    if (LROfVar)
      if (LROfDef != LROfVar)                  // do not set interf for same LR
        if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same
          RCOfDef->setInterference( LROfDef, LROfVar);  
  }
}


/// For a call instruction, this method sets the CallInterference flag in 
/// the LR of each variable live in the Live Variable Set live after the
/// call instruction (except the return value of the call instruction - since
/// the return value does not interfere with that call itself).
///
void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, 
				       const ValueSet *LVSetAft) {
  if (DEBUG_RA >= RA_DEBUG_Interference)
    std::cerr << "\n For call inst: " << *MInst;

  // for each live var in live variable set after machine inst
  for (ValueSet::const_iterator LIt = LVSetAft->begin(), LEnd = LVSetAft->end();
       LIt != LEnd; ++LIt) {

    //  get the live range corresponding to live var
    LiveRange *const LR = LRI->getLiveRangeForValue(*LIt); 

    // LR can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    if (LR) {  
      if (DEBUG_RA >= RA_DEBUG_Interference)
        std::cerr << "\n\tLR after Call: " << *LR << "\n";
      LR->setCallInterference();
      if (DEBUG_RA >= RA_DEBUG_Interference)
	    std::cerr << "\n  ++After adding call interference for LR: " << *LR << "\n";
    }
  }

  // Now find the LR of the return value of the call
  // We do this because, we look at the LV set *after* the instruction
  // to determine, which LRs must be saved across calls. The return value
  // of the call is live in this set - but it does not interfere with call
  // (i.e., we can allocate a volatile register to the return value)
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst);
  
  if (const Value *RetVal = argDesc->getReturnValue()) {
    LiveRange *RetValLR = LRI->getLiveRangeForValue( RetVal );
    assert( RetValLR && "No LR for RetValue of call");
    RetValLR->clearCallInterference();
  }

  // If the CALL is an indirect call, find the LR of the function pointer.
  // That has a call interference because it conflicts with outgoing args.
  if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) {
    LiveRange *AddrValLR = LRI->getLiveRangeForValue( AddrVal );
    assert( AddrValLR && "No LR for indirect addr val of call");
    AddrValLR->setCallInterference();
  }
}


/// Create interferences in the IG of each RegClass, and calculate the spill
/// cost of each Live Range (it is done in this method to save another pass
/// over the code).
///
void PhyRegAlloc::buildInterferenceGraphs() {
  if (DEBUG_RA >= RA_DEBUG_Interference)
    std::cerr << "Creating interference graphs ...\n";

  unsigned BBLoopDepthCost;
  for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
       BBI != BBE; ++BBI) {
    const MachineBasicBlock &MBB = *BBI;
    const BasicBlock *BB = MBB.getBasicBlock();

    // find the 10^(loop_depth) of this BB 
    BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB));

    // get the iterator for machine instructions
    MachineBasicBlock::const_iterator MII = MBB.begin();

    // iterate over all the machine instructions in BB
    for ( ; MII != MBB.end(); ++MII) {
      const MachineInstr *MInst = MII;

      // get the LV set after the instruction
      const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB);
      bool isCallInst = TM.getInstrInfo()->isCall(MInst->getOpcode());

      if (isCallInst) {
	// set the isCallInterference flag of each live range which extends
	// across this call instruction. This information is used by graph
	// coloring algorithm to avoid allocating volatile colors to live ranges
	// that span across calls (since they have to be saved/restored)
	setCallInterferences(MInst, &LVSetAI);
      }

      // iterate over all MI operands to find defs
      for (MachineInstr::const_val_op_iterator OpI = MInst->begin(),
             OpE = MInst->end(); OpI != OpE; ++OpI) {
       	if (OpI.isDef()) // create a new LR since def
	  addInterference(*OpI, &LVSetAI, isCallInst);

	// Calculate the spill cost of each live range
	LiveRange *LR = LRI->getLiveRangeForValue(*OpI);
	if (LR) LR->addSpillCost(BBLoopDepthCost);
      } 

      // Mark all operands of pseudo-instructions as interfering with one
      // another.  This must be done because pseudo-instructions may be
      // expanded to multiple instructions by the assembler, so all the
      // operands must get distinct registers.
      if (TM.getInstrInfo()->isPseudoInstr(MInst->getOpcode()))
      	addInterf4PseudoInstr(MInst);

      // Also add interference for any implicit definitions in a machine
      // instr (currently, only calls have this).
      unsigned NumOfImpRefs =  MInst->getNumImplicitRefs();
      for (unsigned z=0; z < NumOfImpRefs; z++) 
        if (MInst->getImplicitOp(z).isDef())
	  addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst );

    } // for all machine instructions in BB
  } // for all BBs in function

  // add interferences for function arguments. Since there are no explicit 
  // defs in the function for args, we have to add them manually
  addInterferencesForArgs();          

  if (DEBUG_RA >= RA_DEBUG_Interference)
    std::cerr << "Interference graphs calculated!\n";
}


/// Mark all operands of the given MachineInstr as interfering with one
/// another.
///
void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
  bool setInterf = false;

  // iterate over MI operands to find defs
  for (MachineInstr::const_val_op_iterator It1 = MInst->begin(),
         ItE = MInst->end(); It1 != ItE; ++It1) {
    const LiveRange *LROfOp1 = LRI->getLiveRangeForValue(*It1); 
    assert((LROfOp1 || It1.isDef()) && "No LR for Def in PSEUDO insruction");

