aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/SparcV9InstrSelection.cpp
blob: 0460f3803dd7f899ef7bb1190763e731c8ced4a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
//===-- SparcV9InstrSelection.cpp -------------------------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
//  BURS instruction selection for SPARC V9 architecture.      
//
//===----------------------------------------------------------------------===//

#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "MachineInstrAnnot.h"
#include "SparcV9InstrSelectionSupport.h"
#include "SparcV9Internals.h"
#include "SparcV9RegClassInfo.h"
#include "SparcV9RegInfo.h"
#include "Support/MathExtras.h"
#include <algorithm>
#include <cmath>

namespace llvm {

static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
                                    std::vector<MachineInstr*>& mvec) {
  mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue())
                                   .addReg(Node->rightChild()->getValue())
                                   .addRegDef(Node->getValue()));
}


//---------------------------------------------------------------------------
// Function: FoldGetElemChain
// 
// Purpose:
//   Fold a chain of GetElementPtr instructions containing only
//   constant offsets into an equivalent (Pointer, IndexVector) pair.
//   Returns the pointer Value, and stores the resulting IndexVector
//   in argument chainIdxVec. This is a helper function for
//   FoldConstantIndices that does the actual folding. 
//---------------------------------------------------------------------------


// Check for a constant 0.
static inline bool
IsZero(Value* idx)
{
  return (idx == ConstantSInt::getNullValue(idx->getType()));
}

static Value*
FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
                 bool lastInstHasLeadingNonZero)
{
  InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
  GetElementPtrInst* gepInst =
    dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0);

  // ptr value is not computed in this tree or ptr value does not come from GEP
  // instruction
  if (gepInst == NULL)
    return NULL;

  // Return NULL if we don't fold any instructions in.
  Value* ptrVal = NULL;

  // Now chase the chain of getElementInstr instructions, if any.
  // Check for any non-constant indices and stop there.
  // Also, stop if the first index of child is a non-zero array index
  // and the last index of the current node is a non-array index:
  // in that case, a non-array declared type is being accessed as an array
  // which is not type-safe, but could be legal.
  // 
  InstructionNode* ptrChild = gepNode;
  while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
                      ptrChild->getOpLabel() == GetElemPtrIdx))
  {
    // Child is a GetElemPtr instruction
    gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
    User::op_iterator OI, firstIdx = gepInst->idx_begin();
    User::op_iterator lastIdx = gepInst->idx_end();
    bool allConstantOffsets = true;

    // The first index of every GEP must be an array index.
    assert((*firstIdx)->getType() == Type::LongTy &&
           "INTERNAL ERROR: Structure index for a pointer type!");

    // If the last instruction had a leading non-zero index, check if the
    // current one references a sequential (i.e., indexable) type.
    // If not, the code is not type-safe and we would create an illegal GEP
    // by folding them, so don't fold any more instructions.
    // 
    if (lastInstHasLeadingNonZero)
      if (! isa<SequentialType>(gepInst->getType()->getElementType()))
        break;   // cannot fold in any preceding getElementPtr instrs.

    // Check that all offsets are constant for this instruction
    for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI)
      allConstantOffsets = isa<ConstantInt>(*OI);

    if (allConstantOffsets) {
      // Get pointer value out of ptrChild.
      ptrVal = gepInst->getPointerOperand();

      // Insert its index vector at the start, skipping any leading [0]
      // Remember the old size to check if anything was inserted.
      unsigned oldSize = chainIdxVec.size();
      int firstIsZero = IsZero(*firstIdx);
      chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx);

      // Remember if it has leading zero index: it will be discarded later.
      if (oldSize < chainIdxVec.size())
        lastInstHasLeadingNonZero = !firstIsZero;

      // Mark the folded node so no code is generated for it.
      ((InstructionNode*) ptrChild)->markFoldedIntoParent();

      // Get the previous GEP instruction and continue trying to fold
      ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild());
    } else // cannot fold this getElementPtr instr. or any preceding ones
      break;
  }

  // If the first getElementPtr instruction had a leading [0], add it back.
  // Note that this instruction is the *last* one that was successfully
  // folded *and* contributed any indices, in the loop above.
  // 
  if (ptrVal && ! lastInstHasLeadingNonZero) 
    chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0));

  return ptrVal;
}


//---------------------------------------------------------------------------
// Function: GetGEPInstArgs
// 
// Purpose:
//   Helper function for GetMemInstArgs that handles the final getElementPtr
//   instruction used by (or same as) the memory operation.
//   Extracts the indices of the current instruction and tries to fold in
//   preceding ones if all indices of the current one are constant.
//---------------------------------------------------------------------------

static Value *
GetGEPInstArgs(InstructionNode* gepNode,
               std::vector<Value*>& idxVec,
               bool& allConstantIndices)
{
  allConstantIndices = true;
  GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction());

  // Default pointer is the one from the current instruction.
  Value* ptrVal = gepI->getPointerOperand();
  InstrTreeNode* ptrChild = gepNode->leftChild(); 

  // Extract the index vector of the GEP instruction.
  // If all indices are constant and first index is zero, try to fold
  // in preceding GEPs with all constant indices.
  for (User::op_iterator OI=gepI->idx_begin(),  OE=gepI->idx_end();
       allConstantIndices && OI != OE; ++OI)
    if (! isa<Constant>(*OI))
      allConstantIndices = false;     // note: this also terminates loop!

  // If we have only constant indices, fold chains of constant indices
  // in this and any preceding GetElemPtr instructions.
  bool foldedGEPs = false;
  bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin());
  if (allConstantIndices)
    if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) {
      ptrVal = newPtr;
      foldedGEPs = true;
    }

  // Append the index vector of the current instruction.
  // Skip the leading [0] index if preceding GEPs were folded into this.
  idxVec.insert(idxVec.end(),
                gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx),
                gepI->idx_end());

  return ptrVal;
}

//---------------------------------------------------------------------------
// Function: GetMemInstArgs
// 
// Purpose:
//   Get the pointer value and the index vector for a memory operation
//   (GetElementPtr, Load, or Store).  If all indices of the given memory
//   operation are constant, fold in constant indices in a chain of
//   preceding GetElementPtr instructions (if any), and return the
//   pointer value of the first instruction in the chain.
//   All folded instructions are marked so no code is generated for them.
//
// Return values:
//   Returns the pointer Value to use.
//   Returns the resulting IndexVector in idxVec.
//   Returns true/false in allConstantIndices if all indices are/aren't const.
//---------------------------------------------------------------------------

static Value*
GetMemInstArgs(InstructionNode* memInstrNode,
               std::vector<Value*>& idxVec,
               bool& allConstantIndices)
{
  allConstantIndices = false;
  Instruction* memInst = memInstrNode->getInstruction();
  assert(idxVec.size() == 0 && "Need empty vector to return indices");

  // If there is a GetElemPtr instruction to fold in to this instr,
  // it must be in the left child for Load and GetElemPtr, and in the
  // right child for Store instructions.
  InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store
                             ? memInstrNode->rightChild()
                             : memInstrNode->leftChild()); 
  
  // Default pointer is the one from the current instruction.
  Value* ptrVal = ptrChild->getValue(); 

  // Find the "last" GetElemPtr instruction: this one or the immediate child.
  // There will be none if this is a load or a store from a scalar pointer.
  InstructionNode* gepNode = NULL;
  if (isa<GetElementPtrInst>(memInst))
    gepNode = memInstrNode;
  else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) {
    // Child of load/store is a GEP and memInst is its only use.
    // Use its indices and mark it as folded.
    gepNode = cast<InstructionNode>(ptrChild);
    gepNode->markFoldedIntoParent();
  }

  // If there are no indices, return the current pointer.
  // Else extract the pointer from the GEP and fold the indices.
  return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices)
                 : ptrVal;
}


//************************ Internal Functions ******************************/


static inline MachineOpCode 
ChooseBprInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode;
  
  Instruction* setCCInstr =
    ((InstructionNode*) instrNode->leftChild())->getInstruction();
  
  switch(setCCInstr->getOpcode())
  {
  case Instruction::SetEQ: opCode = V9::BRZ;   break;
  case Instruction::SetNE: opCode = V9::BRNZ;  break;
  case Instruction::SetLE: opCode = V9::BRLEZ; break;
  case Instruction::SetGE: opCode = V9::BRGEZ; break;
  case Instruction::SetLT: opCode = V9::BRLZ;  break;
  case Instruction::SetGT: opCode = V9::BRGZ;  break;
  default:
    assert(0 && "Unrecognized VM instruction!");
    opCode = V9::INVALID_OPCODE;
    break; 
  }
  
  return opCode;
}


static inline MachineOpCode 
ChooseBpccInstruction(const InstructionNode* instrNode,
                      const BinaryOperator* setCCInstr)
{
  MachineOpCode opCode = V9::INVALID_OPCODE;
  
  bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
  
  if (isSigned) {
    switch(setCCInstr->getOpcode())
    {
    case Instruction::SetEQ: opCode = V9::BE;  break;
    case Instruction::SetNE: opCode = V9::BNE; break;
    case Instruction::SetLE: opCode = V9::BLE; break;
    case Instruction::SetGE: opCode = V9::BGE; break;
    case Instruction::SetLT: opCode = V9::BL;  break;
    case Instruction::SetGT: opCode = V9::BG;  break;
    default:
      assert(0 && "Unrecognized VM instruction!");
      break; 
    }
  } else {
    switch(setCCInstr->getOpcode())
    {
    case Instruction::SetEQ: opCode = V9::BE;   break;
    case Instruction::SetNE: opCode = V9::BNE;  break;
    case Instruction::SetLE: opCode = V9::BLEU; break;
    case Instruction::SetGE: opCode = V9::BCC;  break;
    case Instruction::SetLT: opCode = V9::BCS;  break;
    case Instruction::SetGT: opCode = V9::BGU;  break;
    default:
      assert(0 && "Unrecognized VM instruction!");
      break; 
    }
  }
  
  return opCode;
}

static inline MachineOpCode 
ChooseBFpccInstruction(const InstructionNode* instrNode,
                       const BinaryOperator* setCCInstr)
{
  MachineOpCode opCode = V9::INVALID_OPCODE;
  
  switch(setCCInstr->getOpcode())
  {
  case Instruction::SetEQ: opCode = V9::FBE;  break;
  case Instruction::SetNE: opCode = V9::FBNE; break;
  case Instruction::SetLE: opCode = V9::FBLE; break;
  case Instruction::SetGE: opCode = V9::FBGE; break;
  case Instruction::SetLT: opCode = V9::FBL;  break;
  case Instruction::SetGT: opCode = V9::FBG;  break;
  default:
    assert(0 && "Unrecognized VM instruction!");
    break; 
  }
  
  return opCode;
}


// Create a unique TmpInstruction for a boolean value,
// representing the CC register used by a branch on that value.
// For now, hack this using a little static cache of TmpInstructions.
// Eventually the entire BURG instruction selection should be put
// into a separate class that can hold such information.
// The static cache is not too bad because the memory for these
// TmpInstructions will be freed along with the rest of the Function anyway.
// 
static TmpInstruction*
GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType,
            MachineCodeForInstruction& mcfi)
{
  typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
  static BoolTmpCache boolToTmpCache;     // Map boolVal -> TmpInstruction*
  static const Function *lastFunction = 0;// Use to flush cache between funcs
  
  assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
  
  if (lastFunction != F) {
    lastFunction = F;
    boolToTmpCache.clear();
  }
  
  // Look for tmpI and create a new one otherwise.  The new value is
  // directly written to map using the ref returned by operator[].
  TmpInstruction*& tmpI = boolToTmpCache[boolVal];
  if (tmpI == NULL)
    tmpI = new TmpInstruction(mcfi, ccType, boolVal);
  
  return tmpI;
}


static inline MachineOpCode 
ChooseBccInstruction(const InstructionNode* instrNode,
                     const Type*& setCCType)
{
  InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
  assert(setCCNode->getOpLabel() == SetCCOp);
  BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction());
  setCCType = setCCInstr->getOperand(0)->getType();
  
  if (setCCType->isFloatingPoint())
    return ChooseBFpccInstruction(instrNode, setCCInstr);
  else
    return ChooseBpccInstruction(instrNode, setCCInstr);
}


