aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/SparcV9InstrInfo.cpp
blob: b4b470235248ceb7841ae2e94ccdab59c3f6e6a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
//===-- SparcInstrInfo.cpp ------------------------------------------------===//
//
//===----------------------------------------------------------------------===//

#include "SparcInternals.h"
#include "SparcInstrSelectionSupport.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Function.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"

static const uint32_t MAXLO   = (1 << 10) - 1; // set bits set by %lo(*)
static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR


//---------------------------------------------------------------------------
// Function ConvertConstantToIntType
// 
// Function to get the value of an integral constant in the form
// that must be put into the machine register.  The specified constant is
// interpreted as (i.e., converted if necessary to) the specified destination
// type.  The result is always returned as an uint64_t, since the representation
// of int64_t and uint64_t are identical.  The argument can be any known const.
// 
// isValidConstant is set to true if a valid constant was found.
//---------------------------------------------------------------------------

uint64_t
UltraSparcInstrInfo::ConvertConstantToIntType(const TargetMachine &target,
                                              const Value *V,
                                              const Type *destType,
                                              bool  &isValidConstant) const
{
  isValidConstant = false;
  uint64_t C = 0;

  if (! destType->isIntegral() && ! isa<PointerType>(destType))
    return C;

  if (! isa<Constant>(V))
    return C;

  // ConstantPointerRef: no conversions needed: get value and return it
  if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(V)) {
    // A ConstantPointerRef is just a reference to GlobalValue.
    isValidConstant = true;             // may be overwritten by recursive call
    return (CPR->isNullValue()? 0
            : ConvertConstantToIntType(target, CPR->getValue(), destType,
                                       isValidConstant));
  }

  // ConstantBool: no conversions needed: get value and return it
  if (const ConstantBool *CB = dyn_cast<ConstantBool>(V)) {
    isValidConstant = true;
    return (uint64_t) CB->getValue();
  }

  // For other types of constants, some conversion may be needed.
  // First, extract the constant operand according to its own type
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    switch(CE->getOpcode()) {
    case Instruction::Cast:             // recursively get the value as cast
      C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(),
                                   isValidConstant);
      break;
    default:                            // not simplifying other ConstantExprs
      break;
    }
  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    isValidConstant = true;
    C = CI->getRawValue();
  }
  else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
    isValidConstant = true;
    double fC = CFP->getValue();
    C = (destType->isSigned()? (uint64_t) (int64_t) fC
                             : (uint64_t)           fC);
  }

  // Now if a valid value was found, convert it to destType.
  if (isValidConstant) {
    unsigned opSize   = target.getTargetData().getTypeSize(V->getType());
    unsigned destSize = target.getTargetData().getTypeSize(destType);
    uint64_t maskHi   = (destSize < 8)? (1U << 8*destSize) - 1 : ~0;
    assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected");
    
    if (destType->isSigned()) {
      if (opSize > destSize)            // operand is larger than dest:
        C = C & maskHi;                 // mask high bits

      if (opSize > destSize ||
          (opSize == destSize && ! V->getType()->isSigned()))
        if (C & (1U << (8*destSize - 1)))
          C =  C | ~maskHi;             // sign-extend from destSize to 64 bits
    }
    else {
      if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) {
        // operand is larger than dest,
        //    OR both are equal but smaller than the full register size
        //       AND operand is signed, so it may have extra sign bits:
        // mask high bits
        C = C & maskHi;
      }
    }
  }

  return C;
}


//----------------------------------------------------------------------------
// Function: CreateSETUWConst
// 
// Set a 32-bit unsigned constant in the register `dest', using
// SETHI, OR in the worst case.  This function correctly emulates
// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false).
//
// The isSigned=true case is used to implement SETSW without duplicating code.
// 
// Optimize some common cases:
// (1) Small value that fits in simm13 field of OR: don't need SETHI.
// (2) isSigned = true and C is a small negative signed value, i.e.,
//     high bits are 1, and the remaining bits fit in simm13(OR).
//----------------------------------------------------------------------------

static inline void
CreateSETUWConst(const TargetMachine& target, uint32_t C,
                 Instruction* dest, std::vector<MachineInstr*>& mvec,
                 bool isSigned = false)
{
  MachineInstr *miSETHI = NULL, *miOR = NULL;