    MachineInstr::const_val_op_iterator It2 = It1;
    for (++It2; It2 != ItE; ++It2) {
      const LiveRange *LROfOp2 = LRI->getLiveRangeForValue(*It2); 

      if (LROfOp2) {
	RegClass *RCOfOp1 = LROfOp1->getRegClass(); 
	RegClass *RCOfOp2 = LROfOp2->getRegClass(); 
 
	if (RCOfOp1 == RCOfOp2 ){ 
	  RCOfOp1->setInterference( LROfOp1, LROfOp2 );  
	  setInterf = true;
	}
      } // if Op2 has a LR
    } // for all other defs in machine instr
  } // for all operands in an instruction

  if (!setInterf && MInst->getNumOperands() > 2) {
    std::cerr << "\nInterf not set for any operand in pseudo instr:\n";
    std::cerr << *MInst;
    assert(0 && "Interf not set for pseudo instr with > 2 operands" );
  }
} 


/// Add interferences for incoming arguments to a function.
///
void PhyRegAlloc::addInterferencesForArgs() {
  // get the InSet of root BB
  const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front());  

  for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) {
    // add interferences between args and LVars at start 
    addInterference(AI, &InSet, false);
    
    if (DEBUG_RA >= RA_DEBUG_Interference)
      std::cerr << " - %% adding interference for argument " << RAV(AI) << "\n";
  }
}


/// The following are utility functions used solely by updateMachineCode and
/// the functions that it calls. They should probably be folded back into
/// updateMachineCode at some point.
///

// used by: updateMachineCode (1 time), PrependInstructions (1 time)
inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB,
                         MachineBasicBlock::iterator& MII) {
  MII = MBB.insert(MII, newMI);
  ++MII;
}

// used by: AppendInstructions (1 time)
inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB,
                        MachineBasicBlock::iterator& MII) {
  ++MII;    // insert before the next instruction
  MII = MBB.insert(MII, newMI);
}

// used by: updateMachineCode (2 times)
inline void PrependInstructions(std::vector<MachineInstr *> &IBef,
                                MachineBasicBlock& MBB,
                                MachineBasicBlock::iterator& MII,
                                const std::string& msg) {
  if (!IBef.empty()) {
      MachineInstr* OrigMI = MII;
      std::vector<MachineInstr *>::iterator AdIt; 
      for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) {
          if (DEBUG_RA) {
            if (OrigMI) std::cerr << "For MInst:\n  " << *OrigMI;
            std::cerr << msg << "PREPENDed instr:\n  " << **AdIt << "\n";
          }
          InsertBefore(*AdIt, MBB, MII);
        }
    }
}

// used by: updateMachineCode (1 time)
inline void AppendInstructions(std::vector<MachineInstr *> &IAft,
                               MachineBasicBlock& MBB,
                               MachineBasicBlock::iterator& MII,
                               const std::string& msg) {
  if (!IAft.empty()) {
      MachineInstr* OrigMI = MII;
      std::vector<MachineInstr *>::iterator AdIt; 
      for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) {
          if (DEBUG_RA) {
            if (OrigMI) std::cerr << "For MInst:\n  " << *OrigMI;
            std::cerr << msg << "APPENDed instr:\n  "  << **AdIt << "\n";
          }
          InsertAfter(*AdIt, MBB, MII);
        }
    }
}

/// Set the registers for operands in the given MachineInstr, if a register was
/// successfully allocated.  Return true if any of its operands has been marked
/// for spill.
///
bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
{
  bool instrNeedsSpills = false;

  // First, set the registers for operands in the machine instruction
  // if a register was successfully allocated.  Do this first because we
  // will need to know which registers are already used by this instr'n.
  for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
      MachineOperand& Op = MInst->getOperand(OpNum);
      if (Op.getType() ==  MachineOperand::MO_VirtualRegister || 
          Op.getType() ==  MachineOperand::MO_CCRegister) {
          const Value *const Val =  Op.getVRegValue();
          if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) {
            // Remember if any operand needs spilling
            instrNeedsSpills |= LR->isMarkedForSpill();

            // An operand may have a color whether or not it needs spilling
            if (LR->hasColor())
              MInst->SetRegForOperand(OpNum,
                          MRI.getUnifiedRegNum(LR->getRegClassID(),
                                               LR->getColor()));
          }
        }
    } // for each operand

  return instrNeedsSpills;
}

/// Mark allocated registers (using markAllocatedRegs()) on the instruction
/// that MII points to. Then, if it's a call instruction, insert caller-saving
/// code before and after it. Finally, insert spill code before and after it,
/// using insertCode4SpilledLR().
///
void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
                                    MachineBasicBlock &MBB) {
  MachineInstr* MInst = MII;
  unsigned Opcode = MInst->getOpcode();

  // Reset tmp stack positions so they can be reused for each machine instr.
  MF->getInfo()->popAllTempValues();  

  // Mark the operands for which regs have been allocated.
  bool instrNeedsSpills = markAllocatedRegs(MII);

#ifndef NDEBUG
  // Mark that the operands have been updated.  Later,
  // setRelRegsUsedByThisInst() is called to find registers used by each
  // MachineInst, and it should not be used for an instruction until
  // this is done.  This flag just serves as a sanity check.
  OperandsColoredMap[MInst] = true;
#endif

  // Now insert caller-saving code before/after the call.
  // Do this before inserting spill code since some registers must be
  // used by save/restore and spill code should not use those registers.
  if (TM.getInstrInfo()->isCall(Opcode)) {
    AddedInstrns &AI = AddedInstrMap[MInst];
    insertCallerSavingCode(AI.InstrnsBefore, AI.InstrnsAfter, MInst,
                           MBB.getBasicBlock());
  }

  // Now insert spill code for remaining operands not allocated to
  // registers.  This must be done even for call return instructions
  // since those are not handled by the special code above.
  if (instrNeedsSpills)
    for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
        MachineOperand& Op = MInst->getOperand(OpNum);
        if (Op.getType() ==  MachineOperand::MO_VirtualRegister || 
            Op.getType() ==  MachineOperand::MO_CCRegister) {
            const Value* Val = Op.getVRegValue();
            if (const LiveRange *LR = LRI->getLiveRangeForValue(Val))
              if (LR->isMarkedForSpill())
                insertCode4SpilledLR(LR, MII, MBB, OpNum);
          }
      } // for each operand
}

