aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
blob: 6385a278275577b67f890dbc79a5fad120e4efa1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
//===-- SparcV9CodeEmitter.cpp -  --------===//
//
//
//===----------------------------------------------------------------------===//

#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetData.h"
#include "Support/hash_set"
#include "SparcInternals.h"
#include "SparcV9CodeEmitter.h"

bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM,
                                            MachineCodeEmitter &MCE) {
  //PM.add(new SparcV9CodeEmitter(MCE));
  //MachineCodeEmitter *M = MachineCodeEmitter::createDebugMachineCodeEmitter();
  MachineCodeEmitter *M = MachineCodeEmitter::createFilePrinterEmitter(MCE);
  PM.add(new SparcV9CodeEmitter(this, *M));
  PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed
  return false;
}

namespace {
  class JITResolver {
    MachineCodeEmitter &MCE;

    // LazyCodeGenMap - Keep track of call sites for functions that are to be
    // lazily resolved.
    std::map<unsigned, Function*> LazyCodeGenMap;

    // LazyResolverMap - Keep track of the lazy resolver created for a
    // particular function so that we can reuse them if necessary.
    std::map<Function*, unsigned> LazyResolverMap;
  public:
    JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
    unsigned getLazyResolver(Function *F);
    unsigned addFunctionReference(unsigned Address, Function *F);
    
  private:
    unsigned emitStubForFunction(Function *F);
    static void CompilationCallback();
    unsigned resolveFunctionReference(unsigned RetAddr);
  };

  JITResolver *TheJITResolver;
}

/// addFunctionReference - This method is called when we need to emit the
/// address of a function that has not yet been emitted, so we don't know the
/// address.  Instead, we emit a call to the CompilationCallback method, and
/// keep track of where we are.
///
unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
  LazyCodeGenMap[Address] = F;  
  return (intptr_t)&JITResolver::CompilationCallback;
}

unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
  std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
  assert(I != LazyCodeGenMap.end() && "Not in map!");
  Function *F = I->second;
  LazyCodeGenMap.erase(I);
  return MCE.forceCompilationOf(F);
}

unsigned JITResolver::getLazyResolver(Function *F) {
  std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
  if (I != LazyResolverMap.end() && I->first == F) return I->second;
  
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";

  unsigned Stub = emitStubForFunction(F);
  LazyResolverMap.insert(I, std::make_pair(F, Stub));
  return Stub;
}

void JITResolver::CompilationCallback() {
  uint64_t *StackPtr = (uint64_t*)__builtin_frame_address(0);
  uint64_t RetAddr = (uint64_t)(intptr_t)__builtin_return_address(0);

#if 0  
  std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
            << " SP=0x" << (unsigned)StackPtr << std::dec
            << ": Resolving call to function: "
            << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n";
#endif

  std::cerr << "Sparc's JIT Resolver not implemented!\n";
  abort();

#if 0
  unsigned NewVal = TheJITResolver->resolveFunctionReference((void*)RetAddr);

  // Rewrite the call target... so that we don't fault every time we execute
  // the call.
  *(unsigned*)RetAddr = NewVal;
  
  // Change the return address to reexecute the call instruction...
  StackPtr[1] -= 4;
#endif
}

/// emitStubForFunction - This method is used by the JIT when it needs to emit
/// the address of a function for a function whose code has not yet been
/// generated.  In order to do this, it generates a stub which jumps to the lazy
/// function compiler, which will eventually get fixed to call the function
/// directly.
///
unsigned JITResolver::emitStubForFunction(Function *F) {
#if 0
  MCE.startFunctionStub(*F, 6);
  MCE.emitByte(0xE8);   // Call with 32 bit pc-rel destination...

  unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
  MCE.emitWord(Address-MCE.getCurrentPCValue()-4);

  MCE.emitByte(0xCD);   // Interrupt - Just a marker identifying the stub!
  return (intptr_t)MCE.finishFunctionStub(*F);
#endif
  std::cerr << "Sparc's JITResolver::emitStubForFunction() not implemented!\n";
  abort();
}


void SparcV9CodeEmitter::emitConstant(unsigned Val, unsigned Size) {
  // Output the constant in big endian byte order...
  unsigned byteVal;
  for (int i = Size-1; i >= 0; --i) {
    byteVal = Val >> 8*i;
    MCE->emitByte(byteVal & 255);
  }
}