// WARNING: since this function has only one caller, it always returns
// the opcode that expects an immediate and a register. If this function
// is ever used in cases where an opcode that takes two registers is required,
// then modify this function and use convertOpcodeFromRegToImm() where required.
//
// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
// new cases of opcodes.
static inline MachineOpCode 
ChooseMovFpcciInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode = V9::INVALID_OPCODE;
  
  switch(instrNode->getInstruction()->getOpcode())
  {
  case Instruction::SetEQ: opCode = V9::MOVFEi;  break;
  case Instruction::SetNE: opCode = V9::MOVFNEi; break;
  case Instruction::SetLE: opCode = V9::MOVFLEi; break;
  case Instruction::SetGE: opCode = V9::MOVFGEi; break;
  case Instruction::SetLT: opCode = V9::MOVFLi;  break;
  case Instruction::SetGT: opCode = V9::MOVFGi;  break;
  default:
    assert(0 && "Unrecognized VM instruction!");
    break; 
  }
  
  return opCode;
}


// ChooseMovpcciForSetCC -- Choose a conditional-move instruction
// based on the type of SetCC operation.
// 
// WARNING: since this function has only one caller, it always returns
// the opcode that expects an immediate and a register. If this function
// is ever used in cases where an opcode that takes two registers is required,
// then modify this function and use convertOpcodeFromRegToImm() where required.
//
// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
// new cases of opcodes.
// 
static MachineOpCode
ChooseMovpcciForSetCC(const InstructionNode* instrNode)
{
  MachineOpCode opCode = V9::INVALID_OPCODE;

  const Type* opType = instrNode->leftChild()->getValue()->getType();
  assert(opType->isIntegral() || isa<PointerType>(opType));
  bool noSign = opType->isUnsigned() || isa<PointerType>(opType);
  
  switch(instrNode->getInstruction()->getOpcode())
  {
  case Instruction::SetEQ: opCode = V9::MOVEi;                        break;
  case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break;
  case Instruction::SetGE: opCode = noSign? V9::MOVCCi  : V9::MOVGEi; break;
  case Instruction::SetLT: opCode = noSign? V9::MOVCSi  : V9::MOVLi;  break;
  case Instruction::SetGT: opCode = noSign? V9::MOVGUi  : V9::MOVGi;  break;
  case Instruction::SetNE: opCode = V9::MOVNEi;                       break;
  default: assert(0 && "Unrecognized LLVM instr!"); break; 
  }
  
  return opCode;
}


// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value
// instruction based on the type of SetCC operation.  These instructions
// compare a register with 0 and perform the move is the comparison is true.
// 
// WARNING: like the previous function, this function it always returns
// the opcode that expects an immediate and a register.  See above.
// 
static MachineOpCode
ChooseMovpregiForSetCC(const InstructionNode* instrNode)
{
  MachineOpCode opCode = V9::INVALID_OPCODE;
  
  switch(instrNode->getInstruction()->getOpcode())
  {
  case Instruction::SetEQ: opCode = V9::MOVRZi;  break;
  case Instruction::SetLE: opCode = V9::MOVRLEZi; break;
  case Instruction::SetGE: opCode = V9::MOVRGEZi; break;
  case Instruction::SetLT: opCode = V9::MOVRLZi;  break;
  case Instruction::SetGT: opCode = V9::MOVRGZi;  break;
  case Instruction::SetNE: opCode = V9::MOVRNZi; break;
  default: assert(0 && "Unrecognized VM instr!"); break; 
  }
  
  return opCode;
}


static inline MachineOpCode
ChooseConvertToFloatInstr(const TargetMachine& target,
                          OpLabel vopCode, const Type* opType)
{
  assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) &&
         "Unrecognized convert-to-float opcode!");
  assert((opType->isIntegral() || opType->isFloatingPoint() ||
          isa<PointerType>(opType))
         && "Trying to convert a non-scalar type to FLOAT/DOUBLE?");

  MachineOpCode opCode = V9::INVALID_OPCODE;

  unsigned opSize = target.getTargetData().getTypeSize(opType);

  if (opType == Type::FloatTy)
    opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD);
  else if (opType == Type::DoubleTy)
    opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP);
  else if (opSize <= 4)
    opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD);
  else {
    assert(opSize == 8 && "Unrecognized type size > 4 and < 8!");
    opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD);
  }
  
  return opCode;
}

static inline MachineOpCode 
ChooseConvertFPToIntInstr(const TargetMachine& target,
                          const Type* destType, const Type* opType)
{
  assert((opType == Type::FloatTy || opType == Type::DoubleTy)
         && "This function should only be called for FLOAT or DOUBLE");
  assert((destType->isIntegral() || isa<PointerType>(destType))
         && "Trying to convert FLOAT/DOUBLE to a non-scalar type?");

  MachineOpCode opCode = V9::INVALID_OPCODE;

  unsigned destSize = target.getTargetData().getTypeSize(destType);

  if (destType == Type::UIntTy)
    assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand.");
  else if (destSize <= 4)
    opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI;
  else {
    assert(destSize == 8 && "Unrecognized type size > 4 and < 8!");
    opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX;
  }

  return opCode;
}

static MachineInstr*
CreateConvertFPToIntInstr(const TargetMachine& target,
                          Value* srcVal,
                          Value* destVal,
                          const Type* destType)
{
  MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType,
                                                   srcVal->getType());
  assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!");
  return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal);
}

// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer
// The FP value must be converted to the dest type in an FP register,
// and the result is then copied from FP to int register via memory.
// SPARC does not have a float-to-uint conversion, only a float-to-int (fdtoi).
// Since fdtoi converts to signed integers, any FP value V between MAXINT+1
// and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly.
// Therefore, for converting an FP value to uint32_t, we first need to convert
// to uint64_t and then to uint32_t.
// 
static void
CreateCodeToConvertFloatToInt(const TargetMachine& target,
                              Value* opVal,
                              Instruction* destI,
                              std::vector<MachineInstr*>& mvec,
                              MachineCodeForInstruction& mcfi)
{
  Function* F = destI->getParent()->getParent();

  // Create a temporary to represent the FP register into which the
  // int value will placed after conversion.  The type of this temporary
  // depends on the type of FP register to use: single-prec for a 32-bit
  // int or smaller; double-prec for a 64-bit int.
  // 
  size_t destSize = target.getTargetData().getTypeSize(destI->getType());

  const Type* castDestType = destI->getType(); // type for the cast instr result
  const Type* castDestRegType;          // type for cast instruction result reg
  TmpInstruction* destForCast;          // dest for cast instruction
  Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr

  // For converting an FP value to uint32_t, we first need to convert to
  // uint64_t and then to uint32_t, as explained above.
  if (destI->getType() == Type::UIntTy) {
    castDestType    = Type::ULongTy;       // use this instead of type of destI
    castDestRegType = Type::DoubleTy;      // uint64_t needs 64-bit FP register.
    destForCast     = new TmpInstruction(mcfi, castDestRegType, opVal);
    fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast);
  }
  else {
    castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy;
    destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
  }

  // Create the fp-to-int conversion instruction (src and dest regs are FP regs)
  mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast,
                                           castDestType));

  // Create the fpreg-to-intreg copy code
  target.getInstrInfo().CreateCodeToCopyFloatToInt(target, F, destForCast,
                                                   fpToIntCopyDest, mvec, mcfi);

  // Create the uint64_t to uint32_t conversion, if needed
  if (destI->getType() == Type::UIntTy)
    target.getInstrInfo().
      CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI,
                                      /*numLowBits*/ 32, mvec, mcfi);
}


static inline MachineOpCode 
ChooseAddInstruction(const InstructionNode* instrNode)
{
  return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
}


static inline MachineInstr* 
CreateMovFloatInstruction(const InstructionNode* instrNode,
                          const Type* resultType)
{
  return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2)
                   .addReg(instrNode->leftChild()->getValue())
                   .addRegDef(instrNode->getValue());
}

static inline MachineInstr* 
CreateAddConstInstruction(const InstructionNode* instrNode)
{
  MachineInstr* minstr = NULL;
  
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
  assert(isa<Constant>(constOp));
  
  // Cases worth optimizing are:
  // (1) Add with 0 for float or double: use an FMOV of appropriate type,
  //	 instead of an FADD (1 vs 3 cycles).  There is no integer MOV.
  // 
  if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
    double dval = FPC->getValue();
    if (dval == 0.0)
      minstr = CreateMovFloatInstruction(instrNode,
                                        instrNode->getInstruction()->getType());
  }
  
  return minstr;
}


static inline MachineOpCode 
ChooseSubInstructionByType(const Type* resultType)
{
  MachineOpCode opCode = V9::INVALID_OPCODE;
  
  if (resultType->isInteger() || isa<PointerType>(resultType)) {
      opCode = V9::SUBr;
  } else {
    switch(resultType->getPrimitiveID())
    {
    case Type::FloatTyID:  opCode = V9::FSUBS; break;
    case Type::DoubleTyID: opCode = V9::FSUBD; break;
    default: assert(0 && "Invalid type for SUB instruction"); break; 
    }
  }

  return opCode;
}


static inline MachineInstr* 
CreateSubConstInstruction(const InstructionNode* instrNode)
{
  MachineInstr* minstr = NULL;
  
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
  assert(isa<Constant>(constOp));
  
  // Cases worth optimizing are:
  // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
  //	 instead of an FSUB (1 vs 3 cycles).  There is no integer MOV.
  // 
  if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
    double dval = FPC->getValue();
    if (dval == 0.0)
      minstr = CreateMovFloatInstruction(instrNode,
                                        instrNode->getInstruction()->getType());
  }
  
  return minstr;
}


static inline MachineOpCode 
ChooseFcmpInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode = V9::INVALID_OPCODE;
  
  Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
  switch(operand->getType()->getPrimitiveID()) {
  case Type::FloatTyID:  opCode = V9::FCMPS; break;
  case Type::DoubleTyID: opCode = V9::FCMPD; break;
  default: assert(0 && "Invalid type for FCMP instruction"); break; 
  }
  
  return opCode;
}


// Assumes that leftArg and rightArg are both cast instructions.
//
static inline bool
BothFloatToDouble(const InstructionNode* instrNode)
{
  InstrTreeNode* leftArg = instrNode->leftChild();
  InstrTreeNode* rightArg = instrNode->rightChild();
  InstrTreeNode* leftArgArg = leftArg->leftChild();
  InstrTreeNode* rightArgArg = rightArg->leftChild();
  assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
  
  // Check if both arguments are floats cast to double
  return (leftArg->getValue()->getType() == Type::DoubleTy &&
          leftArgArg->getValue()->getType() == Type::FloatTy &&
          rightArgArg->getValue()->getType() == Type::FloatTy);
}


static inline MachineOpCode 
ChooseMulInstructionByType(const Type* resultType)
{
  MachineOpCode opCode = V9::INVALID_OPCODE;
  
  if (resultType->isInteger())
    opCode = V9::MULXr;
  else
    switch(resultType->getPrimitiveID())
    {
    case Type::FloatTyID:  opCode = V9::FMULS; break;
    case Type::DoubleTyID: opCode = V9::FMULD; break;
    default: assert(0 && "Invalid type for MUL instruction"); break; 
    }
  
  return opCode;
}



static inline MachineInstr*
CreateIntNegInstruction(const TargetMachine& target,
                        Value* vreg)
{
  return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo().getZeroRegNum())
    .addReg(vreg).addRegDef(vreg);
}


// Create instruction sequence for any shift operation.
// SLL or SLLX on an operand smaller than the integer reg. size (64bits)
// requires a second instruction for explicit sign-extension.
// Note that we only have to worry about a sign-bit appearing in the
// most significant bit of the operand after shifting (e.g., bit 32 of
// Int or bit 16 of Short), so we do not have to worry about results
// that are as large as a normal integer register.
// 
static inline void
CreateShiftInstructions(const TargetMachine& target,
                        Function* F,
                        MachineOpCode shiftOpCode,
                        Value* argVal1,
                        Value* optArgVal2, /* Use optArgVal2 if not NULL */
                        unsigned optShiftNum, /* else use optShiftNum */
                        Instruction* destVal,
                        std::vector<MachineInstr*>& mvec,
                        MachineCodeForInstruction& mcfi)
{
  assert((optArgVal2 != NULL || optShiftNum <= 64) &&
         "Large shift sizes unexpected, but can be handled below: "
         "You need to check whether or not it fits in immed field below");
  
  // If this is a logical left shift of a type smaller than the standard
  // integer reg. size, we have to extend the sign-bit into upper bits
  // of dest, so we need to put the result of the SLL into a temporary.
  // 
  Value* shiftDest = destVal;
  unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType());

  if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) {
    // put SLL result into a temporary
    shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp");
  }
  