/// Iterate over all the MachineBasicBlocks in the current function and set
/// the allocated registers for each instruction (using updateInstruction()),
/// after register allocation is complete. Then move code out of delay slots.
///
void PhyRegAlloc::updateMachineCode()
{
  // Insert any instructions needed at method entry
  MachineBasicBlock::iterator MII = MF->front().begin();
  PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF->front(), MII,
                      "At function entry: \n");
  assert(AddedInstrAtEntry.InstrnsAfter.empty() &&
         "InstrsAfter should be unnecessary since we are just inserting at "
         "the function entry point here.");
  
  for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
       BBI != BBE; ++BBI) {
    MachineBasicBlock &MBB = *BBI;

    // Iterate over all machine instructions in BB and mark operands with
    // their assigned registers or insert spill code, as appropriate. 
    // Also, fix operands of call/return instructions.
    for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII)
      if (! TM.getInstrInfo()->isDummyPhiInstr(MII->getOpcode()))
        updateInstruction(MII, MBB);

    // Now, move code out of delay slots of branches and returns if needed.
    // (Also, move "after" code from calls to the last delay slot instruction.)
    // Moving code out of delay slots is needed in 2 situations:
    // (1) If this is a branch and it needs instructions inserted after it,
    //     move any existing instructions out of the delay slot so that the
    //     instructions can go into the delay slot.  This only supports the
    //     case that #instrsAfter <= #delay slots.
    // 
    // (2) If any instruction in the delay slot needs
    //     instructions inserted, move it out of the delay slot and before the
    //     branch because putting code before or after it would be VERY BAD!
    // 
    // If the annul bit of the branch is set, neither of these is legal!
    // If so, we need to handle spill differently but annulling is not yet used.
    for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII)
      if (unsigned delaySlots =
          TM.getInstrInfo()->getNumDelaySlots(MII->getOpcode())) { 
          MachineBasicBlock::iterator DelaySlotMI = next(MII);
          assert(DelaySlotMI != MBB.end() && "no instruction for delay slot");
          
          // Check the 2 conditions above:
          // (1) Does a branch need instructions added after it?
          // (2) O/w does delay slot instr. need instrns before or after?
          bool isBranch = (TM.getInstrInfo()->isBranch(MII->getOpcode()) ||
                           TM.getInstrInfo()->isReturn(MII->getOpcode()));
          bool cond1 = (isBranch &&
                        AddedInstrMap.count(MII) &&
                        AddedInstrMap[MII].InstrnsAfter.size() > 0);
          bool cond2 = (AddedInstrMap.count(DelaySlotMI) &&
                        (AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 ||
                         AddedInstrMap[DelaySlotMI].InstrnsAfter.size()  > 0));

          if (cond1 || cond2) {
              assert(delaySlots==1 &&
                     "InsertBefore does not yet handle >1 delay slots!");

              if (DEBUG_RA) {
                std::cerr << "\nRegAlloc: Moved instr. with added code: "
                     << *DelaySlotMI
                     << "           out of delay slots of instr: " << *MII;
              }

              // move instruction before branch
              MBB.insert(MII, MBB.remove(DelaySlotMI++));

              // On cond1 we are done (we already moved the
              // instruction out of the delay slot). On cond2 we need
              // to insert a nop in place of the moved instruction
              if (cond2) {
                MBB.insert(MII, BuildMI(V9::NOP, 1));
              }
            }
          else {
            // For non-branch instr with delay slots (probably a call), move
            // InstrAfter to the instr. in the last delay slot.
            MachineBasicBlock::iterator tmp = next(MII, delaySlots);
            move2DelayedInstr(MII, tmp);
          }
      }

    // Finally iterate over all instructions in BB and insert before/after
    for (MachineBasicBlock::iterator MII=MBB.begin(); MII != MBB.end(); ++MII) {
      MachineInstr *MInst = MII; 

      // do not process Phis
      if (TM.getInstrInfo()->isDummyPhiInstr(MInst->getOpcode()))
	continue;

      // if there are any added instructions...
      if (AddedInstrMap.count(MInst)) {
        AddedInstrns &CallAI = AddedInstrMap[MInst];

#ifndef NDEBUG
        bool isBranch = (TM.getInstrInfo()->isBranch(MInst->getOpcode()) ||
                         TM.getInstrInfo()->isReturn(MInst->getOpcode()));
        assert((!isBranch ||
                AddedInstrMap[MInst].InstrnsAfter.size() <=
                TM.getInstrInfo()->getNumDelaySlots(MInst->getOpcode())) &&
               "Cannot put more than #delaySlots instrns after "
               "branch or return! Need to handle temps differently.");
#endif

#ifndef NDEBUG
        // Temporary sanity checking code to detect whether the same machine
        // instruction is ever inserted twice before/after a call.
        // I suspect this is happening but am not sure. --Vikram, 7/1/03.
        std::set<const MachineInstr*> instrsSeen;
        for (int i = 0, N = CallAI.InstrnsBefore.size(); i < N; ++i) {
          assert(instrsSeen.count(CallAI.InstrnsBefore[i]) == 0 &&
                 "Duplicate machine instruction in InstrnsBefore!");
          instrsSeen.insert(CallAI.InstrnsBefore[i]);
        } 
        for (int i = 0, N = CallAI.InstrnsAfter.size(); i < N; ++i) {
          assert(instrsSeen.count(CallAI.InstrnsAfter[i]) == 0 &&
                 "Duplicate machine instruction in InstrnsBefore/After!");
          instrsSeen.insert(CallAI.InstrnsAfter[i]);
        } 
#endif