  // In order to get efficient code, we should not generate the SETHI if
  // all high bits are 1 (i.e., this is a small signed value that fits in
  // the simm13 field of OR).  So we check for and handle that case specially.
  // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0.
  //       In fact, sC == -sC, so we have to check for this explicitly.
  int32_t sC = (int32_t) C;
  bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM;

  // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough
  if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) {
    miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest);
    miSETHI->setOperandHi32(0);
    mvec.push_back(miSETHI);
  }
  
  // Set the low 10 or 12 bits in dest.  This is necessary if no SETHI
  // was generated, or if the low 10 bits are non-zero.
  if (miSETHI==NULL || C & MAXLO) {
    if (miSETHI) {
      // unsigned value with high-order bits set using SETHI
      miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest);
      miOR->setOperandLo32(1);
    } else {
      // unsigned or small signed value that fits in simm13 field of OR
      assert(smallNegValue || (C & ~MAXSIMM) == 0);
      miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo()
                                        .getZeroRegNum())
        .addSImm(sC).addRegDef(dest);
    }
    mvec.push_back(miOR);
  }
  
  assert((miSETHI || miOR) && "Oops, no code was generated!");
}


//----------------------------------------------------------------------------
// Function: CreateSETSWConst
// 
// Set a 32-bit signed constant in the register `dest', with sign-extension
// to 64 bits.  This uses SETHI, OR, SRA in the worst case.
// This function correctly emulates the SETSW pseudo-op for SPARC v9.
//
// Optimize the same cases as SETUWConst, plus:
// (1) SRA is not needed for positive or small negative values.
//----------------------------------------------------------------------------

static inline void
CreateSETSWConst(const TargetMachine& target, int32_t C,
                 Instruction* dest, std::vector<MachineInstr*>& mvec)
{
  // Set the low 32 bits of dest
  CreateSETUWConst(target, (uint32_t) C,  dest, mvec, /*isSigned*/true);

  // Sign-extend to the high 32 bits if needed.
  // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM
  if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM))
    mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest));
}


//----------------------------------------------------------------------------
// Function: CreateSETXConst
// 
// Set a 64-bit signed or unsigned constant in the register `dest'.
// Use SETUWConst for each 32 bit word, plus a left-shift-by-32 in between.
// This function correctly emulates the SETX pseudo-op for SPARC v9.
//
// Optimize the same cases as SETUWConst for each 32 bit word.
//----------------------------------------------------------------------------

static inline void
CreateSETXConst(const TargetMachine& target, uint64_t C,
                Instruction* tmpReg, Instruction* dest,
                std::vector<MachineInstr*>& mvec)
{
  assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!");
  
  MachineInstr* MI;
  
  // Code to set the upper 32 bits of the value in register `tmpReg'
  CreateSETUWConst(target, (C >> 32), tmpReg, mvec);
  
  // Shift tmpReg left by 32 bits
  mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
                 .addRegDef(tmpReg));
  
  // Code to set the low 32 bits of the value in register `dest'
  CreateSETUWConst(target, C, dest, mvec);
  
  // dest = OR(tmpReg, dest)
  mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest));
}


//----------------------------------------------------------------------------
// Function: CreateSETUWLabel
// 
// Set a 32-bit constant (given by a symbolic label) in the register `dest'.
//----------------------------------------------------------------------------

static inline void
CreateSETUWLabel(const TargetMachine& target, Value* val,
                 Instruction* dest, std::vector<MachineInstr*>& mvec)
{
  MachineInstr* MI;
  
  // Set the high 22 bits in dest
  MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest);
  MI->setOperandHi32(0);
  mvec.push_back(MI);
  
  // Set the low 10 bits in dest
  MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest);
  MI->setOperandLo32(1);
  mvec.push_back(MI);
}