  MachineInstr* M = (optArgVal2 != NULL)
    ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2)
                             .addReg(shiftDest, MachineOperand::Def)
    : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum)
                             .addReg(shiftDest, MachineOperand::Def);
  mvec.push_back(M);
  
  if (shiftDest != destVal) {
    // extend the sign-bit of the result into all upper bits of dest
    assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?");
    target.getInstrInfo().
      CreateSignExtensionInstructions(target, F, shiftDest, destVal,
                                      8*opSize, mvec, mcfi);
  }
}


// Does not create any instructions if we cannot exploit constant to
// create a cheaper instruction.
// This returns the approximate cost of the instructions generated,
// which is used to pick the cheapest when both operands are constant.
static unsigned
CreateMulConstInstruction(const TargetMachine &target, Function* F,
                          Value* lval, Value* rval, Instruction* destVal,
                          std::vector<MachineInstr*>& mvec,
                          MachineCodeForInstruction& mcfi)
{
  /* Use max. multiply cost, viz., cost of MULX */
  unsigned cost = target.getInstrInfo().minLatency(V9::MULXr);
  unsigned firstNewInstr = mvec.size();
  
  Value* constOp = rval;
  if (! isa<Constant>(constOp))
    return cost;
  
  // Cases worth optimizing are:
  // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
  // (2) Multiply by 2^x for integer types: replace with Shift
  // 
  const Type* resultType = destVal->getType();
  
  if (resultType->isInteger() || isa<PointerType>(resultType)) {
    bool isValidConst;
    int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target,
                                     constOp, constOp->getType(), isValidConst);
    if (isValidConst) {
      unsigned pow;
      bool needNeg = false;
      if (C < 0) {
        needNeg = true;
        C = -C;
      }
          
      if (C == 0 || C == 1) {
        cost = target.getInstrInfo().minLatency(V9::ADDr);
        unsigned Zero = target.getRegInfo().getZeroRegNum();
        MachineInstr* M;
        if (C == 0)
          M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal);
        else
          M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal);
        mvec.push_back(M);
      } else if (isPowerOf2(C, pow)) {
        unsigned opSize = target.getTargetData().getTypeSize(resultType);
        MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6;
        CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
                                destVal, mvec, mcfi);
      }
          
      if (mvec.size() > 0 && needNeg) {
        // insert <reg = SUB 0, reg> after the instr to flip the sign
        MachineInstr* M = CreateIntNegInstruction(target, destVal);
        mvec.push_back(M);
      }
    }
  } else {
    if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
      double dval = FPC->getValue();
      if (fabs(dval) == 1) {
        MachineOpCode opCode =  (dval < 0)
          ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
          : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
        mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal));
      } 
    }
  }
  
  if (firstNewInstr < mvec.size()) {
    cost = 0;
    for (unsigned i=firstNewInstr; i < mvec.size(); ++i)
      cost += target.getInstrInfo().minLatency(mvec[i]->getOpcode());
  }
  
  return cost;
}


// Does not create any instructions if we cannot exploit constant to
// create a cheaper instruction.
// 
static inline void
CreateCheapestMulConstInstruction(const TargetMachine &target,
                                  Function* F,
                                  Value* lval, Value* rval,
                                  Instruction* destVal,
                                  std::vector<MachineInstr*>& mvec,
                                  MachineCodeForInstruction& mcfi)
{
  Value* constOp;
  if (isa<Constant>(lval) && isa<Constant>(rval)) {
    // both operands are constant: evaluate and "set" in dest
    Constant* P = ConstantExpr::get(Instruction::Mul,
                                    cast<Constant>(lval),
                                    cast<Constant>(rval));
    target.getInstrInfo().CreateCodeToLoadConst(target,F,P,destVal,mvec,mcfi);
  }
  else if (isa<Constant>(rval))         // rval is constant, but not lval
    CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
  else if (isa<Constant>(lval))         // lval is constant, but not rval
    CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
  
  // else neither is constant
  return;
}

// Return NULL if we cannot exploit constant to create a cheaper instruction
static inline void
CreateMulInstruction(const TargetMachine &target, Function* F,
                     Value* lval, Value* rval, Instruction* destVal,
                     std::vector<MachineInstr*>& mvec,
                     MachineCodeForInstruction& mcfi,
                     MachineOpCode forceMulOp = -1)
{
  unsigned L = mvec.size();
  CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi);
  if (mvec.size() == L) {
    // no instructions were added so create MUL reg, reg, reg.
    // Use FSMULD if both operands are actually floats cast to doubles.
    // Otherwise, use the default opcode for the appropriate type.
    MachineOpCode mulOp = ((forceMulOp != -1)
                           ? forceMulOp 
                           : ChooseMulInstructionByType(destVal->getType()));
    mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval)
                   .addRegDef(destVal));
  }
}


// Generate a divide instruction for Div or Rem.
// For Rem, this assumes that the operand type will be signed if the result
// type is signed.  This is correct because they must have the same sign.
// 
static inline MachineOpCode 
ChooseDivInstruction(TargetMachine &target,
                     const InstructionNode* instrNode)
{
  MachineOpCode opCode = V9::INVALID_OPCODE;
  
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType->isInteger())
    opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr;
  else
    switch(resultType->getPrimitiveID())
      {
      case Type::FloatTyID:  opCode = V9::FDIVS; break;
      case Type::DoubleTyID: opCode = V9::FDIVD; break;
      default: assert(0 && "Invalid type for DIV instruction"); break; 
      }
  
  return opCode;
}


// Return if we cannot exploit constant to create a cheaper instruction
static void
CreateDivConstInstruction(TargetMachine &target,
                          const InstructionNode* instrNode,
                          std::vector<MachineInstr*>& mvec)
{
  Value* LHS  = instrNode->leftChild()->getValue();
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
  if (!isa<Constant>(constOp))
    return;

  Instruction* destVal = instrNode->getInstruction();
  unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
  
  // Cases worth optimizing are:
  // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
  // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
  // 
  const Type* resultType = instrNode->getInstruction()->getType();
 
  if (resultType->isInteger()) {
    unsigned pow;
    bool isValidConst;
    int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target,
                                     constOp, constOp->getType(), isValidConst);
    if (isValidConst) {
      bool needNeg = false;
      if (C < 0) {
        needNeg = true;
        C = -C;
      }
      
      if (C == 1) {
        mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg)
                       .addRegDef(destVal));
      } else if (isPowerOf2(C, pow)) {
        unsigned opCode;
        Value* shiftOperand;
        unsigned opSize = target.getTargetData().getTypeSize(resultType);

        if (resultType->isSigned()) {
          // For N / 2^k, if the operand N is negative,
          // we need to add (2^k - 1) before right-shifting by k, i.e.,
          // 
          //    (N / 2^k) = N >> k,               if N >= 0;
          //                (N + 2^k - 1) >> k,   if N < 0
          // 
          // If N is <= 32 bits, use:
          //    sra N, 31, t1           // t1 = ~0,         if N < 0,  0 else
          //    srl t1, 32-k, t2        // t2 = 2^k - 1,    if N < 0,  0 else
          //    add t2, N, t3           // t3 = N + 2^k -1, if N < 0,  N else
	  //    sra t3, k, result       // result = N / 2^k
          // 
          // If N is 64 bits, use:
          //    srax N,  k-1,  t1       // t1 = sign bit in high k positions
          //    srlx t1, 64-k, t2       // t2 = 2^k - 1,    if N < 0,  0 else
          //    add t2, N, t3           // t3 = N + 2^k -1, if N < 0,  N else
	  //    sra t3, k, result       // result = N / 2^k
          //
          TmpInstruction *sraTmp, *srlTmp, *addTmp;
          MachineCodeForInstruction& mcfi
            = MachineCodeForInstruction::get(destVal);
          sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign");
          srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1");
          addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg");

          // Create the SRA or SRAX instruction to get the sign bit
          mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3)
                         .addReg(LHS)
                         .addSImm((resultType==Type::LongTy)? pow-1 : 31)
                         .addRegDef(sraTmp));

          // Create the SRL or SRLX instruction to get the sign bit
          mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3)
                         .addReg(sraTmp)
                         .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow)
                         .addRegDef(srlTmp));

          // Create the ADD instruction to add 2^pow-1 for negative values
          mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp)
                         .addRegDef(addTmp));

          // Get the shift operand and "right-shift" opcode to do the divide
          shiftOperand = addTmp;
          opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5;
        } else {
          // Get the shift operand and "right-shift" opcode to do the divide
          shiftOperand = LHS;
          opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5;
        }

        // Now do the actual shift!
        mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow)
                       .addRegDef(destVal));
      }
          
      if (needNeg && (C == 1 || isPowerOf2(C, pow))) {
        // insert <reg = SUB 0, reg> after the instr to flip the sign
        mvec.push_back(CreateIntNegInstruction(target, destVal));
      }
    }
  } else {
    if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
      double dval = FPC->getValue();
      if (fabs(dval) == 1) {
        unsigned opCode = 
          (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
          : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
              
        mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal));
      } 
    }
  }
}


static void
CreateCodeForVariableSizeAlloca(const TargetMachine& target,
                                Instruction* result,
                                unsigned tsize,
                                Value* numElementsVal,
                                std::vector<MachineInstr*>& getMvec)
{
  Value* totalSizeVal;
  MachineInstr* M;
  MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result);
  Function *F = result->getParent()->getParent();

  // Enforce the alignment constraints on the stack pointer at
  // compile time if the total size is a known constant.
  if (isa<Constant>(numElementsVal)) {
    bool isValid;
    int64_t numElem = (int64_t) target.getInstrInfo().
      ConvertConstantToIntType(target, numElementsVal,
                               numElementsVal->getType(), isValid);
    assert(isValid && "Unexpectedly large array dimension in alloca!");
    int64_t total = numElem * tsize;
    if (int extra= total % target.getFrameInfo().getStackFrameSizeAlignment())
      total += target.getFrameInfo().getStackFrameSizeAlignment() - extra;
    totalSizeVal = ConstantSInt::get(Type::IntTy, total);
  } else {
    // The size is not a constant.  Generate code to compute it and
    // code to pad the size for stack alignment.
    // Create a Value to hold the (constant) element size
    Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);

    // Create temporary values to hold the result of MUL, SLL, SRL
    // To pad `size' to next smallest multiple of 16:
    //          size = (size + 15) & (-16 = 0xfffffffffffffff0)
    // 
    TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal);
    TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd);
    TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15);

    // Instruction 1: mul numElements, typeSize -> tmpProd
    // This will optimize the MUL as far as possible.
    CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec,
                         mcfi, -1);

    // Instruction 2: andn tmpProd, 0x0f -> tmpAndn
    getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15)
                      .addReg(tmpAdd15, MachineOperand::Def));

    // Instruction 3: add tmpAndn, 0x10 -> tmpAdd16
    getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16)
                      .addReg(tmpAndf0, MachineOperand::Def));

    totalSizeVal = tmpAndf0;
  }

  // Get the constant offset from SP for dynamically allocated storage
  // and create a temporary Value to hold it.
  MachineFunction& mcInfo = MachineFunction::get(F);
  bool growUp;
  ConstantSInt* dynamicAreaOffset =
    ConstantSInt::get(Type::IntTy,
                     target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp));
  assert(! growUp && "Has SPARC v9 stack frame convention changed?");

  unsigned SPReg = target.getRegInfo().getStackPointer();

  // Instruction 2: sub %sp, totalSizeVal -> %sp
  getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal)
                    .addMReg(SPReg,MachineOperand::Def));

  // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
  getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset)
                    .addRegDef(result));
}        


static void
CreateCodeForFixedSizeAlloca(const TargetMachine& target,
                             Instruction* result,
                             unsigned tsize,
                             unsigned numElements,
                             std::vector<MachineInstr*>& getMvec)
{
  assert(result && result->getParent() &&
         "Result value is not part of a function?");
  Function *F = result->getParent()->getParent();
  MachineFunction &mcInfo = MachineFunction::get(F);

  // If the alloca is of zero bytes (which is perfectly legal) we bump it up to
  // one byte.  This is unnecessary, but I really don't want to break any
  // fragile logic in this code.  FIXME.
  if (tsize == 0)
    tsize = 1;