        // Now add the instructions before/after this MI.
        // We do this here to ensure that spill for an instruction is inserted
        // as close as possible to an instruction (see above insertCode4Spill)
        if (! CallAI.InstrnsBefore.empty())
          PrependInstructions(CallAI.InstrnsBefore, MBB, MII,"");
        
        if (! CallAI.InstrnsAfter.empty())
          AppendInstructions(CallAI.InstrnsAfter, MBB, MII,"");

      } // if there are any added instructions
    } // for each machine instruction
  }
}


/// Insert spill code for AN operand whose LR was spilled.  May be called
/// repeatedly for a single MachineInstr if it has many spilled operands. On
/// each call, it finds a register which is not live at that instruction and
/// also which is not used by other spilled operands of the same
/// instruction. Then it uses this register temporarily to accommodate the
/// spilled value.
///
void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, 
                                       MachineBasicBlock::iterator& MII,
                                       MachineBasicBlock &MBB,
				       const unsigned OpNum) {
  MachineInstr *MInst = MII;
  const BasicBlock *BB = MBB.getBasicBlock();

  assert((! TM.getInstrInfo()->isCall(MInst->getOpcode()) || OpNum == 0) &&
         "Outgoing arg of a call must be handled elsewhere (func arg ok)");
  assert(! TM.getInstrInfo()->isReturn(MInst->getOpcode()) &&
	 "Return value of a ret must be handled elsewhere");

  MachineOperand& Op = MInst->getOperand(OpNum);
  bool isDef =  Op.isDef();
  bool isUse = Op.isUse();
  unsigned RegType = MRI.getRegTypeForLR(LR);
  int SpillOff = LR->getSpillOffFromFP();
  RegClass *RC = LR->getRegClass();

  // Get the live-variable set to find registers free before this instr.
  const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB);

#ifndef NDEBUG
  // If this instr. is in the delay slot of a branch or return, we need to
  // include all live variables before that branch or return -- we don't want to
  // trample those!  Verify that the set is included in the LV set before MInst.
  if (MII != MBB.begin()) {
    MachineBasicBlock::iterator PredMI = prior(MII);
    if (unsigned DS = TM.getInstrInfo()->getNumDelaySlots(PredMI->getOpcode()))
      assert(set_difference(LVI->getLiveVarSetBeforeMInst(PredMI), LVSetBef)
             .empty() && "Live-var set before branch should be included in "
             "live-var set of each delay slot instruction!");
  }
#endif

  MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
  
  std::vector<MachineInstr*> MIBef, MIAft;
  std::vector<MachineInstr*> AdIMid;
  
  // Choose a register to hold the spilled value, if one was not preallocated.
  // This may insert code before and after MInst to free up the value.  If so,
  // this code should be first/last in the spill sequence before/after MInst.
  int TmpRegU=(LR->hasColor()
               ? MRI.getUnifiedRegNum(LR->getRegClassID(),LR->getColor())
               : getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef,MIAft));
  
  // Set the operand first so that it this register does not get used
  // as a scratch register for later calls to getUsableUniRegAtMI below
  MInst->SetRegForOperand(OpNum, TmpRegU);
  
  // get the added instructions for this instruction
  AddedInstrns &AI = AddedInstrMap[MInst];

  // We may need a scratch register to copy the spilled value to/from memory.
  // This may itself have to insert code to free up a scratch register.  
  // Any such code should go before (after) the spill code for a load (store).
  // The scratch reg is not marked as used because it is only used
  // for the copy and not used across MInst.
  int scratchRegType = -1;
  int scratchReg = -1;
  if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
      scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
                                       MInst, MIBef, MIAft);
      assert(scratchReg != MRI.getInvalidRegNum());
    }
  
  if (isUse) {
    // for a USE, we have to load the value of LR from stack to a TmpReg
    // and use the TmpReg as one operand of instruction
    
    // actual loading instruction(s)
    MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU,
                    RegType, scratchReg);
    
    // the actual load should be after the instructions to free up TmpRegU
    MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end());
    AdIMid.clear();
  }
  
  if (isDef) {   // if this is a Def
    // for a DEF, we have to store the value produced by this instruction
    // on the stack position allocated for this LR
    
    // actual storing instruction(s)
    MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff,
                    RegType, scratchReg);
    
    MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end());
  }  // if !DEF
  
  // Finally, insert the entire spill code sequences before/after MInst
  AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end());
  AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end());
  
  if (DEBUG_RA) {
    std::cerr << "\nFor Inst:\n  " << *MInst;
    std::cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex();
    std::cerr << "; added Instructions:";
    for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump));
    for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump));
  }
}


/// Insert caller saving/restoring instructions before/after a call machine
/// instruction (before or after any other instructions that were inserted for
/// the call).
///
void
PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore,
                                    std::vector<MachineInstr*> &instrnsAfter,
                                    MachineInstr *CallMI, 
                                    const BasicBlock *BB) {
  assert(TM.getInstrInfo()->isCall(CallMI->getOpcode()));
  
  // hash set to record which registers were saved/restored
  hash_set<unsigned> PushedRegSet;

  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
  
  // if the call is to a instrumentation function, do not insert save and
  // restore instructions the instrumentation function takes care of save
  // restore for volatile regs.
  //
  // FIXME: this should be made general, not specific to the reoptimizer!
  const Function *Callee = argDesc->getCallInst()->getCalledFunction();
  bool isLLVMFirstTrigger = Callee && Callee->getName() == "llvm_first_trigger";