unsigned getRealRegNum(unsigned fakeReg, unsigned regClass) {
  switch (regClass) {
  case UltraSparcRegInfo::IntRegType: {
    // Sparc manual, p31
    static const unsigned IntRegMap[] = {
      // "o0", "o1", "o2", "o3", "o4", "o5",       "o7",
      8, 9, 10, 11, 12, 13, 15,
      // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
      16, 17, 18, 19, 20, 21, 22, 23,
      // "i0", "i1", "i2", "i3", "i4", "i5",  
      24, 25, 26, 27, 28, 29,
      // "i6", "i7",
      30, 31,
      // "g0", "g1", "g2", "g3", "g4", "g5",  "g6", "g7", 
      0, 1, 2, 3, 4, 5, 6, 7,
      // "o6"
      14
    }; 
 
    return IntRegMap[fakeReg];
    break;
  }
  case UltraSparcRegInfo::FPSingleRegType: {
    return fakeReg;
  }
  case UltraSparcRegInfo::FPDoubleRegType: {
    return fakeReg;
  }
  case UltraSparcRegInfo::FloatCCRegType: {
    return fakeReg;

  }
  case UltraSparcRegInfo::IntCCRegType: {
    return fakeReg;
  }
  default:
    assert(0 && "Invalid unified register number in getRegType");
    return fakeReg;
  }
}

int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
                                              MachineOperand &MO) {
  int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
                  // or things that get fixed up later by the JIT.

  if (MO.isPhysicalRegister()) {
    // This is necessary because the Sparc doesn't actually lay out registers
    // in the real fashion -- it skips those that it chooses not to allocate,
    // i.e. those that are the SP, etc.
    unsigned fakeReg = MO.getReg(), realReg, regClass, regType;
    regType = TM->getRegInfo().getRegType(fakeReg);
    // At least map fakeReg into its class
    fakeReg = TM->getRegInfo().getClassRegNum(fakeReg, regClass);
    // Find the real register number for use in an instruction
    realReg = getRealRegNum(fakeReg, regClass);
    std::cerr << "Reg[" << std::dec << fakeReg << "] = " << realReg << "\n";
    rv = realReg;
  } else if (MO.isImmediate()) {
    rv = MO.getImmedValue();
  } else if (MO.isPCRelativeDisp()) { // this is not always a call!! (fp const)
    std::cerr << "Saving reference to func (call - PCRelDisp)\n";
    rv = (int64_t)
      (intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
                                 MI,true);
  } else if (MO.isMachineBasicBlock()) {
    std::cerr << "Saving reference to MBB\n";
    BBRefs.push_back(std::make_pair(MO.getMachineBasicBlock()->getBasicBlock(),
            std::make_pair((unsigned*)(intptr_t)MCE->getCurrentPCValue(),&MI)));
  } else if (MO.isFrameIndex()) {
    std::cerr << "ERROR: Frame index unhandled.\n";
  } else if (MO.isConstantPoolIndex()) {
    std::cerr << "ERROR: Constant Pool index unhandled.\n";
  } else if (MO.isGlobalAddress()) {
    std::cerr << "ERROR: Global addr unhandled.\n";
  } else if (MO.isExternalSymbol()) {
    std::cerr << "ERROR: External symbol unhandled.\n";
  } else {
    std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
  }

  // Finally, deal with the various bitfield-extracting functions that
  // are used in SPARC assembly. (Some of these make no sense in combination
  // with some of the above; we'll trust that the instruction selector
  // will not produce nonsense, and not check for valid combinations here.)
  if (MO.opLoBits32()) {          // %lo(val)
    return rv & 0x03ff;
  } else if (MO.opHiBits32()) {   // %lm(val)
    return (rv >> 10) & 0x03fffff;
  } else if (MO.opLoBits64()) {   // %hm(val)
    return (rv >> 32) & 0x03ff;
  } else if (MO.opHiBits64()) {   // %hh(val)
    return rv >> 42;
  } else {                        // (unadorned) val
    return rv;
  }
}

unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) {
  Val >>= bit;
  return (Val & 1);
}

void* SparcV9CodeEmitter::convertAddress(intptr_t Addr, bool isPCRelative) {
  if (isPCRelative) {
    return (void*)(Addr - (intptr_t)MCE->getCurrentPCValue());
  } else {
    return (void*)Addr;
  }
}



bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
  std::cerr << "Starting function " << MF.getFunction()->getName()
            << ", address: " << "0x" << std::hex 
            << (long)MCE->getCurrentPCValue() << "\n";

  MCE->startFunction(MF);

  // FIXME: the Sparc backend does not use the ConstantPool!!
  //MCE->emitConstantPool(MF.getConstantPool());