//----------------------------------------------------------------------------
// Function: CreateSETXLabel
// 
// Set a 64-bit constant (given by a symbolic label) in the register `dest'.
//----------------------------------------------------------------------------

static inline void
CreateSETXLabel(const TargetMachine& target,
                Value* val, Instruction* tmpReg, Instruction* dest,
                std::vector<MachineInstr*>& mvec)
{
  assert(isa<Constant>(val) || isa<GlobalValue>(val) &&
         "I only know about constant values and global addresses");
  
  MachineInstr* MI;
  
  MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg);
  MI->setOperandHi64(0);
  mvec.push_back(MI);
  
  MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg);
  MI->setOperandLo64(1);
  mvec.push_back(MI);
  
  mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
                 .addRegDef(tmpReg));
  MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest);
  MI->setOperandHi32(0);
  mvec.push_back(MI);
  
  MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest);
  mvec.push_back(MI);
  
  MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest);
  MI->setOperandLo32(1);
  mvec.push_back(MI);
}


//----------------------------------------------------------------------------
// Function: CreateUIntSetInstruction
// 
// Create code to Set an unsigned constant in the register `dest'.
// Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst as needed.
// CreateSETSWConst is an optimization for the case that the unsigned value
// has all ones in the 33 high bits (so that sign-extension sets them all).
//----------------------------------------------------------------------------

static inline void
CreateUIntSetInstruction(const TargetMachine& target,
                         uint64_t C, Instruction* dest,
                         std::vector<MachineInstr*>& mvec,
                         MachineCodeForInstruction& mcfi)
{
  static const uint64_t lo32 = (uint32_t) ~0;
  if (C <= lo32)                        // High 32 bits are 0.  Set low 32 bits.
    CreateSETUWConst(target, (uint32_t) C, dest, mvec);
  else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) {
    // All high 33 (not 32) bits are 1s: sign-extension will take care
    // of high 32 bits, so use the sequence for signed int
    CreateSETSWConst(target, (int32_t) C, dest, mvec);
  } else if (C > lo32) {
    // C does not fit in 32 bits
    TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy);
    CreateSETXConst(target, C, tmpReg, dest, mvec);
  }
}


//----------------------------------------------------------------------------
// Function: CreateIntSetInstruction
// 
// Create code to Set a signed constant in the register `dest'.
// Really the same as CreateUIntSetInstruction.
//----------------------------------------------------------------------------

static inline void
CreateIntSetInstruction(const TargetMachine& target,
                        int64_t C, Instruction* dest,
                        std::vector<MachineInstr*>& mvec,
                        MachineCodeForInstruction& mcfi)
{
  CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi);
}


//---------------------------------------------------------------------------
// Create a table of LLVM opcode -> max. immediate constant likely to
// be usable for that operation.
//---------------------------------------------------------------------------

// Entry == 0 ==> no immediate constant field exists at all.
// Entry >  0 ==> abs(immediate constant) <= Entry
// 
std::vector<int> MaxConstantsTable(Instruction::OtherOpsEnd);

static int
MaxConstantForInstr(unsigned llvmOpCode)
{
  int modelOpCode = -1;

  if (llvmOpCode >= Instruction::BinaryOpsBegin &&
      llvmOpCode <  Instruction::BinaryOpsEnd)
    modelOpCode = V9::ADDi;
  else
    switch(llvmOpCode) {
    case Instruction::Ret:   modelOpCode = V9::JMPLCALLi; break;

    case Instruction::Malloc:         
    case Instruction::Alloca:         
    case Instruction::GetElementPtr:  
    case Instruction::PHI:       
    case Instruction::Cast:
    case Instruction::Call:  modelOpCode = V9::ADDi; break;

    case Instruction::Shl:
    case Instruction::Shr:   modelOpCode = V9::SLLXi6; break;

    default: break;
    };

  return (modelOpCode < 0)? 0: SparcMachineInstrDesc[modelOpCode].maxImmedConst;
}

static void
InitializeMaxConstantsTable()
{
  unsigned op;
  assert(MaxConstantsTable.size() == Instruction::OtherOpsEnd &&
         "assignments below will be illegal!");
  for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op)
    MaxConstantsTable[op] = MaxConstantForInstr(op);
  for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op)
    MaxConstantsTable[op] = MaxConstantForInstr(op);
  for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op)
    MaxConstantsTable[op] = MaxConstantForInstr(op);
  for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op)
    MaxConstantsTable[op] = MaxConstantForInstr(op);
}