  // Now check if the call has a return value (using argDesc) and if so,
  // find the LR of the TmpInstruction representing the return value register.
  // (using the last or second-last *implicit operand* of the call MI).
  // Insert it to to the PushedRegSet since we must not save that register
  // and restore it after the call.
  // We do this because, we look at the LV set *after* the instruction
  // to determine, which LRs must be saved across calls. The return value
  // of the call is live in this set - but we must not save/restore it.
  if (const Value *origRetVal = argDesc->getReturnValue()) {
    unsigned retValRefNum = (CallMI->getNumImplicitRefs() -
                             (argDesc->getIndirectFuncPtr()? 1 : 2));
    const TmpInstruction* tmpRetVal =
      cast<TmpInstruction>(CallMI->getImplicitRef(retValRefNum));
    assert(tmpRetVal->getOperand(0) == origRetVal &&
           tmpRetVal->getType() == origRetVal->getType() &&
           "Wrong implicit ref?");
    LiveRange *RetValLR = LRI->getLiveRangeForValue(tmpRetVal);
    assert(RetValLR && "No LR for RetValue of call");

    if (! RetValLR->isMarkedForSpill())
      PushedRegSet.insert(MRI.getUnifiedRegNum(RetValLR->getRegClassID(),
                                               RetValLR->getColor()));
  }

  const ValueSet &LVSetAft =  LVI->getLiveVarSetAfterMInst(CallMI, BB);
  ValueSet::const_iterator LIt = LVSetAft.begin();

  // for each live var in live variable set after machine inst
  for( ; LIt != LVSetAft.end(); ++LIt) {
    // get the live range corresponding to live var
    LiveRange *const LR = LRI->getLiveRangeForValue(*LIt);

    // LR can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    if (LR) {  
      if (! LR->isMarkedForSpill()) {
        assert(LR->hasColor() && "LR is neither spilled nor colored?");
	unsigned RCID = LR->getRegClassID();
	unsigned Color = LR->getColor();

	if (MRI.isRegVolatile(RCID, Color) ) {
	  // if this is a call to the first-level reoptimizer
	  // instrumentation entry point, and the register is not
	  // modified by call, don't save and restore it.
	  if (isLLVMFirstTrigger && !MRI.modifiedByCall(RCID, Color))
	    continue;

	  // if the value is in both LV sets (i.e., live before and after 
	  // the call machine instruction)
	  unsigned Reg = MRI.getUnifiedRegNum(RCID, Color);
	  
	  // if we haven't already pushed this register...
	  if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
	    unsigned RegType = MRI.getRegTypeForLR(LR);

	    // Now get two instructions - to push on stack and pop from stack
	    // and add them to InstrnsBefore and InstrnsAfter of the
	    // call instruction
	    int StackOff =
              MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
            
	    //---- Insert code for pushing the reg on stack ----------
            
	    std::vector<MachineInstr*> AdIBef, AdIAft;
            
            // We may need a scratch register to copy the saved value
            // to/from memory.  This may itself have to insert code to
            // free up a scratch register.  Any such code should go before
            // the save code.  The scratch register, if any, is by default
            // temporary and not "used" by the instruction unless the
            // copy code itself decides to keep the value in the scratch reg.
            int scratchRegType = -1;
            int scratchReg = -1;
            if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
              { // Find a register not live in the LVSet before CallMI
                const ValueSet &LVSetBef =
                  LVI->getLiveVarSetBeforeMInst(CallMI, BB);
                scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
                                                 CallMI, AdIBef, AdIAft);
                assert(scratchReg != MRI.getInvalidRegNum());
              }
            
            if (AdIBef.size() > 0)
              instrnsBefore.insert(instrnsBefore.end(),
                                   AdIBef.begin(), AdIBef.end());
            
            MRI.cpReg2MemMI(instrnsBefore, Reg, MRI.getFramePointer(),
                            StackOff, RegType, scratchReg);
            
            if (AdIAft.size() > 0)
              instrnsBefore.insert(instrnsBefore.end(),
                                   AdIAft.begin(), AdIAft.end());
            
	    //---- Insert code for popping the reg from the stack ----------
	    AdIBef.clear();
            AdIAft.clear();
            
            // We may need a scratch register to copy the saved value
            // from memory.  This may itself have to insert code to
            // free up a scratch register.  Any such code should go
            // after the save code.  As above, scratch is not marked "used".
            scratchRegType = -1;
            scratchReg = -1;
            if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
              { // Find a register not live in the LVSet after CallMI
                scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetAft,
                                                 CallMI, AdIBef, AdIAft);
                assert(scratchReg != MRI.getInvalidRegNum());
              }
            
            if (AdIBef.size() > 0)
              instrnsAfter.insert(instrnsAfter.end(),
                                  AdIBef.begin(), AdIBef.end());
            
	    MRI.cpMem2RegMI(instrnsAfter, MRI.getFramePointer(), StackOff,
                            Reg, RegType, scratchReg);
            
            if (AdIAft.size() > 0)
              instrnsAfter.insert(instrnsAfter.end(),
                                  AdIAft.begin(), AdIAft.end());
	    
	    PushedRegSet.insert(Reg);
            
	    if(DEBUG_RA) {
	      std::cerr << "\nFor call inst:" << *CallMI;
	      std::cerr << " -inserted caller saving instrs: Before:\n\t ";
              for_each(instrnsBefore.begin(), instrnsBefore.end(),
                       std::mem_fun(&MachineInstr::dump));
	      std::cerr << " -and After:\n\t ";
              for_each(instrnsAfter.begin(), instrnsAfter.end(),
                       std::mem_fun(&MachineInstr::dump));
	    }	    
	  } // if not already pushed
	} // if LR has a volatile color
      } // if LR has color
    } // if there is a LR for Var
  } // for each value in the LV set after instruction
}


/// Returns the unified register number of a temporary register to be used
/// BEFORE MInst. If no register is available, it will pick one and modify
/// MIBef and MIAft to contain instructions used to free up this returned
/// register.
///
int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
                                     const ValueSet *LVSetBef,
                                     MachineInstr *MInst, 
                                     std::vector<MachineInstr*>& MIBef,
                                     std::vector<MachineInstr*>& MIAft) {
  RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType));
  
  int RegU = getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
  
  if (RegU == -1) {
    // we couldn't find an unused register. Generate code to free up a reg by
    // saving it on stack and restoring after the instruction
    
    int TmpOff = MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
    
    RegU = getUniRegNotUsedByThisInst(RC, RegType, MInst);
    