  // Put the variable in the dynamically sized area of the frame if either:
  // (a) The offset is too large to use as an immediate in load/stores
  //     (check LDX because all load/stores have the same-size immed. field).
  // (b) The object is "large", so it could cause many other locals,
  //     spills, and temporaries to have large offsets.
  //     NOTE: We use LARGE = 8 * argSlotSize = 64 bytes.
  // You've gotta love having only 13 bits for constant offset values :-|.
  // 
  unsigned paddedSize;
  int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result,
                                                                paddedSize,
                                                         tsize * numElements);

  if (((int)paddedSize) > 8 * target.getFrameInfo().getSizeOfEachArgOnStack() ||
      ! target.getInstrInfo().constantFitsInImmedField(V9::LDXi,offsetFromFP)) {
    CreateCodeForVariableSizeAlloca(target, result, tsize, 
				    ConstantSInt::get(Type::IntTy,numElements),
				    getMvec);
    return;
  }
  
  // else offset fits in immediate field so go ahead and allocate it.
  offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements);
  
  // Create a temporary Value to hold the constant offset.
  // This is needed because it may not fit in the immediate field.
  ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
  
  // Instruction 1: add %fp, offsetFromFP -> result
  unsigned FPReg = target.getRegInfo().getFramePointer();
  getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal)
                    .addRegDef(result));
}


//------------------------------------------------------------------------ 
// Function SetOperandsForMemInstr
//
// Choose addressing mode for the given load or store instruction.
// Use [reg+reg] if it is an indexed reference, and the index offset is
//		 not a constant or if it cannot fit in the offset field.
// Use [reg+offset] in all other cases.
// 
// This assumes that all array refs are "lowered" to one of these forms:
//	%x = load (subarray*) ptr, constant	; single constant offset
//	%x = load (subarray*) ptr, offsetVal	; single non-constant offset
// Generally, this should happen via strength reduction + LICM.
// Also, strength reduction should take care of using the same register for
// the loop index variable and an array index, when that is profitable.
//------------------------------------------------------------------------ 

static void
SetOperandsForMemInstr(unsigned Opcode,
                       std::vector<MachineInstr*>& mvec,
                       InstructionNode* vmInstrNode,
                       const TargetMachine& target)
{
  Instruction* memInst = vmInstrNode->getInstruction();
  // Index vector, ptr value, and flag if all indices are const.
  std::vector<Value*> idxVec;
  bool allConstantIndices;
  Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices);

  // Now create the appropriate operands for the machine instruction.
  // First, initialize so we default to storing the offset in a register.
  int64_t smallConstOffset = 0;
  Value* valueForRegOffset = NULL;
  MachineOperand::MachineOperandType offsetOpType =
    MachineOperand::MO_VirtualRegister;

  // Check if there is an index vector and if so, compute the
  // right offset for structures and for arrays 
  // 
  if (!idxVec.empty()) {
    const PointerType* ptrType = cast<PointerType>(ptrVal->getType());
      
    // If all indices are constant, compute the combined offset directly.
    if (allConstantIndices) {
      // Compute the offset value using the index vector. Create a
      // virtual reg. for it since it may not fit in the immed field.
      uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec);
      valueForRegOffset = ConstantSInt::get(Type::LongTy, offset);
    } else {
      // There is at least one non-constant offset.  Therefore, this must
      // be an array ref, and must have been lowered to a single non-zero
      // offset.  (An extra leading zero offset, if any, can be ignored.)
      // Generate code sequence to compute address from index.
      // 
      bool firstIdxIsZero = IsZero(idxVec[0]);
      assert(idxVec.size() == 1U + firstIdxIsZero 
             && "Array refs must be lowered before Instruction Selection");

      Value* idxVal = idxVec[firstIdxIsZero];

      std::vector<MachineInstr*> mulVec;
      Instruction* addr =
        new TmpInstruction(MachineCodeForInstruction::get(memInst),
                           Type::ULongTy, memInst);

      // Get the array type indexed by idxVal, and compute its element size.
      // The call to getTypeSize() will fail if size is not constant.
      const Type* vecType = (firstIdxIsZero
                             ? GetElementPtrInst::getIndexedType(ptrType,
                                           std::vector<Value*>(1U, idxVec[0]),
                                           /*AllowCompositeLeaf*/ true)
                                 : ptrType);
      const Type* eltType = cast<SequentialType>(vecType)->getElementType();
      ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy,
                                   target.getTargetData().getTypeSize(eltType));

      // CreateMulInstruction() folds constants intelligently enough.
      CreateMulInstruction(target, memInst->getParent()->getParent(),
                           idxVal,         /* lval, not likely to be const*/
                           eltSizeVal,     /* rval, likely to be constant */
                           addr,           /* result */
                           mulVec, MachineCodeForInstruction::get(memInst),
                           -1);

      assert(mulVec.size() > 0 && "No multiply code created?");
      mvec.insert(mvec.end(), mulVec.begin(), mulVec.end());
      
      valueForRegOffset = addr;
    }
  } else {
    offsetOpType = MachineOperand::MO_SignExtendedImmed;
    smallConstOffset = 0;
  }

  // For STORE:
  //   Operand 0 is value, operand 1 is ptr, operand 2 is offset
  // For LOAD or GET_ELEMENT_PTR,
  //   Operand 0 is ptr, operand 1 is offset, operand 2 is result.
  // 
  unsigned offsetOpNum, ptrOpNum;
  MachineInstr *MI;
  if (memInst->getOpcode() == Instruction::Store) {
    if (offsetOpType == MachineOperand::MO_VirtualRegister) {
      MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
                             .addReg(ptrVal).addReg(valueForRegOffset);
    } else {
      Opcode = convertOpcodeFromRegToImm(Opcode);
      MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
                             .addReg(ptrVal).addSImm(smallConstOffset);
    }
  } else {
    if (offsetOpType == MachineOperand::MO_VirtualRegister) {
      MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset)
                             .addRegDef(memInst);
    } else {
      Opcode = convertOpcodeFromRegToImm(Opcode);
      MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset)
                             .addRegDef(memInst);
    }
  }
  mvec.push_back(MI);
}


// 
// Substitute operand `operandNum' of the instruction in node `treeNode'
// in place of the use(s) of that instruction in node `parent'.
// Check both explicit and implicit operands!
// Also make sure to skip over a parent who:
// (1) is a list node in the Burg tree, or
// (2) itself had its results forwarded to its parent
// 
static void
ForwardOperand(InstructionNode* treeNode,
               InstrTreeNode*   parent,
               int operandNum)
{
  assert(treeNode && parent && "Invalid invocation of ForwardOperand");
  
  Instruction* unusedOp = treeNode->getInstruction();
  Value* fwdOp = unusedOp->getOperand(operandNum);

  // The parent itself may be a list node, so find the real parent instruction
  while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
    {
      parent = parent->parent();
      assert(parent && "ERROR: Non-instruction node has no parent in tree.");
    }
  InstructionNode* parentInstrNode = (InstructionNode*) parent;
  
  Instruction* userInstr = parentInstrNode->getInstruction();
  MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr);

  // The parent's mvec would be empty if it was itself forwarded.
  // Recursively call ForwardOperand in that case...
  //
  if (mvec.size() == 0) {
    assert(parent->parent() != NULL &&
           "Parent could not have been forwarded, yet has no instructions?");
    ForwardOperand(treeNode, parent->parent(), operandNum);
  } else {
    for (unsigned i=0, N=mvec.size(); i < N; i++) {
      MachineInstr* minstr = mvec[i];
      for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) {
        const MachineOperand& mop = minstr->getOperand(i);
        if (mop.getType() == MachineOperand::MO_VirtualRegister &&
            mop.getVRegValue() == unusedOp)
        {
          minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister,
                                       fwdOp);
        }
      }
          
      for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i)
        if (minstr->getImplicitRef(i) == unusedOp)
          minstr->setImplicitRef(i, fwdOp);
    }
  }
}


inline bool
AllUsesAreBranches(const Instruction* setccI)
{
  for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end();
       UI != UE; ++UI)
    if (! isa<TmpInstruction>(*UI)     // ignore tmp instructions here
        && cast<Instruction>(*UI)->getOpcode() != Instruction::Br)
      return false;
  return true;
}

// Generate code for any intrinsic that needs a special code sequence
// instead of a regular call.  If not that kind of intrinsic, do nothing.
// Returns true if code was generated, otherwise false.
// 
static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr,
                             TargetMachine &target,
                             std::vector<MachineInstr*>& mvec) {
  switch (iid) {
  default:
    assert(0 && "Unknown intrinsic function call should have been lowered!");
  case Intrinsic::vastart: {
    // Get the address of the first incoming vararg argument on the stack
    bool ignore;
    Function* func = cast<Function>(callInstr.getParent()->getParent());
    int numFixedArgs   = func->getFunctionType()->getNumParams();
    int fpReg          = target.getFrameInfo().getIncomingArgBaseRegNum();
    int argSize        = target.getFrameInfo().getSizeOfEachArgOnStack();
    int firstVarArgOff = numFixedArgs * argSize + target.getFrameInfo().
      getFirstIncomingArgOffset(MachineFunction::get(func), ignore);
    mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff).
                   addRegDef(&callInstr));
    return true;
  }

  case Intrinsic::vaend:
    return true;                        // no-op on SparcV9

  case Intrinsic::vacopy:
    // Simple copy of current va_list (arg1) to new va_list (result)
    mvec.push_back(BuildMI(V9::ORr, 3).
                   addMReg(target.getRegInfo().getZeroRegNum()).
                   addReg(callInstr.getOperand(1)).
                   addRegDef(&callInstr));
    return true;
  }
}

//******************* Externally Visible Functions *************************/

//------------------------------------------------------------------------ 
// External Function: ThisIsAChainRule
//
// Purpose:
//   Check if a given BURG rule is a chain rule.
//------------------------------------------------------------------------ 

extern bool
ThisIsAChainRule(int eruleno)
{
  switch(eruleno)
    {
    case 111:	// stmt:  reg
    case 123:
    case 124:
    case 125:
    case 126:
    case 127:
    case 128:
    case 129:
    case 130:
    case 131:
    case 132:
    case 133:
    case 155:
    case 221:
    case 222:
    case 241:
    case 242:
    case 243:
    case 244:
    case 245:
    case 321:
      return true; break;

    default:
      return false; break;
    }
}


//------------------------------------------------------------------------ 
// External Function: GetInstructionsByRule
//
// Purpose:
//   Choose machine instructions for the SPARC according to the
//   patterns chosen by the BURG-generated parser.
//------------------------------------------------------------------------ 

void
GetInstructionsByRule(InstructionNode* subtreeRoot,
                      int ruleForNode,
                      short* nts,
                      TargetMachine &target,
                      std::vector<MachineInstr*>& mvec)
{
  bool checkCast = false;		// initialize here to use fall-through
  bool maskUnsignedResult = false;
  int nextRule;
  int forwardOperandNum = -1;
  unsigned allocaSize = 0;
  MachineInstr* M, *M2;
  unsigned L;
  bool foldCase = false;

  mvec.clear(); 
  
  // If the code for this instruction was folded into the parent (user),
  // then do nothing!
  if (subtreeRoot->isFoldedIntoParent())
    return;
  
  // 
  // Let's check for chain rules outside the switch so that we don't have
  // to duplicate the list of chain rule production numbers here again
  // 
  if (ThisIsAChainRule(ruleForNode)) {
    // Chain rules have a single nonterminal on the RHS.
    // Get the rule that matches the RHS non-terminal and use that instead.
    // 
    assert(nts[0] && ! nts[1]
           && "A chain rule should have only one RHS non-terminal!");
    nextRule = burm_rule(subtreeRoot->state, nts[0]);
    nts = burm_nts[nextRule];
    GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec);
  } else {
    switch(ruleForNode) {
      case 1:   // stmt:   Ret
      case 2:   // stmt:   RetValue(reg)
      {         // NOTE: Prepass of register allocation is responsible
                //	 for moving return value to appropriate register.
                // Copy the return value to the required return register.
                // Mark the return Value as an implicit ref of the RET instr..
                // Mark the return-address register as a hidden virtual reg.
         	// Finally put a NOP in the delay slot.
        ReturnInst *returnInstr=cast<ReturnInst>(subtreeRoot->getInstruction());
        Value* retVal = returnInstr->getReturnValue();
        MachineCodeForInstruction& mcfi =
          MachineCodeForInstruction::get(returnInstr);

        // Create a hidden virtual reg to represent the return address register
        // used by the machine instruction but not represented in LLVM.
        // 
        Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr);

        MachineInstr* retMI = 
          BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8)
          .addMReg(target.getRegInfo().getZeroRegNum(), MachineOperand::Def);
      