//---------------------------------------------------------------------------
// class UltraSparcInstrInfo 
// 
// Purpose:
//   Information about individual instructions.
//   Most information is stored in the SparcMachineInstrDesc array above.
//   Other information is computed on demand, and most such functions
//   default to member functions in base class TargetInstrInfo. 
//---------------------------------------------------------------------------

/*ctor*/
UltraSparcInstrInfo::UltraSparcInstrInfo()
  : TargetInstrInfo(SparcMachineInstrDesc,
                    /*descSize = */ V9::NUM_TOTAL_OPCODES,
                    /*numRealOpCodes = */ V9::NUM_REAL_OPCODES)
{
  InitializeMaxConstantsTable();
}

bool
UltraSparcInstrInfo::ConstantMayNotFitInImmedField(const Constant* CV,
                                                   const Instruction* I) const
{
  if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!)
    return true;

  if (isa<ConstantPointerNull>(CV))               // can always use %g0
    return false;

  if (const ConstantInt* CI = dyn_cast<ConstantInt>(CV))
    return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()];

  if (isa<ConstantBool>(CV))
    return 1 > MaxConstantsTable[I->getOpcode()];

  return true;
}

// 
// Create an instruction sequence to put the constant `val' into
// the virtual register `dest'.  `val' may be a Constant or a
// GlobalValue, viz., the constant address of a global variable or function.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via MachineFunction.
// 
void
UltraSparcInstrInfo::CreateCodeToLoadConst(const TargetMachine& target,
                                           Function* F,
                                           Value* val,
                                           Instruction* dest,
                                           std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const
{
  assert(isa<Constant>(val) || isa<GlobalValue>(val) &&
         "I only know about constant values and global addresses");
  
  // Use a "set" instruction for known constants or symbolic constants (labels)
  // that can go in an integer reg.
  // We have to use a "load" instruction for all other constants,
  // in particular, floating point constants.
  // 
  const Type* valType = val->getType();
  
  // A ConstantPointerRef is just a reference to GlobalValue.
  while (isa<ConstantPointerRef>(val))
    val = cast<ConstantPointerRef>(val)->getValue();

  if (isa<GlobalValue>(val)) {
      TmpInstruction* tmpReg =
        new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
      CreateSETXLabel(target, val, tmpReg, dest, mvec);
      return;
  }

  bool isValid;
  uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid);
  if (isValid) {
    if (dest->getType()->isSigned())
      CreateUIntSetInstruction(target, C, dest, mvec, mcfi);
    else
      CreateIntSetInstruction(target, (int64_t) C, dest, mvec, mcfi);

  } else {
    // Make an instruction sequence to load the constant, viz:
    //            SETX <addr-of-constant>, tmpReg, addrReg
    //            LOAD  /*addr*/ addrReg, /*offset*/ 0, dest
      
    // First, create a tmp register to be used by the SETX sequence.
    TmpInstruction* tmpReg =
      new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
      
    // Create another TmpInstruction for the address register
    TmpInstruction* addrReg =
      new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
    
    // Put the address (a symbolic name) into a register
    CreateSETXLabel(target, val, tmpReg, addrReg, mvec);
    
    // Generate the load instruction
    int64_t zeroOffset = 0;           // to avoid ambiguity with (Value*) 0
    unsigned Opcode = ChooseLoadInstruction(val->getType());
    Opcode = convertOpcodeFromRegToImm(Opcode);
    mvec.push_back(BuildMI(Opcode, 3).addReg(addrReg).
                   addSImm(zeroOffset).addRegDef(dest));
      
    // Make sure constant is emitted to constant pool in assembly code.
    MachineFunction::get(F).getInfo()->addToConstantPool(cast<Constant>(val));
  }
}