    // Check if we need a scratch register to copy this register to memory.
    int scratchRegType = -1;
    if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
        int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef,
                                             MInst, MIBef, MIAft);
        assert(scratchReg != MRI.getInvalidRegNum());
        
        // We may as well hold the value in the scratch register instead
        // of copying it to memory and back.  But we have to mark the
        // register as used by this instruction, so it does not get used
        // as a scratch reg. by another operand or anyone else.
        ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg));
        MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType);
        MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType);
    } else { // the register can be copied directly to/from memory so do it.
        MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType);
        MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType);
    }
  }
  
  return RegU;
}


/// Returns the register-class register number of a new unused register that
/// can be used to accommodate a temporary value.  May be called repeatedly
/// for a single MachineInstr.  On each call, it finds a register which is not
/// live at that instruction and which is not used by any spilled operands of
/// that instruction.
///
int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType,
                                     const MachineInstr *MInst,
                                     const ValueSet* LVSetBef) {
  RC->clearColorsUsed();     // Reset array

  if (LVSetBef == NULL) {
      LVSetBef = &LVI->getLiveVarSetBeforeMInst(MInst);
      assert(LVSetBef != NULL && "Unable to get live-var set before MInst?");
  }

  ValueSet::const_iterator LIt = LVSetBef->begin();

  // for each live var in live variable set after machine inst
  for ( ; LIt != LVSetBef->end(); ++LIt) {
    // Get the live range corresponding to live var, and its RegClass
    LiveRange *const LRofLV = LRI->getLiveRangeForValue(*LIt );    

    // LR can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor())
      RC->markColorsUsed(LRofLV->getColor(),
                         MRI.getRegTypeForLR(LRofLV), RegType);
  }

  // It is possible that one operand of this MInst was already spilled
  // and it received some register temporarily. If that's the case,
  // it is recorded in machine operand. We must skip such registers.
  setRelRegsUsedByThisInst(RC, RegType, MInst);

  int unusedReg = RC->getUnusedColor(RegType);   // find first unused color
  if (unusedReg >= 0)
    return MRI.getUnifiedRegNum(RC->getID(), unusedReg);

  return -1;
}


/// Return the unified register number of a register in class RC which is not
/// used by any operands of MInst.
///
int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, 
                                            const int RegType,
                                            const MachineInstr *MInst) {
  RC->clearColorsUsed();

  setRelRegsUsedByThisInst(RC, RegType, MInst);

  // find the first unused color
  int unusedReg = RC->getUnusedColor(RegType);
  assert(unusedReg >= 0 &&
         "FATAL: No free register could be found in reg class!!");

  return MRI.getUnifiedRegNum(RC->getID(), unusedReg);
}


/// Modify the IsColorUsedArr of register class RC, by setting the bits
/// corresponding to register RegNo. This is a helper method of
/// setRelRegsUsedByThisInst().
///
static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
                             const SparcV9RegInfo &TRI) {
  unsigned classId = 0;
  int classRegNum = TRI.getClassRegNum(RegNo, classId);
  if (RC->getID() == classId)
    RC->markColorsUsed(classRegNum, RegType, RegType);
}

void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType,
                                           const MachineInstr *MI) {
  assert(OperandsColoredMap[MI] == true &&
         "Illegal to call setRelRegsUsedByThisInst() until colored operands "
         "are marked for an instruction.");

  // Add the registers already marked as used by the instruction. Both
  // explicit and implicit operands are set.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
    if (MI->getOperand(i).hasAllocatedReg())
      markRegisterUsed(MI->getOperand(i).getReg(), RC, RegType,MRI);

  for (unsigned i = 0, e = MI->getNumImplicitRefs(); i != e; ++i)
    if (MI->getImplicitOp(i).hasAllocatedReg())
      markRegisterUsed(MI->getImplicitOp(i).getReg(), RC, RegType,MRI);

  // Add all of the scratch registers that are used to save values across the
  // instruction (e.g., for saving state register values).
  std::pair<ScratchRegsUsedTy::iterator, ScratchRegsUsedTy::iterator>
    IR = ScratchRegsUsed.equal_range(MI);
  for (ScratchRegsUsedTy::iterator I = IR.first; I != IR.second; ++I)
    markRegisterUsed(I->second, RC, RegType, MRI);

  // If there are implicit references, mark their allocated regs as well
  for (unsigned z=0; z < MI->getNumImplicitRefs(); z++)
    if (const LiveRange*
        LRofImpRef = LRI->getLiveRangeForValue(MI->getImplicitRef(z)))    
      if (LRofImpRef->hasColor())
        // this implicit reference is in a LR that received a color
        RC->markColorsUsed(LRofImpRef->getColor(),
                           MRI.getRegTypeForLR(LRofImpRef), RegType);
}


/// If there are delay slots for an instruction, the instructions added after
/// it must really go after the delayed instruction(s).  So, we Move the
/// InstrAfter of that instruction to the corresponding delayed instruction
/// using the following method.
///
void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI,
                                    const MachineInstr *DelayedMI)
{
  // "added after" instructions of the original instr
  std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter;

  if (DEBUG_RA && OrigAft.size() > 0) {
    std::cerr << "\nRegAlloc: Moved InstrnsAfter for: " << *OrigMI;
    std::cerr << "         to last delay slot instrn: " << *DelayedMI;
  }

  // "added after" instructions of the delayed instr
  std::vector<MachineInstr *> &DelayedAft=AddedInstrMap[DelayedMI].InstrnsAfter;

  // go thru all the "added after instructions" of the original instruction
  // and append them to the "added after instructions" of the delayed
  // instructions
  DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end());