        // If there is a value to return, we need to:
        // (a) Sign-extend the value if it is smaller than 8 bytes (reg size)
        // (b) Insert a copy to copy the return value to the appropriate reg.
        //     -- For FP values, create a FMOVS or FMOVD instruction
        //     -- For non-FP values, create an add-with-0 instruction
        // 
        if (retVal != NULL) {
          const SparcV9RegInfo& regInfo =
            (SparcV9RegInfo&) target.getRegInfo();
          const Type* retType = retVal->getType();
          unsigned regClassID = regInfo.getRegClassIDOfType(retType);
          unsigned retRegNum = (retType->isFloatingPoint()
                                ? (unsigned) SparcV9FloatRegClass::f0
                                : (unsigned) SparcV9IntRegClass::i0);
          retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum);

          // () Insert sign-extension instructions for small signed values.
          // 
          Value* retValToUse = retVal;
          if (retType->isIntegral() && retType->isSigned()) {
            unsigned retSize = target.getTargetData().getTypeSize(retType);
            if (retSize <= 4) {
              // create a temporary virtual reg. to hold the sign-extension
              retValToUse = new TmpInstruction(mcfi, retVal);

              // sign-extend retVal and put the result in the temporary reg.
              target.getInstrInfo().CreateSignExtensionInstructions
                (target, returnInstr->getParent()->getParent(),
                 retVal, retValToUse, 8*retSize, mvec, mcfi);
            }
          }

          // (b) Now, insert a copy to to the appropriate register:
          //     -- For FP values, create a FMOVS or FMOVD instruction
          //     -- For non-FP values, create an add-with-0 instruction
          // 
          // First, create a virtual register to represent the register and
          // mark this vreg as being an implicit operand of the ret MI.
          TmpInstruction* retVReg = 
            new TmpInstruction(mcfi, retValToUse, NULL, "argReg");
          
          retMI->addImplicitRef(retVReg);
          
          if (retType->isFloatingPoint())
            M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
                 .addReg(retValToUse).addReg(retVReg, MachineOperand::Def));
          else
            M = (BuildMI(ChooseAddInstructionByType(retType), 3)
                 .addReg(retValToUse).addSImm((int64_t) 0)
                 .addReg(retVReg, MachineOperand::Def));

          // Mark the operand with the register it should be assigned
          M->SetRegForOperand(M->getNumOperands()-1, retRegNum);
          retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum);

          mvec.push_back(M);
        }
        
        // Now insert the RET instruction and a NOP for the delay slot
        mvec.push_back(retMI);
        mvec.push_back(BuildMI(V9::NOP, 0));
        
        break;
      }  
        
      case 3:	// stmt:   Store(reg,reg)
      case 4:	// stmt:   Store(reg,ptrreg)
        SetOperandsForMemInstr(ChooseStoreInstruction(
                        subtreeRoot->leftChild()->getValue()->getType()),
                               mvec, subtreeRoot, target);
        break;

      case 5:	// stmt:   BrUncond
        {
          BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
          mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0)));
        
          // delay slot
          mvec.push_back(BuildMI(V9::NOP, 0));
          break;
        }

      case 206:	// stmt:   BrCond(setCCconst)
      { // setCCconst => boolean was computed with `%b = setCC type reg1 const'
        // If the constant is ZERO, we can use the branch-on-integer-register
        // instructions and avoid the SUBcc instruction entirely.
        // Otherwise this is just the same as case 5, so just fall through.
        // 
        InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
        assert(constNode &&
               constNode->getNodeType() ==InstrTreeNode::NTConstNode);
        Constant *constVal = cast<Constant>(constNode->getValue());
        bool isValidConst;
        
        if ((constVal->getType()->isInteger()
             || isa<PointerType>(constVal->getType()))
            && target.getInstrInfo().ConvertConstantToIntType(target,
                             constVal, constVal->getType(), isValidConst) == 0
            && isValidConst)
          {
            // That constant is a zero after all...
            // Use the left child of setCC as the first argument!
            // Mark the setCC node so that no code is generated for it.
            InstructionNode* setCCNode = (InstructionNode*)
                                         subtreeRoot->leftChild();
            assert(setCCNode->getOpLabel() == SetCCOp);
            setCCNode->markFoldedIntoParent();
            
            BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
            
            M = BuildMI(ChooseBprInstruction(subtreeRoot), 2)
                                .addReg(setCCNode->leftChild()->getValue())
                                .addPCDisp(brInst->getSuccessor(0));
            mvec.push_back(M);
            
            // delay slot
            mvec.push_back(BuildMI(V9::NOP, 0));

            // false branch
            mvec.push_back(BuildMI(V9::BA, 1)
                           .addPCDisp(brInst->getSuccessor(1)));
            
            // delay slot
            mvec.push_back(BuildMI(V9::NOP, 0));
            break;
          }
        // ELSE FALL THROUGH
      }

      case 6:	// stmt:   BrCond(setCC)
      { // bool => boolean was computed with SetCC.
        // The branch to use depends on whether it is FP, signed, or unsigned.
        // If it is an integer CC, we also need to find the unique
        // TmpInstruction representing that CC.
        // 
        BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
        const Type* setCCType;
        unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType);
        Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
                                     brInst->getParent()->getParent(),
                                     setCCType,
                                     MachineCodeForInstruction::get(brInst));
        M = BuildMI(Opcode, 2).addCCReg(ccValue)
                              .addPCDisp(brInst->getSuccessor(0));
        mvec.push_back(M);

        // delay slot
        mvec.push_back(BuildMI(V9::NOP, 0));

        // false branch
        mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1)));

        // delay slot
        mvec.push_back(BuildMI(V9::NOP, 0));
        break;
      }
        
      case 208:	// stmt:   BrCond(boolconst)
      {
        // boolconst => boolean is a constant; use BA to first or second label
        Constant* constVal = 
          cast<Constant>(subtreeRoot->leftChild()->getValue());
        unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
        
        M = BuildMI(V9::BA, 1).addPCDisp(
          cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest));
        mvec.push_back(M);
        
        // delay slot
        mvec.push_back(BuildMI(V9::NOP, 0));
        break;
      }
        
      case   8:	// stmt:   BrCond(boolreg)
      { // boolreg   => boolean is recorded in an integer register.
        //              Use branch-on-integer-register instruction.
        // 
        BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
        M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue())
          .addPCDisp(BI->getSuccessor(0));
        mvec.push_back(M);

        // delay slot
        mvec.push_back(BuildMI(V9::NOP, 0));

        // false branch
        mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1)));
        
        // delay slot
        mvec.push_back(BuildMI(V9::NOP, 0));
        break;
      }  
      
      case 9:	// stmt:   Switch(reg)
        assert(0 && "*** SWITCH instruction is not implemented yet.");
        break;

      case 10:	// reg:   VRegList(reg, reg)
        assert(0 && "VRegList should never be the topmost non-chain rule");
        break;

      case 21:	// bool:  Not(bool,reg): Compute with a conditional-move-on-reg
      { // First find the unary operand. It may be left or right, usually right.
        Instruction* notI = subtreeRoot->getInstruction();
        Value* notArg = BinaryOperator::getNotArgument(
                           cast<BinaryOperator>(subtreeRoot->getInstruction()));
        unsigned ZeroReg = target.getRegInfo().getZeroRegNum();

        // Unconditionally set register to 0
        mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI));

        // Now conditionally move 1 into the register.
        // Mark the register as a use (as well as a def) because the old
        // value will be retained if the condition is false.
        mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1)
                       .addReg(notI, MachineOperand::UseAndDef));

        break;
      }

      case 421:	// reg:   BNot(reg,reg): Compute as reg = reg XOR-NOT 0
      { // First find the unary operand. It may be left or right, usually right.
        Value* notArg = BinaryOperator::getNotArgument(
                           cast<BinaryOperator>(subtreeRoot->getInstruction()));
        unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
        mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg)
                                       .addRegDef(subtreeRoot->getValue()));
        break;
      }

      case 322:	// reg:   Not(tobool, reg):
        // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool
        foldCase = true;
        // Just fall through!

      case 22:	// reg:   ToBoolTy(reg):
      {
        Instruction* castI = subtreeRoot->getInstruction();
        Value* opVal = subtreeRoot->leftChild()->getValue();
        assert(opVal->getType()->isIntegral() ||
               isa<PointerType>(opVal->getType()));

        // Unconditionally set register to 0
        mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI));

        // Now conditionally move 1 into the register.
        // Mark the register as a use (as well as a def) because the old
        // value will be retained if the condition is false.
        MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi;
        mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1)
                       .addReg(castI, MachineOperand::UseAndDef));

        break;
      }
      
      case 23:	// reg:   ToUByteTy(reg)
      case 24:	// reg:   ToSByteTy(reg)
      case 25:	// reg:   ToUShortTy(reg)
      case 26:	// reg:   ToShortTy(reg)
      case 27:	// reg:   ToUIntTy(reg)
      case 28:	// reg:   ToIntTy(reg)
      case 29:	// reg:   ToULongTy(reg)
      case 30:	// reg:   ToLongTy(reg)
      {
        //======================================================================
        // Rules for integer conversions:
        // 
        //--------
        // From ISO 1998 C++ Standard, Sec. 4.7:
        //
        // 2. If the destination type is unsigned, the resulting value is
        // the least unsigned integer congruent to the source integer
        // (modulo 2n where n is the number of bits used to represent the
        // unsigned type). [Note: In a two s complement representation,
        // this conversion is conceptual and there is no change in the
        // bit pattern (if there is no truncation). ]
        // 
        // 3. If the destination type is signed, the value is unchanged if
        // it can be represented in the destination type (and bitfield width);
        // otherwise, the value is implementation-defined.
        //--------
        // 
        // Since we assume 2s complement representations, this implies:
        // 
        // -- If operand is smaller than destination, zero-extend or sign-extend
        //    according to the signedness of the *operand*: source decides:
        //    (1) If operand is signed, sign-extend it.
        //        If dest is unsigned, zero-ext the result!
        //    (2) If operand is unsigned, our current invariant is that
        //        it's high bits are correct, so zero-extension is not needed.
        // 
        // -- If operand is same size as or larger than destination,
        //    zero-extend or sign-extend according to the signedness of
        //    the *destination*: destination decides:
        //    (1) If destination is signed, sign-extend (truncating if needed)
        //        This choice is implementation defined.  We sign-extend the
        //        operand, which matches both Sun's cc and gcc3.2.
        //    (2) If destination is unsigned, zero-extend (truncating if needed)
        //======================================================================

        Instruction* destI =  subtreeRoot->getInstruction();
        Function* currentFunc = destI->getParent()->getParent();
        MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI);

        Value* opVal = subtreeRoot->leftChild()->getValue();
        const Type* opType = opVal->getType();
        const Type* destType = destI->getType();
        unsigned opSize   = target.getTargetData().getTypeSize(opType);
        unsigned destSize = target.getTargetData().getTypeSize(destType);
        
        bool isIntegral = opType->isIntegral() || isa<PointerType>(opType);

        if (opType == Type::BoolTy ||
            opType == destType ||
            isIntegral && opSize == destSize && opSize == 8) {
          // nothing to do in all these cases
          forwardOperandNum = 0;          // forward first operand to user

        } else if (opType->isFloatingPoint()) {

          CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi);
          if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy)
            maskUnsignedResult = true; // not handled by fp->int code

        } else if (isIntegral) {

          bool opSigned     = opType->isSigned();
          bool destSigned   = destType->isSigned();
          unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize);

          assert(! (opSize == destSize && opSigned == destSigned) &&
                 "How can different int types have same size and signedness?");

          bool signExtend = (opSize <  destSize && opSigned ||
                             opSize >= destSize && destSigned);

          bool signAndZeroExtend = (opSize < destSize && destSize < 8u &&
                                    opSigned && !destSigned);
          assert(!signAndZeroExtend || signExtend);

          bool zeroExtendOnly = opSize >= destSize && !destSigned;
          assert(!zeroExtendOnly || !signExtend);

          if (signExtend) {
            Value* signExtDest = (signAndZeroExtend
                                  ? new TmpInstruction(mcfi, destType, opVal)
                                  : destI);

            target.getInstrInfo().CreateSignExtensionInstructions
              (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi);

            if (signAndZeroExtend)
              target.getInstrInfo().CreateZeroExtensionInstructions
              (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi);
          }
          else if (zeroExtendOnly) {
            target.getInstrInfo().CreateZeroExtensionInstructions
              (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi);
          }
          else
            forwardOperandNum = 0;          // forward first operand to user