  // Instead, the Sparc backend has its own constant pool implementation:
  const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues();
  for (hash_set<const Constant*>::const_iterator I = pool.begin(),
         E = pool.end();  I != E; ++I)
  {
    const Constant *C = *I;
    // For now we just allocate some memory on the heap, this can be
    // dramatically improved.
    const Type *Ty = ((Value*)C)->getType();
    void *Addr = malloc(TM->getTargetData().getTypeSize(Ty));
    //FIXME
    //TheVM.InitializeMemory(C, Addr);
    std::cerr << "Adding ConstantMap[" << C << "]=" << std::dec << Addr << "\n";
    ConstantMap[C] = Addr;
  }  

  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    emitBasicBlock(*I);
  MCE->finishFunction(MF);

  std::cerr << "Finishing function " << MF.getFunction()->getName() << "\n";
  ConstantMap.clear();
  for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
    long Location = BBLocations[BBRefs[i].first];
    unsigned *Ref = BBRefs[i].second.first;
    MachineInstr *MI = BBRefs[i].second.second;
    std::cerr << "Fixup @" << std::hex << Ref << " to " << Location
              << " in instr: " << std::dec << *MI << "\n";
  }

  // Resolve branches to BasicBlocks for the entire function
  for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
    long Location = BBLocations[BBRefs[i].first];
    unsigned *Ref = BBRefs[i].second.first;
    MachineInstr *MI = BBRefs[i].second.second;
    std::cerr << "attempting to resolve BB: " << i << "\n";
    for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
      MachineOperand &op = MI->getOperand(ii);
      if (op.isPCRelativeDisp()) {
        // the instruction's branch target is made such that it branches to
        // PC + (br target * 4), so undo that arithmetic here:
        // Location is the target of the branch
        // Ref is the location of the instruction, and hence the PC
        unsigned branchTarget = (Location - (long)Ref) >> 2;
        // Save the flags.
        bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false;   
        if (op.opLoBits32()) { loBits32=true; }
        if (op.opHiBits32()) { hiBits32=true; }
        if (op.opLoBits64()) { loBits64=true; }
        if (op.opHiBits64()) { hiBits64=true; }
        MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
                                   branchTarget);
        if (loBits32) { MI->setOperandLo32(ii); }
        else if (hiBits32) { MI->setOperandHi32(ii); }
        else if (loBits64) { MI->setOperandLo64(ii); }
        else if (hiBits64) { MI->setOperandHi64(ii); }
        std::cerr << "Rewrote BB ref: ";
        unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI);
        *Ref = fixedInstr;
        break;
      }
    }
  }
  BBRefs.clear();
  BBLocations.clear();

  return false;
}

void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
  currBB = MBB.getBasicBlock();
  BBLocations[currBB] = MCE->getCurrentPCValue();
  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
    emitInstruction(**I);
}

void SparcV9CodeEmitter::emitInstruction(MachineInstr &MI) {
  emitConstant(getBinaryCodeForInstr(MI), 4);
}

void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
                                           bool isPCRelative)
{
  if (isPCRelative) { // must be a call, this is a major hack!
    // Try looking up the function to see if it is already compiled!
    if (void *Addr = (void*)(intptr_t)MCE->getGlobalValueAddress(V)) {
      intptr_t CurByte = MCE->getCurrentPCValue();
      // The real target of the call is Addr = PC + (target * 4)
      // CurByte is the PC, Addr we just received
      return (void*) (((long)Addr - (long)CurByte) >> 2);
    } else {
      if (Function *F = dyn_cast<Function>(V)) {
        // Function has not yet been code generated!
        TheJITResolver->addFunctionReference(MCE->getCurrentPCValue(),
                                             cast<Function>(V));
        // Delayed resolution...
        return (void*)TheJITResolver->getLazyResolver(cast<Function>(V));

      } else if (Constant *C = ConstantPointerRef::get(V)) {
        if (ConstantMap.find(C) != ConstantMap.end()) {
          return ConstantMap[C];
        } else {
          std::cerr << "Constant: 0x" << std::hex << &*C << std::dec
                    << ", " << *V << " not found in ConstantMap!\n";
          abort();
        }

#if 0
      } else if (const GlobalVariable *G = dyn_cast<GlobalVariable>(V)) {
        if (G->isConstant()) {
          const Constant* C = G->getInitializer();
          if (ConstantMap.find(C) != ConstantMap.end()) {
            return ConstantMap[C];
          } else {
            std::cerr << "Constant: " << *G << " not found in ConstantMap!\n";
            abort();
          }
        } else {
          std::cerr << "Variable: " << *G << " address not found!\n";
          abort();          
        }
#endif
      } else {
        std::cerr << "Unhandled global: " << *V << "\n";
        abort();
      }
    }
  } else {
    return convertAddress((intptr_t)MCE->getGlobalValueAddress(V),
                          isPCRelative);
  }
}


#include "SparcV9CodeEmitter.inc"