  // empty the "added after instructions" of the original instruction
  OrigAft.clear();
}


void PhyRegAlloc::colorIncomingArgs()
{
  MRI.colorMethodArgs(Fn, *LRI, AddedInstrAtEntry.InstrnsBefore,
                      AddedInstrAtEntry.InstrnsAfter);
}


/// Determine whether the suggested color of each live range is really usable,
/// and then call its setSuggestedColorUsable() method to record the answer. A
/// suggested color is NOT usable when the suggested color is volatile AND
/// when there are call interferences.
///
void PhyRegAlloc::markUnusableSugColors()
{
  LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin();   
  LiveRangeMapType::const_iterator HMIEnd = (LRI->getLiveRangeMap())->end();   

  for (; HMI != HMIEnd ; ++HMI ) {
    if (HMI->first) { 
      LiveRange *L = HMI->second;      // get the LiveRange
      if (L && L->hasSuggestedColor ())
        L->setSuggestedColorUsable
          (!(MRI.isRegVolatile (L->getRegClassID (), L->getSuggestedColor ())
             && L->isCallInterference ()));
    }
  } // for all LR's in hash map
}


/// For each live range that is spilled, allocates a new spill position on the
/// stack, and set the stack offsets of the live range that will be spilled to
/// that position. This must be called just after coloring the LRs.
///
void PhyRegAlloc::allocateStackSpace4SpilledLRs() {
  if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n";

  LiveRangeMapType::const_iterator HMI    = LRI->getLiveRangeMap()->begin();   
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();   

  for ( ; HMI != HMIEnd ; ++HMI) {
    if (HMI->first && HMI->second) {
      LiveRange *L = HMI->second;       // get the LiveRange
      if (L->isMarkedForSpill()) {      // NOTE: allocating size of long Type **
        int stackOffset = MF->getInfo()->allocateSpilledValue(Type::LongTy);
        L->setSpillOffFromFP(stackOffset);
        if (DEBUG_RA)
          std::cerr << "  LR# " << L->getUserIGNode()->getIndex()
               << ": stack-offset = " << stackOffset << "\n";
      }
    }
  } // for all LR's in hash map
}


void PhyRegAlloc::saveStateForValue (std::vector<AllocInfo> &state,
                                     const Value *V, int Insn, int Opnd) {
  LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap ()->find (V); 
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap ()->end ();   
  AllocInfo::AllocStateTy AllocState = AllocInfo::NotAllocated; 
  int Placement = -1; 
  if ((HMI != HMIEnd) && HMI->second) { 
    LiveRange *L = HMI->second; 
    assert ((L->hasColor () || L->isMarkedForSpill ()) 
            && "Live range exists but not colored or spilled"); 
    if (L->hasColor ()) { 
      AllocState = AllocInfo::Allocated; 
      Placement = MRI.getUnifiedRegNum (L->getRegClassID (), 
                                        L->getColor ()); 
    } else if (L->isMarkedForSpill ()) { 
      AllocState = AllocInfo::Spilled; 
      assert (L->hasSpillOffset () 
              && "Live range marked for spill but has no spill offset"); 
      Placement = L->getSpillOffFromFP (); 
    } 
  } 
  state.push_back (AllocInfo (Insn, Opnd, AllocState, Placement)); 
}


/// Save the global register allocation decisions made by the register
/// allocator so that they can be accessed later (sort of like "poor man's
/// debug info").
///
void PhyRegAlloc::saveState () {
  std::vector<AllocInfo> &state = FnAllocState[Fn];
  unsigned ArgNum = 0;
  // Arguments encoded as instruction # -1
  for (Function::const_aiterator i=Fn->abegin (), e=Fn->aend (); i != e; ++i) {
    const Argument *Arg = &*i;
    saveStateForValue (state, Arg, -1, ArgNum);
    ++ArgNum;
  }
  unsigned InstCount = 0;
  // Instructions themselves encoded as operand # -1
  for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II!=IE; ++II){
    const Instruction *Inst = &*II;
    saveStateForValue (state, Inst, InstCount, -1);
    if (isa<PHINode> (Inst)) {
     MachineCodeForInstruction &MCforPN = MachineCodeForInstruction::get(Inst);
     // Last instr should be the copy...figure out what reg it is reading from
     if (Value *PhiCpRes = MCforPN.back()->getOperand(0).getVRegValueOrNull()){
      if (DEBUG_RA)
       std::cerr << "Found Phi copy result: " << PhiCpRes->getName()
         << " in: " << *MCforPN.back() << "\n";
      saveStateForValue (state, PhiCpRes, InstCount, -2);
     }
    }
    ++InstCount;
  }
}


bool PhyRegAlloc::doFinalization (Module &M) { 
  if (SaveRegAllocState) finishSavingState (M);
  return false;
}


/// Finish the job of saveState(), by collapsing FnAllocState into an LLVM
/// Constant and stuffing it inside the Module.
///
/// FIXME: There should be other, better ways of storing the saved
/// state; this one is cumbersome and does not work well with the JIT.
///
void PhyRegAlloc::finishSavingState (Module &M) {
  if (DEBUG_RA)
    std::cerr << "---- Saving reg. alloc state; SaveStateToModule = "
              << SaveStateToModule << " ----\n";

  // If saving state into the module, just copy new elements to the
  // correct global.
  if (!SaveStateToModule) {
    ExportedFnAllocState = FnAllocState;
    // FIXME: should ONLY copy new elements in FnAllocState
    return;
  }

  // Convert FnAllocState to a single Constant array and add it
  // to the Module.
  ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), 0);
  std::vector<const Type *> TV;
  TV.push_back (Type::UIntTy);
  TV.push_back (AT);
  PointerType *PT = PointerType::get (StructType::get (TV));

  std::vector<Constant *> allstate;
  for (Module::iterator I = M.begin (), E = M.end (); I != E; ++I) {
    Function *F = I;
    if (F->isExternal ()) continue;
    if (FnAllocState.find (F) == FnAllocState.end ()) {
      allstate.push_back (ConstantPointerNull::get (PT));
    } else {
      std::vector<AllocInfo> &state = FnAllocState[F];