        } else
          assert(0 && "Unrecognized operand type for convert-to-integer");

        break;
      }
      
      case  31:	// reg:   ToFloatTy(reg):
      case  32:	// reg:   ToDoubleTy(reg):
      case 232:	// reg:   ToDoubleTy(Constant):
      
        // If this instruction has a parent (a user) in the tree 
        // and the user is translated as an FsMULd instruction,
        // then the cast is unnecessary.  So check that first.
        // In the future, we'll want to do the same for the FdMULq instruction,
        // so do the check here instead of only for ToFloatTy(reg).
        // 
        if (subtreeRoot->parent() != NULL) {
          const MachineCodeForInstruction& mcfi =
            MachineCodeForInstruction::get(
                cast<InstructionNode>(subtreeRoot->parent())->getInstruction());
          if (mcfi.size() == 0 || mcfi.front()->getOpcode() == V9::FSMULD)
            forwardOperandNum = 0;    // forward first operand to user
        }

        if (forwardOperandNum != 0) {    // we do need the cast
          Value* leftVal = subtreeRoot->leftChild()->getValue();
          const Type* opType = leftVal->getType();
          MachineOpCode opCode=ChooseConvertToFloatInstr(target,
                                       subtreeRoot->getOpLabel(), opType);
          if (opCode == V9::NOP) {      // no conversion needed
            forwardOperandNum = 0;      // forward first operand to user
          } else {
            // If the source operand is a non-FP type it must be
            // first copied from int to float register via memory!
            Instruction *dest = subtreeRoot->getInstruction();
            Value* srcForCast;
            int n = 0;
            if (! opType->isFloatingPoint()) {
              // Create a temporary to represent the FP register
              // into which the integer will be copied via memory.
              // The type of this temporary will determine the FP
              // register used: single-prec for a 32-bit int or smaller,
              // double-prec for a 64-bit int.
              // 
              uint64_t srcSize =
                target.getTargetData().getTypeSize(leftVal->getType());
              Type* tmpTypeToUse =
                (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
              MachineCodeForInstruction &destMCFI = 
                MachineCodeForInstruction::get(dest);
              srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest);

              target.getInstrInfo().CreateCodeToCopyIntToFloat(target,
                         dest->getParent()->getParent(),
                         leftVal, cast<Instruction>(srcForCast),
                         mvec, destMCFI);
            } else
              srcForCast = leftVal;

            M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest);
            mvec.push_back(M);
          }
        }
        break;

      case 19:	// reg:   ToArrayTy(reg):
      case 20:	// reg:   ToPointerTy(reg):
        forwardOperandNum = 0;          // forward first operand to user
        break;

      case 233:	// reg:   Add(reg, Constant)
        maskUnsignedResult = true;
        M = CreateAddConstInstruction(subtreeRoot);
        if (M != NULL) {
          mvec.push_back(M);
          break;
        }
        // ELSE FALL THROUGH
        
      case 33:	// reg:   Add(reg, reg)
        maskUnsignedResult = true;
        Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec);
        break;

      case 234:	// reg:   Sub(reg, Constant)
        maskUnsignedResult = true;
        M = CreateSubConstInstruction(subtreeRoot);
        if (M != NULL) {
          mvec.push_back(M);
          break;
        }
        // ELSE FALL THROUGH
        
      case 34:	// reg:   Sub(reg, reg)
        maskUnsignedResult = true;
        Add3OperandInstr(ChooseSubInstructionByType(
                                   subtreeRoot->getInstruction()->getType()),
                         subtreeRoot, mvec);
        break;

      case 135:	// reg:   Mul(todouble, todouble)
        checkCast = true;
        // FALL THROUGH 

      case 35:	// reg:   Mul(reg, reg)
      {
        maskUnsignedResult = true;
        MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
                                 ? (MachineOpCode)V9::FSMULD
                                 : -1);
        Instruction* mulInstr = subtreeRoot->getInstruction();
        CreateMulInstruction(target, mulInstr->getParent()->getParent(),
                             subtreeRoot->leftChild()->getValue(),
                             subtreeRoot->rightChild()->getValue(),
                             mulInstr, mvec,
                             MachineCodeForInstruction::get(mulInstr),forceOp);
        break;
      }
      case 335:	// reg:   Mul(todouble, todoubleConst)
        checkCast = true;
        // FALL THROUGH 

      case 235:	// reg:   Mul(reg, Constant)
      {
        maskUnsignedResult = true;
        MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
                                 ? (MachineOpCode)V9::FSMULD
                                 : -1);
        Instruction* mulInstr = subtreeRoot->getInstruction();
        CreateMulInstruction(target, mulInstr->getParent()->getParent(),
                             subtreeRoot->leftChild()->getValue(),
                             subtreeRoot->rightChild()->getValue(),
                             mulInstr, mvec,
                             MachineCodeForInstruction::get(mulInstr),
                             forceOp);
        break;
      }
      case 236:	// reg:   Div(reg, Constant)
        maskUnsignedResult = true;
        L = mvec.size();
        CreateDivConstInstruction(target, subtreeRoot, mvec);
        if (mvec.size() > L)
          break;
        // ELSE FALL THROUGH
      
      case 36:	// reg:   Div(reg, reg)
      {
        maskUnsignedResult = true;

        // If either operand of divide is smaller than 64 bits, we have
        // to make sure the unused top bits are correct because they affect
        // the result.  These bits are already correct for unsigned values.
        // They may be incorrect for signed values, so sign extend to fill in.
        Instruction* divI = subtreeRoot->getInstruction();
        Value* divOp1 = subtreeRoot->leftChild()->getValue();
        Value* divOp2 = subtreeRoot->rightChild()->getValue();
        Value* divOp1ToUse = divOp1;
        Value* divOp2ToUse = divOp2;
        if (divI->getType()->isSigned()) {
          unsigned opSize=target.getTargetData().getTypeSize(divI->getType());
          if (opSize < 8) {
            MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI);
            divOp1ToUse = new TmpInstruction(mcfi, divOp1);
            divOp2ToUse = new TmpInstruction(mcfi, divOp2);
            target.getInstrInfo().
              CreateSignExtensionInstructions(target,
                                              divI->getParent()->getParent(),
                                              divOp1, divOp1ToUse,
                                              8*opSize, mvec, mcfi);
            target.getInstrInfo().
              CreateSignExtensionInstructions(target,
                                              divI->getParent()->getParent(),
                                              divOp2, divOp2ToUse,
                                              8*opSize, mvec, mcfi);
          }
        }

        mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
                       .addReg(divOp1ToUse)
                       .addReg(divOp2ToUse)
                       .addRegDef(divI));

        break;
      }

      case  37:	// reg:   Rem(reg, reg)
      case 237:	// reg:   Rem(reg, Constant)
      {
        maskUnsignedResult = true;

        Instruction* remI   = subtreeRoot->getInstruction();
        Value* divOp1 = subtreeRoot->leftChild()->getValue();
        Value* divOp2 = subtreeRoot->rightChild()->getValue();

        MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI);
        
        // If second operand of divide is smaller than 64 bits, we have
        // to make sure the unused top bits are correct because they affect
        // the result.  These bits are already correct for unsigned values.
        // They may be incorrect for signed values, so sign extend to fill in.
        // 
        Value* divOpToUse = divOp2;
        if (divOp2->getType()->isSigned()) {
          unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType());
          if (opSize < 8) {
            divOpToUse = new TmpInstruction(mcfi, divOp2);
            target.getInstrInfo().
              CreateSignExtensionInstructions(target,
                                              remI->getParent()->getParent(),
                                              divOp2, divOpToUse,
                                              8*opSize, mvec, mcfi);
          }
        }

        // Now compute: result = rem V1, V2 as:
        //      result = V1 - (V1 / signExtend(V2)) * signExtend(V2)
        // 
        TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse);
        TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse);

        mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
                       .addReg(divOp1).addReg(divOpToUse).addRegDef(quot));
        
        mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3)
                       .addReg(quot).addReg(divOpToUse).addRegDef(prod));
        
        mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3)
                       .addReg(divOp1).addReg(prod).addRegDef(remI));
        
        break;
      }
      
      case  38:	// bool:   And(bool, bool)
      case 138:	// bool:   And(bool, not)
      case 238:	// bool:   And(bool, boolconst)
      case 338:	// reg :   BAnd(reg, reg)
      case 538:	// reg :   BAnd(reg, Constant)
        Add3OperandInstr(V9::ANDr, subtreeRoot, mvec);
        break;

      case 438:	// bool:   BAnd(bool, bnot)
      { // Use the argument of NOT as the second argument!
        // Mark the NOT node so that no code is generated for it.
        // If the type is boolean, set 1 or 0 in the result register.
        InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
        Value* notArg = BinaryOperator::getNotArgument(
                           cast<BinaryOperator>(notNode->getInstruction()));
        notNode->markFoldedIntoParent();
        Value *lhs = subtreeRoot->leftChild()->getValue();
        Value *dest = subtreeRoot->getValue();
        mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg)
                                       .addReg(dest, MachineOperand::Def));

        if (notArg->getType() == Type::BoolTy) {
          // set 1 in result register if result of above is non-zero
          mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
                         .addReg(dest, MachineOperand::UseAndDef));
        }

        break;
      }

      case  39:	// bool:   Or(bool, bool)
      case 139:	// bool:   Or(bool, not)
      case 239:	// bool:   Or(bool, boolconst)
      case 339:	// reg :   BOr(reg, reg)
      case 539:	// reg :   BOr(reg, Constant)
        Add3OperandInstr(V9::ORr, subtreeRoot, mvec);
        break;

      case 439:	// bool:   BOr(bool, bnot)
      { // Use the argument of NOT as the second argument!
        // Mark the NOT node so that no code is generated for it.
        // If the type is boolean, set 1 or 0 in the result register.
        InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
        Value* notArg = BinaryOperator::getNotArgument(
                           cast<BinaryOperator>(notNode->getInstruction()));
        notNode->markFoldedIntoParent();
        Value *lhs = subtreeRoot->leftChild()->getValue();
        Value *dest = subtreeRoot->getValue();

        mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg)
                       .addReg(dest, MachineOperand::Def));

        if (notArg->getType() == Type::BoolTy) {
          // set 1 in result register if result of above is non-zero
          mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
                         .addReg(dest, MachineOperand::UseAndDef));
        }

        break;
      }

      case  40:	// bool:   Xor(bool, bool)
      case 140:	// bool:   Xor(bool, not)
      case 240:	// bool:   Xor(bool, boolconst)
      case 340:	// reg :   BXor(reg, reg)
      case 540:	// reg :   BXor(reg, Constant)
        Add3OperandInstr(V9::XORr, subtreeRoot, mvec);
        break;

      case 440:	// bool:   BXor(bool, bnot)
      { // Use the argument of NOT as the second argument!
        // Mark the NOT node so that no code is generated for it.
        // If the type is boolean, set 1 or 0 in the result register.
        InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
        Value* notArg = BinaryOperator::getNotArgument(
                           cast<BinaryOperator>(notNode->getInstruction()));
        notNode->markFoldedIntoParent();
        Value *lhs = subtreeRoot->leftChild()->getValue();
        Value *dest = subtreeRoot->getValue();
        mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg)
                       .addReg(dest, MachineOperand::Def));

        if (notArg->getType() == Type::BoolTy) {
          // set 1 in result register if result of above is non-zero
          mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
                         .addReg(dest, MachineOperand::UseAndDef));
        }
        break;
      }

      case 41:	// setCCconst:   SetCC(reg, Constant)
      { // Comparison is with a constant:
        // 
        // If the bool result must be computed into a register (see below),
        // and the constant is int ZERO, we can use the MOVR[op] instructions
        // and avoid the SUBcc instruction entirely.
        // Otherwise this is just the same as case 42, so just fall through.
        // 
        // The result of the SetCC must be computed and stored in a register if
        // it is used outside the current basic block (so it must be computed
        // as a boolreg) or it is used by anything other than a branch.
        // We will use a conditional move to do this.
        // 
        Instruction* setCCInstr = subtreeRoot->getInstruction();
        bool computeBoolVal = (subtreeRoot->parent() == NULL ||
                               ! AllUsesAreBranches(setCCInstr));

        if (computeBoolVal) {
          InstrTreeNode* constNode = subtreeRoot->rightChild();
          assert(constNode &&
                 constNode->getNodeType() ==InstrTreeNode::NTConstNode);
          Constant *constVal = cast<Constant>(constNode->getValue());
          bool isValidConst;
          
          if ((constVal->getType()->isInteger()
               || isa<PointerType>(constVal->getType()))
              && target.getInstrInfo().ConvertConstantToIntType(target,
                             constVal, constVal->getType(), isValidConst) == 0
              && isValidConst)
          {
            // That constant is an integer zero after all...
            // Use a MOVR[op] to compute the boolean result
            // Unconditionally set register to 0
            mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0)
                           .addRegDef(setCCInstr));
                