// Create an instruction sequence to copy an integer register `val'
// to a floating point register `dest' by copying to memory and back.
// val must be an integral type.  dest must be a Float or Double.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via MachineFunction.
// 
void
UltraSparcInstrInfo::CreateCodeToCopyIntToFloat(const TargetMachine& target,
                                        Function* F,
                                        Value* val,
                                        Instruction* dest,
                                        std::vector<MachineInstr*>& mvec,
                                        MachineCodeForInstruction& mcfi) const
{
  assert((val->getType()->isIntegral() || isa<PointerType>(val->getType()))
         && "Source type must be integral (integer or bool) or pointer");
  assert(dest->getType()->isFloatingPoint()
         && "Dest type must be float/double");

  // Get a stack slot to use for the copy
  int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);

  // Get the size of the source value being copied. 
  size_t srcSize = target.getTargetData().getTypeSize(val->getType());

  // Store instruction stores `val' to [%fp+offset].
  // The store and load opCodes are based on the size of the source value.
  // If the value is smaller than 32 bits, we must sign- or zero-extend it
  // to 32 bits since the load-float will load 32 bits.
  // Note that the store instruction is the same for signed and unsigned ints.
  const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy;
  Value* storeVal = val;
  if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) {
    // sign- or zero-extend respectively
    storeVal = new TmpInstruction(mcfi, storeType, val);
    if (val->getType()->isSigned())
      CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize,
                                      mvec, mcfi);
    else
      CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize,
                                      mvec, mcfi);
  }

  unsigned FPReg = target.getRegInfo().getFramePointer();
  unsigned StoreOpcode = ChooseStoreInstruction(storeType);
  StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
  mvec.push_back(BuildMI(StoreOpcode, 3)
                 .addReg(storeVal).addMReg(FPReg).addSImm(offset));

  // Load instruction loads [%fp+offset] to `dest'.
  // The type of the load opCode is the floating point type that matches the
  // stored type in size:
  // On SparcV9: float for int or smaller, double for long.
  // 
  const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
  unsigned LoadOpcode = ChooseLoadInstruction(loadType);
  LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
  mvec.push_back(BuildMI(LoadOpcode, 3)
                 .addMReg(FPReg).addSImm(offset).addRegDef(dest));
}

// Similarly, create an instruction sequence to copy an FP register
// `val' to an integer register `dest' by copying to memory and back.
// The generated instructions are returned in `mvec'.
// Any temp. virtual registers (TmpInstruction) created are recorded in mcfi.
// Temporary stack space required is allocated via MachineFunction.
// 
void
UltraSparcInstrInfo::CreateCodeToCopyFloatToInt(const TargetMachine& target,
                                        Function* F,
                                        Value* val,
                                        Instruction* dest,
                                        std::vector<MachineInstr*>& mvec,
                                        MachineCodeForInstruction& mcfi) const
{
  const Type* opTy   = val->getType();
  const Type* destTy = dest->getType();

  assert(opTy->isFloatingPoint() && "Source type must be float/double");
  assert((destTy->isIntegral() || isa<PointerType>(destTy))
         && "Dest type must be integer, bool or pointer");

  // FIXME: For now, we allocate permanent space because the stack frame
  // manager does not allow locals to be allocated (e.g., for alloca) after
  // a temp is allocated!
  // 
  int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val); 

  unsigned FPReg = target.getRegInfo().getFramePointer();

  // Store instruction stores `val' to [%fp+offset].
  // The store opCode is based only the source value being copied.
  // 
  unsigned StoreOpcode = ChooseStoreInstruction(opTy);
  StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);  
  mvec.push_back(BuildMI(StoreOpcode, 3)
                 .addReg(val).addMReg(FPReg).addSImm(offset));

  // Load instruction loads [%fp+offset] to `dest'.
  // The type of the load opCode is the integer type that matches the
  // source type in size:
  // On SparcV9: int for float, long for double.
  // Note that we *must* use signed loads even for unsigned dest types, to
  // ensure correct sign-extension for UByte, UShort or UInt:
  // 
  const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy;
  unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
  LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
  mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg)
                 .addSImm(offset).addRegDef(dest));
}