      // Convert state into an LLVM ConstantArray, and put it in a
      // ConstantStruct (named S) along with its size.
      std::vector<Constant *> stateConstants;
      for (unsigned i = 0, s = state.size (); i != s; ++i)
        stateConstants.push_back (state[i].toConstant ());
      unsigned Size = stateConstants.size ();
      ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), Size);
      std::vector<const Type *> TV;
      TV.push_back (Type::UIntTy);
      TV.push_back (AT);
      StructType *ST = StructType::get (TV);
      std::vector<Constant *> CV;
      CV.push_back (ConstantUInt::get (Type::UIntTy, Size));
      CV.push_back (ConstantArray::get (AT, stateConstants));
      Constant *S = ConstantStruct::get (ST, CV);

      GlobalVariable *GV =
        new GlobalVariable (ST, true,
                            GlobalValue::InternalLinkage, S,
                            F->getName () + ".regAllocState", &M);

      // Have: { uint, [Size x { uint, int, uint, int }] } *
      // Cast it to: { uint, [0 x { uint, int, uint, int }] } *
      Constant *CE = ConstantExpr::getCast (GV, PT);
      allstate.push_back (CE);
    }
  }

  unsigned Size = allstate.size ();
  // Final structure type is:
  // { uint, [Size x { uint, [0 x { uint, int, uint, int }] } *] }
  std::vector<const Type *> TV2;
  TV2.push_back (Type::UIntTy);
  ArrayType *AT2 = ArrayType::get (PT, Size);
  TV2.push_back (AT2);
  StructType *ST2 = StructType::get (TV2);
  std::vector<Constant *> CV2;
  CV2.push_back (ConstantUInt::get (Type::UIntTy, Size));
  CV2.push_back (ConstantArray::get (AT2, allstate));
  new GlobalVariable (ST2, true, GlobalValue::ExternalLinkage,
                      ConstantStruct::get (ST2, CV2), "_llvm_regAllocState",
                      &M);
}


/// Allocate registers for the machine code previously generated for F using
/// the graph-coloring algorithm.
///
bool PhyRegAlloc::runOnFunction (Function &F) { 
  if (DEBUG_RA) 
    std::cerr << "\n********* Function "<< F.getName () << " ***********\n"; 
 
  Fn = &F; 
  MF = &MachineFunction::get (Fn); 
  LVI = &getAnalysis<FunctionLiveVarInfo> (); 
  LRI = new LiveRangeInfo (Fn, TM, RegClassList); 
  LoopDepthCalc = &getAnalysis<LoopInfo> (); 
 
  // Create each RegClass for the target machine and add it to the 
  // RegClassList.  This must be done before calling constructLiveRanges().
  for (unsigned rc = 0; rc != NumOfRegClasses; ++rc)   
    RegClassList.push_back (new RegClass (Fn, TM.getRegInfo(), 
					  MRI.getMachineRegClass(rc))); 
     
  LRI->constructLiveRanges();            // create LR info
  if (DEBUG_RA >= RA_DEBUG_LiveRanges)
    LRI->printLiveRanges();
  
  createIGNodeListsAndIGs();            // create IGNode list and IGs

  buildInterferenceGraphs();            // build IGs in all reg classes
  
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
    // print all LRs in all reg classes
    for ( unsigned rc=0; rc < NumOfRegClasses  ; rc++)  
      RegClassList[rc]->printIGNodeList(); 
    
    // print IGs in all register classes
    for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
      RegClassList[rc]->printIG();       
  }

  LRI->coalesceLRs();                    // coalesce all live ranges

  if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
    // print all LRs in all reg classes
    for (unsigned rc=0; rc < NumOfRegClasses; rc++)
      RegClassList[rc]->printIGNodeList();
    
    // print IGs in all register classes
    for (unsigned rc=0; rc < NumOfRegClasses; rc++)
      RegClassList[rc]->printIG();
  }

  // mark un-usable suggested color before graph coloring algorithm.
  // When this is done, the graph coloring algo will not reserve
  // suggested color unnecessarily - they can be used by another LR
  markUnusableSugColors(); 

  // color all register classes using the graph coloring algo
  for (unsigned rc=0; rc < NumOfRegClasses ; rc++)  
    RegClassList[rc]->colorAllRegs();    

  // After graph coloring, if some LRs did not receive a color (i.e, spilled)
  // a position for such spilled LRs
  allocateStackSpace4SpilledLRs();

  // Reset the temp. area on the stack before use by the first instruction.
  // This will also happen after updating each instruction.
  MF->getInfo()->popAllTempValues();

  // color incoming args - if the correct color was not received
  // insert code to copy to the correct register
  colorIncomingArgs();

  // Save register allocation state for this function in a Constant.
  if (SaveRegAllocState)
    saveState();

  // Now update the machine code with register names and add any additional
  // code inserted by the register allocator to the instruction stream.
  updateMachineCode(); 

  if (SaveRegAllocState && !SaveStateToModule)
    finishSavingState (const_cast<Module&> (*Fn->getParent ()));

  if (DEBUG_RA) {
    std::cerr << "\n**** Machine Code After Register Allocation:\n\n";
    MF->dump();
  }
 
  // Tear down temporary data structures 
  for (unsigned rc = 0; rc < NumOfRegClasses; ++rc) 
    delete RegClassList[rc]; 
  RegClassList.clear (); 
  AddedInstrMap.clear (); 
  OperandsColoredMap.clear (); 
  ScratchRegsUsed.clear (); 
  AddedInstrAtEntry.clear (); 
  delete LRI;

  if (DEBUG_RA) std::cerr << "\nRegister allocation complete!\n"; 
  return false;     // Function was not modified
} 

} // End llvm namespace