            // Now conditionally move 1 into the register.
            // Mark the register as a use (as well as a def) because the old
            // value will be retained if the condition is false.
            MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot);
            mvec.push_back(BuildMI(movOpCode, 3)
                           .addReg(subtreeRoot->leftChild()->getValue())
                           .addZImm(1)
                           .addReg(setCCInstr, MachineOperand::UseAndDef));
                
            break;
          }
        }
        // ELSE FALL THROUGH
      }

      case 42:	// bool:   SetCC(reg, reg):
      {
        // This generates a SUBCC instruction, putting the difference in a
        // result reg. if needed, and/or setting a condition code if needed.
        // 
        Instruction* setCCInstr = subtreeRoot->getInstruction();
        Value* leftVal  = subtreeRoot->leftChild()->getValue();
        Value* rightVal = subtreeRoot->rightChild()->getValue();
        const Type* opType = leftVal->getType();
        bool isFPCompare = opType->isFloatingPoint();
        
        // If the boolean result of the SetCC is used outside the current basic
        // block (so it must be computed as a boolreg) or is used by anything
        // other than a branch, the boolean must be computed and stored
        // in a result register.  We will use a conditional move to do this.
        // 
        bool computeBoolVal = (subtreeRoot->parent() == NULL ||
                               ! AllUsesAreBranches(setCCInstr));
        
        // A TmpInstruction is created to represent the CC "result".
        // Unlike other instances of TmpInstruction, this one is used
        // by machine code of multiple LLVM instructions, viz.,
        // the SetCC and the branch.  Make sure to get the same one!
        // Note that we do this even for FP CC registers even though they
        // are explicit operands, because the type of the operand
        // needs to be a floating point condition code, not an integer
        // condition code.  Think of this as casting the bool result to
        // a FP condition code register.
        // Later, we mark the 4th operand as being a CC register, and as a def.
        // 
        TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
                                    setCCInstr->getParent()->getParent(),
                                    leftVal->getType(),
                                    MachineCodeForInstruction::get(setCCInstr));

        // If the operands are signed values smaller than 4 bytes, then they
        // must be sign-extended in order to do a valid 32-bit comparison
        // and get the right result in the 32-bit CC register (%icc).
        // 
        Value* leftOpToUse  = leftVal;
        Value* rightOpToUse = rightVal;
        if (opType->isIntegral() && opType->isSigned()) {
          unsigned opSize = target.getTargetData().getTypeSize(opType);
          if (opSize < 4) {
            MachineCodeForInstruction& mcfi =
              MachineCodeForInstruction::get(setCCInstr); 

            // create temporary virtual regs. to hold the sign-extensions
            leftOpToUse  = new TmpInstruction(mcfi, leftVal);
            rightOpToUse = new TmpInstruction(mcfi, rightVal);
            
            // sign-extend each operand and put the result in the temporary reg.
            target.getInstrInfo().CreateSignExtensionInstructions
              (target, setCCInstr->getParent()->getParent(),
               leftVal, leftOpToUse, 8*opSize, mvec, mcfi);
            target.getInstrInfo().CreateSignExtensionInstructions
              (target, setCCInstr->getParent()->getParent(),
               rightVal, rightOpToUse, 8*opSize, mvec, mcfi);
          }
        }

        if (! isFPCompare) {
          // Integer condition: set CC and discard result.
          mvec.push_back(BuildMI(V9::SUBccr, 4)
                         .addReg(leftOpToUse)
                         .addReg(rightOpToUse)
                         .addMReg(target.getRegInfo()
                                   .getZeroRegNum(), MachineOperand::Def)
                         .addCCReg(tmpForCC, MachineOperand::Def));
        } else {
          // FP condition: dest of FCMP should be some FCCn register
          mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3)
                         .addCCReg(tmpForCC, MachineOperand::Def)
                         .addReg(leftOpToUse)
                         .addReg(rightOpToUse));
        }
        
        if (computeBoolVal) {
          MachineOpCode movOpCode = (isFPCompare
                                     ? ChooseMovFpcciInstruction(subtreeRoot)
                                     : ChooseMovpcciForSetCC(subtreeRoot));

          // Unconditionally set register to 0
          M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr);
          mvec.push_back(M);
          
          // Now conditionally move 1 into the register.
          // Mark the register as a use (as well as a def) because the old
          // value will be retained if the condition is false.
          M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1)
               .addReg(setCCInstr, MachineOperand::UseAndDef));
          mvec.push_back(M);
        }
        break;
      }    
      
      case 51:	// reg:   Load(reg)
      case 52:	// reg:   Load(ptrreg)
        SetOperandsForMemInstr(ChooseLoadInstruction(
                                   subtreeRoot->getValue()->getType()),
                               mvec, subtreeRoot, target);
        break;

      case 55:	// reg:   GetElemPtr(reg)
      case 56:	// reg:   GetElemPtrIdx(reg,reg)
        // If the GetElemPtr was folded into the user (parent), it will be
        // caught above.  For other cases, we have to compute the address.
        SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target);
        break;

      case 57:	// reg:  Alloca: Implement as 1 instruction:
      {         //	    add %fp, offsetFromFP -> result
        AllocationInst* instr =
          cast<AllocationInst>(subtreeRoot->getInstruction());
        unsigned tsize =
          target.getTargetData().getTypeSize(instr->getAllocatedType());
        assert(tsize != 0);
        CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec);
        break;
      }

      case 58:	// reg:   Alloca(reg): Implement as 3 instructions:
                //	mul num, typeSz -> tmp
                //	sub %sp, tmp    -> %sp
      {         //	add %sp, frameSizeBelowDynamicArea -> result
        AllocationInst* instr =
          cast<AllocationInst>(subtreeRoot->getInstruction());
        const Type* eltType = instr->getAllocatedType();
        
        // If #elements is constant, use simpler code for fixed-size allocas
        int tsize = (int) target.getTargetData().getTypeSize(eltType);
        Value* numElementsVal = NULL;
        bool isArray = instr->isArrayAllocation();
        
        if (!isArray || isa<Constant>(numElementsVal = instr->getArraySize())) {
          // total size is constant: generate code for fixed-size alloca
          unsigned numElements = isArray? 
            cast<ConstantUInt>(numElementsVal)->getValue() : 1;
          CreateCodeForFixedSizeAlloca(target, instr, tsize,
                                       numElements, mvec);
        } else {
          // total size is not constant.
          CreateCodeForVariableSizeAlloca(target, instr, tsize,
                                          numElementsVal, mvec);
        }
        break;
      }

      case 61:	// reg:   Call
      {         // Generate a direct (CALL) or indirect (JMPL) call.
                // Mark the return-address register, the indirection
                // register (for indirect calls), the operands of the Call,
                // and the return value (if any) as implicit operands
                // of the machine instruction.
                // 
                // If this is a varargs function, floating point arguments
                // have to passed in integer registers so insert
                // copy-float-to-int instructions for each float operand.
                // 
        CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
        Value *callee = callInstr->getCalledValue();
        Function* calledFunc = dyn_cast<Function>(callee);

        // Check if this is an intrinsic function that needs a special code
        // sequence (e.g., va_start).  Indirect calls cannot be special.
        // 
        bool specialIntrinsic = false;
        Intrinsic::ID iid;
        if (calledFunc && (iid=(Intrinsic::ID)calledFunc->getIntrinsicID()))
          specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec);

        // If not, generate the normal call sequence for the function.
        // This can also handle any intrinsics that are just function calls.
        // 
        if (! specialIntrinsic) {
          Function* currentFunc = callInstr->getParent()->getParent();
          MachineFunction& MF = MachineFunction::get(currentFunc);
          MachineCodeForInstruction& mcfi =
            MachineCodeForInstruction::get(callInstr); 
          const SparcV9RegInfo& regInfo =
            (SparcV9RegInfo&) target.getRegInfo();
          const TargetFrameInfo& frameInfo = target.getFrameInfo();

          // Create hidden virtual register for return address with type void*
          TmpInstruction* retAddrReg =
            new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr);

          // Generate the machine instruction and its operands.
          // Use CALL for direct function calls; this optimistically assumes
          // the PC-relative address fits in the CALL address field (22 bits).
          // Use JMPL for indirect calls.
          // This will be added to mvec later, after operand copies.
          // 
          MachineInstr* callMI;
          if (calledFunc)             // direct function call
            callMI = BuildMI(V9::CALL, 1).addPCDisp(callee);
          else                        // indirect function call
            callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee)
                      .addSImm((int64_t)0).addRegDef(retAddrReg));

          const FunctionType* funcType =
            cast<FunctionType>(cast<PointerType>(callee->getType())
                               ->getElementType());
          bool isVarArgs = funcType->isVarArg();
          bool noPrototype = isVarArgs && funcType->getNumParams() == 0;
        
          // Use a descriptor to pass information about call arguments
          // to the register allocator.  This descriptor will be "owned"
          // and freed automatically when the MachineCodeForInstruction
          // object for the callInstr goes away.
          CallArgsDescriptor* argDesc =
            new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype);
          assert(callInstr->getOperand(0) == callee
                 && "This is assumed in the loop below!");

          // Insert sign-extension instructions for small signed values,
          // if this is an unknown function (i.e., called via a funcptr)
          // or an external one (i.e., which may not be compiled by llc).
          // 
          if (calledFunc == NULL || calledFunc->isExternal()) {
            for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
              Value* argVal = callInstr->getOperand(i);
              const Type* argType = argVal->getType();
              if (argType->isIntegral() && argType->isSigned()) {
                unsigned argSize = target.getTargetData().getTypeSize(argType);
                if (argSize <= 4) {
                  // create a temporary virtual reg. to hold the sign-extension
                  TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal);

                  // sign-extend argVal and put the result in the temporary reg.
                  target.getInstrInfo().CreateSignExtensionInstructions
                    (target, currentFunc, argVal, argExtend,
                     8*argSize, mvec, mcfi);

                  // replace argVal with argExtend in CallArgsDescriptor
                  argDesc->getArgInfo(i-1).replaceArgVal(argExtend);
                }
              }
            }
          }

          // Insert copy instructions to get all the arguments into
          // all the places that they need to be.
          // 
          for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
            int argNo = i-1;
            CallArgInfo& argInfo = argDesc->getArgInfo(argNo);
            Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here
            const Type* argType = argVal->getType();
            unsigned regType = regInfo.getRegTypeForDataType(argType);
            unsigned argSize = target.getTargetData().getTypeSize(argType);
            int regNumForArg = TargetRegInfo::getInvalidRegNum();
            unsigned regClassIDOfArgReg;

            // Check for FP arguments to varargs functions.
            // Any such argument in the first $K$ args must be passed in an
            // integer register.  If there is no prototype, it must also
            // be passed as an FP register.
            // K = #integer argument registers.
            bool isFPArg = argVal->getType()->isFloatingPoint();
            if (isVarArgs && isFPArg) {

              if (noPrototype) {
                // It is a function with no prototype: pass value
                // as an FP value as well as a varargs value.  The FP value
                // may go in a register or on the stack.  The copy instruction
                // to the outgoing reg/stack is created by the normal argument
                // handling code since this is the "normal" passing mode.
                // 
                regNumForArg = regInfo.regNumForFPArg(regType,
                                                      false, false, argNo,
                                                      regClassIDOfArgReg);
                if (regNumForArg == regInfo.getInvalidRegNum())
                  argInfo.setUseStackSlot();
                else
                  argInfo.setUseFPArgReg();
              }
              
              // If this arg. is in the first $K$ regs, add special copy-
              // float-to-int instructions to pass the value as an int.
              // To check if it is in the first $K$, get the register
              // number for the arg #i.  These copy instructions are
              // generated here because they are extra cases and not needed
              // for the normal argument handling (some code reuse is
              // possible though -- later).
              // 
              int copyRegNum = regInfo.regNumForIntArg(false, false, argNo,
                                                       regClassIDOfArgReg);
              if (copyRegNum != regInfo.getInvalidRegNum()) {
                // Create a virtual register to represent copyReg. Mark
                // this vreg as being an implicit operand of the call MI
                const Type* loadTy = (argType == Type::FloatTy
                                      ? Type::IntTy : Type::LongTy);
                TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy,
                                                             argVal, NULL,
                                                             "argRegCopy");
                callMI->addImplicitRef(argVReg);
                