// Create instruction(s) to copy src to dest, for arbitrary types
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via MachineFunction.
// 
void
UltraSparcInstrInfo::CreateCopyInstructionsByType(const TargetMachine& target,
                                                  Function *F,
                                                  Value* src,
                                                  Instruction* dest,
                                               std::vector<MachineInstr*>& mvec,
                                          MachineCodeForInstruction& mcfi) const
{
  bool loadConstantToReg = false;
  
  const Type* resultType = dest->getType();
  
  MachineOpCode opCode = ChooseAddInstructionByType(resultType);
  if (opCode == V9::INVALID_OPCODE) {
    assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
    return;
  }
  
  // if `src' is a constant that doesn't fit in the immed field or if it is
  // a global variable (i.e., a constant address), generate a load
  // instruction instead of an add
  // 
  if (isa<Constant>(src)) {
    unsigned int machineRegNum;
    int64_t immedValue;
    MachineOperand::MachineOperandType opType =
      ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
                       machineRegNum, immedValue);
      
    if (opType == MachineOperand::MO_VirtualRegister)
      loadConstantToReg = true;
  }
  else if (isa<GlobalValue>(src))
    loadConstantToReg = true;
  
  if (loadConstantToReg) { 
    // `src' is constant and cannot fit in immed field for the ADD
    // Insert instructions to "load" the constant into a register
    target.getInstrInfo().CreateCodeToLoadConst(target, F, src, dest,
                                                mvec, mcfi);
  } else { 
    // Create a reg-to-reg copy instruction for the given type:
    // -- For FP values, create a FMOVS or FMOVD instruction
    // -- For non-FP values, create an add-with-0 instruction (opCode as above)
    // Make `src' the second operand, in case it is a small constant!
    // 
    MachineInstr* MI;
    if (resultType->isFloatingPoint())
      MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
            .addReg(src).addRegDef(dest));
    else {
        const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType;
        MI = (BuildMI(opCode, 3)
              .addSImm((int64_t) 0).addReg(src).addRegDef(dest));
    }
    mvec.push_back(MI);
  }
}


// Helper function for sign-extension and zero-extension.
// For SPARC v9, we sign-extend the given operand using SLL; SRA/SRL.
inline void
CreateBitExtensionInstructions(bool signExtend,
                               const TargetMachine& target,
                               Function* F,
                               Value* srcVal,
                               Value* destVal,
                               unsigned int numLowBits,
                               std::vector<MachineInstr*>& mvec,
                               MachineCodeForInstruction& mcfi)
{
  MachineInstr* M;

  assert(numLowBits <= 32 && "Otherwise, nothing should be done here!");

  if (numLowBits < 32) {
    // SLL is needed since operand size is < 32 bits.
    TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(),
                                              srcVal, destVal, "make32");
    mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal)
                   .addZImm(32-numLowBits).addRegDef(tmpI));
    srcVal = tmpI;
  }

  mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3)
                 .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal));
}


// Create instruction sequence to produce a sign-extended register value
// from an arbitrary-sized integer value (sized in bits, not bytes).
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via MachineFunction.
// 
void
UltraSparcInstrInfo::CreateSignExtensionInstructions(
                                        const TargetMachine& target,
                                        Function* F,
                                        Value* srcVal,
                                        Value* destVal,
                                        unsigned int numLowBits,
                                        std::vector<MachineInstr*>& mvec,
                                        MachineCodeForInstruction& mcfi) const
{
  CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal,
                                 destVal, numLowBits, mvec, mcfi);
}


// Create instruction sequence to produce a zero-extended register value
// from an arbitrary-sized integer value (sized in bits, not bytes).
// For SPARC v9, we sign-extend the given operand using SLL; SRL.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via MachineFunction.
// 
void
UltraSparcInstrInfo::CreateZeroExtensionInstructions(
                                        const TargetMachine& target,
                                        Function* F,
                                        Value* srcVal,
                                        Value* destVal,
                                        unsigned int numLowBits,
                                        std::vector<MachineInstr*>& mvec,
                                        MachineCodeForInstruction& mcfi) const
{
  CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal,
                                 destVal, numLowBits, mvec, mcfi);
}