                // Get a temp stack location to use to copy
                // float-to-int via the stack.
                // 
                // FIXME: For now, we allocate permanent space because
                // the stack frame manager does not allow locals to be
                // allocated (e.g., for alloca) after a temp is
                // allocated!
                // 
                // int tmpOffset = MF.getInfo()->pushTempValue(argSize);
                int tmpOffset = MF.getInfo()->allocateLocalVar(argVReg);
                    
                // Generate the store from FP reg to stack
                unsigned StoreOpcode = ChooseStoreInstruction(argType);
                M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3)
                  .addReg(argVal).addMReg(regInfo.getFramePointer())
                  .addSImm(tmpOffset);
                mvec.push_back(M);
                        
                // Generate the load from stack to int arg reg
                unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
                M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3)
                  .addMReg(regInfo.getFramePointer()).addSImm(tmpOffset)
                  .addReg(argVReg, MachineOperand::Def);

                // Mark operand with register it should be assigned
                // both for copy and for the callMI
                M->SetRegForOperand(M->getNumOperands()-1, copyRegNum);
                callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
                                             copyRegNum);
                mvec.push_back(M);

                // Add info about the argument to the CallArgsDescriptor
                argInfo.setUseIntArgReg();
                argInfo.setArgCopy(copyRegNum);
              } else {
                // Cannot fit in first $K$ regs so pass arg on stack
                argInfo.setUseStackSlot();
              }
            } else if (isFPArg) {
              // Get the outgoing arg reg to see if there is one.
              regNumForArg = regInfo.regNumForFPArg(regType, false, false,
                                                    argNo, regClassIDOfArgReg);
              if (regNumForArg == regInfo.getInvalidRegNum())
                argInfo.setUseStackSlot();
              else {
                argInfo.setUseFPArgReg();
                regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
                                                       regNumForArg);
              }
            } else {
              // Get the outgoing arg reg to see if there is one.
              regNumForArg = regInfo.regNumForIntArg(false,false,
                                                     argNo, regClassIDOfArgReg);
              if (regNumForArg == regInfo.getInvalidRegNum())
                argInfo.setUseStackSlot();
              else {
                argInfo.setUseIntArgReg();
                regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
                                                       regNumForArg);
              }
            }                

            // 
            // Now insert copy instructions to stack slot or arg. register
            // 
            if (argInfo.usesStackSlot()) {
              // Get the stack offset for this argument slot.
              // FP args on stack are right justified so adjust offset!
              // int arguments are also right justified but they are
              // always loaded as a full double-word so the offset does
              // not need to be adjusted.
              int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo);
              if (argType->isFloatingPoint()) {
                unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
                assert(argSize <= slotSize && "Insufficient slot size!");
                argOffset += slotSize - argSize;
              }

              // Now generate instruction to copy argument to stack
              MachineOpCode storeOpCode =
                (argType->isFloatingPoint()
                 ? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi);

              M = BuildMI(storeOpCode, 3).addReg(argVal)
                .addMReg(regInfo.getStackPointer()).addSImm(argOffset);
              mvec.push_back(M);
            }
            else if (regNumForArg != regInfo.getInvalidRegNum()) {

              // Create a virtual register to represent the arg reg. Mark
              // this vreg as being an implicit operand of the call MI.
              TmpInstruction* argVReg = 
                new TmpInstruction(mcfi, argVal, NULL, "argReg");

              callMI->addImplicitRef(argVReg);
              
              // Generate the reg-to-reg copy into the outgoing arg reg.
              // -- For FP values, create a FMOVS or FMOVD instruction
              // -- For non-FP values, create an add-with-0 instruction
              if (argType->isFloatingPoint())
                M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2)
                   .addReg(argVal).addReg(argVReg, MachineOperand::Def));
              else
                M = (BuildMI(ChooseAddInstructionByType(argType), 3)
                     .addReg(argVal).addSImm((int64_t) 0)
                     .addReg(argVReg, MachineOperand::Def));
              
              // Mark the operand with the register it should be assigned
              M->SetRegForOperand(M->getNumOperands()-1, regNumForArg);
              callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
                                           regNumForArg);

              mvec.push_back(M);
            }
            else
              assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() &&
                     "Arg. not in stack slot, primary or secondary register?");
          }

          // add call instruction and delay slot before copying return value
          mvec.push_back(callMI);
          mvec.push_back(BuildMI(V9::NOP, 0));

          // Add the return value as an implicit ref.  The call operands
          // were added above.  Also, add code to copy out the return value.
          // This is always register-to-register for int or FP return values.
          // 
          if (callInstr->getType() != Type::VoidTy) { 
            // Get the return value reg.
            const Type* retType = callInstr->getType();

            int regNum = (retType->isFloatingPoint()
                          ? (unsigned) SparcV9FloatRegClass::f0 
                          : (unsigned) SparcV9IntRegClass::o0);
            unsigned regClassID = regInfo.getRegClassIDOfType(retType);
            regNum = regInfo.getUnifiedRegNum(regClassID, regNum);

            // Create a virtual register to represent it and mark
            // this vreg as being an implicit operand of the call MI
            TmpInstruction* retVReg = 
              new TmpInstruction(mcfi, callInstr, NULL, "argReg");

            callMI->addImplicitRef(retVReg, /*isDef*/ true);

            // Generate the reg-to-reg copy from the return value reg.
            // -- For FP values, create a FMOVS or FMOVD instruction
            // -- For non-FP values, create an add-with-0 instruction
            if (retType->isFloatingPoint())
              M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
                   .addReg(retVReg).addReg(callInstr, MachineOperand::Def));
            else
              M = (BuildMI(ChooseAddInstructionByType(retType), 3)
                   .addReg(retVReg).addSImm((int64_t) 0)
                   .addReg(callInstr, MachineOperand::Def));

            // Mark the operand with the register it should be assigned
            // Also mark the implicit ref of the call defining this operand
            M->SetRegForOperand(0, regNum);
            callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum);

            mvec.push_back(M);
          }

          // For the CALL instruction, the ret. addr. reg. is also implicit
          if (isa<Function>(callee))
            callMI->addImplicitRef(retAddrReg, /*isDef*/ true);

          MF.getInfo()->popAllTempValues();  // free temps used for this inst
        }

        break;
      }
      
      case 62:	// reg:   Shl(reg, reg)
      {
        Value* argVal1 = subtreeRoot->leftChild()->getValue();
        Value* argVal2 = subtreeRoot->rightChild()->getValue();
        Instruction* shlInstr = subtreeRoot->getInstruction();
        
        const Type* opType = argVal1->getType();
        assert((opType->isInteger() || isa<PointerType>(opType)) &&
               "Shl unsupported for other types");
        unsigned opSize = target.getTargetData().getTypeSize(opType);
        
        CreateShiftInstructions(target, shlInstr->getParent()->getParent(),
                                (opSize > 4)? V9::SLLXr6:V9::SLLr5,
                                argVal1, argVal2, 0, shlInstr, mvec,
                                MachineCodeForInstruction::get(shlInstr));
        break;
      }
      
      case 63:	// reg:   Shr(reg, reg)
      { 
        const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
        assert((opType->isInteger() || isa<PointerType>(opType)) &&
               "Shr unsupported for other types");
        unsigned opSize = target.getTargetData().getTypeSize(opType);
        Add3OperandInstr(opType->isSigned()
                         ? (opSize > 4? V9::SRAXr6 : V9::SRAr5)
                         : (opSize > 4? V9::SRLXr6 : V9::SRLr5),
                         subtreeRoot, mvec);
        break;
      }
      
      case 64:	// reg:   Phi(reg,reg)
        break;                          // don't forward the value

      case 65:	// reg:   VANext(reg):  the va_next(va_list, type) instruction
      { // Increment the va_list pointer register according to the type.
        // All LLVM argument types are <= 64 bits, so use one doubleword.
        Instruction* vaNextI = subtreeRoot->getInstruction();
        assert(target.getTargetData().getTypeSize(vaNextI->getType()) <= 8 &&
               "We assumed that all LLVM parameter types <= 8 bytes!");
        int argSize = target.getFrameInfo().getSizeOfEachArgOnStack();
        mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaNextI->getOperand(0)).
                       addSImm(argSize).addRegDef(vaNextI));
        break;
      }

      case 66:	// reg:   VAArg (reg): the va_arg instruction
      { // Load argument from stack using current va_list pointer value.
        // Use 64-bit load for all non-FP args, and LDDF or double for FP.
        Instruction* vaArgI = subtreeRoot->getInstruction();
        MachineOpCode loadOp = (vaArgI->getType()->isFloatingPoint()
                                ? (vaArgI->getType() == Type::FloatTy
                                   ? V9::LDFi : V9::LDDFi)
                                : V9::LDXi);
        mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)).
                       addSImm(0).addRegDef(vaArgI));
        break;
      }
      
      case 71:	// reg:     VReg
      case 72:	// reg:     Constant
        break;                          // don't forward the value

      default:
        assert(0 && "Unrecognized BURG rule");
        break;
      }
    }

  if (forwardOperandNum >= 0) {
    // We did not generate a machine instruction but need to use operand.
    // If user is in the same tree, replace Value in its machine operand.
    // If not, insert a copy instruction which should get coalesced away
    // by register allocation.
    if (subtreeRoot->parent() != NULL)
      ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
    else {
      std::vector<MachineInstr*> minstrVec;
      Instruction* instr = subtreeRoot->getInstruction();
      target.getInstrInfo().
        CreateCopyInstructionsByType(target,
                                     instr->getParent()->getParent(),
                                     instr->getOperand(forwardOperandNum),
                                     instr, minstrVec,
                                     MachineCodeForInstruction::get(instr));
      assert(minstrVec.size() > 0);
      mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
    }
  }

  if (maskUnsignedResult) {
    // If result is unsigned and smaller than int reg size,
    // we need to clear high bits of result value.
    assert(forwardOperandNum < 0 && "Need mask but no instruction generated");
    Instruction* dest = subtreeRoot->getInstruction();
    if (dest->getType()->isUnsigned()) {
      unsigned destSize=target.getTargetData().getTypeSize(dest->getType());
      if (destSize <= 4) {
        // Mask high 64 - N bits, where N = 4*destSize.
        
        // Use a TmpInstruction to represent the
        // intermediate result before masking.  Since those instructions
        // have already been generated, go back and substitute tmpI
        // for dest in the result position of each one of them.
        // 
        MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest);
        TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(),
                                                  dest, NULL, "maskHi");
        Value* srlArgToUse = tmpI;

        unsigned numSubst = 0;
        for (unsigned i=0, N=mvec.size(); i < N; ++i) {

          // Make sure we substitute all occurrences of dest in these instrs.
          // Otherwise, we will have bogus code.
          bool someArgsWereIgnored = false;

          // Make sure not to substitute an upwards-exposed use -- that would
          // introduce a use of `tmpI' with no preceding def.  Therefore,
          // substitute a use or def-and-use operand only if a previous def
          // operand has already been substituted (i.e., numSusbt > 0).
          // 
          numSubst += mvec[i]->substituteValue(dest, tmpI,
                                               /*defsOnly*/ numSubst == 0,
                                               /*notDefsAndUses*/ numSubst > 0,
                                               someArgsWereIgnored);
          assert(!someArgsWereIgnored &&
                 "Operand `dest' exists but not replaced: probably bogus!");
        }
        assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!");

        // Left shift 32-N if size (N) is less than 32 bits.
        // Use another tmp. virtual register to represent this result.
        if (destSize < 4) {
          srlArgToUse = new TmpInstruction(mcfi, dest->getType(),
                                           tmpI, NULL, "maskHi2");
          mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI)
                         .addZImm(8*(4-destSize))
                         .addReg(srlArgToUse, MachineOperand::Def));
        }

        // Logical right shift 32-N to get zero extension in top 64-N bits.
        mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse)
                         .addZImm(8*(4-destSize))
                         .addReg(dest, MachineOperand::Def));

      } else if (destSize < 8) {
        assert(0 && "Unsupported type size: 32 < size < 64 bits");
      }
    }
  }
}

}