aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/SparcV9InstrSelection.cpp
blob: e7cdbc038968681e89f2cabe34095192bf2dad3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
// $Id$
//***************************************************************************
// File:
//	SparcInstrSelection.cpp
// 
// Purpose:
//      BURS instruction selection for SPARC V9 architecture.      
//	
// History:
//	7/02/01	 -  Vikram Adve  -  Created
//**************************************************************************/

#include "SparcInternals.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/BasicBlock.h"
#include "llvm/Method.h"
#include "llvm/ConstPoolVals.h"


//******************** Internal Data Declarations ************************/

// to be used later
struct BranchPattern {
  bool          flipCondition; // should the sense of the test be reversed
  BasicBlock*   targetBB;      // which basic block to branch to
  MachineInstr* extraBranch;   // if neither branch is fall-through, then this
                               // BA must be inserted after the cond'l one
};

//************************* Forward Declarations ***************************/


static void SetMemOperands_Internal     (MachineInstr* minstr,
                                         const InstructionNode* vmInstrNode,
                                         Value* ptrVal,
                                         Value* arrayOffsetVal,
                                         const vector<ConstPoolVal*>& idxVec,
                                         const TargetMachine& target);


//************************ Internal Functions ******************************/

// Convenience function to get the value of an integer constant, for an
// appropriate integer or non-integer type that can be held in an integer.
// The type of the argument must be the following:
//      Signed or unsigned integer
//      Boolean
//      Pointer
// 
// isValidConstant is set to true if a valid constant was found.
// 
static int64_t
GetConstantValueAsSignedInt(const Value *V,
                            bool &isValidConstant)
{
  if (!V->isConstant())
    {
      isValidConstant = false;
      return 0;
    }
  
  isValidConstant = true;
  
  if (V->getType() == Type::BoolTy)
    return (int64_t) ((ConstPoolBool*)V)->getValue();
  
  if (V->getType()->isIntegral())
    {
      if (V->getType()->isSigned())
        return ((ConstPoolSInt*)V)->getValue();
      
      assert(V->getType()->isUnsigned());
      uint64_t Val = ((ConstPoolUInt*)V)->getValue();
      if (Val < INT64_MAX)     // then safe to cast to signed
        return (int64_t)Val;
    }

  isValidConstant = false;
  return 0;
}



//------------------------------------------------------------------------ 
// External Function: ThisIsAChainRule
//
// Purpose:
//   Check if a given BURG rule is a chain rule.
//------------------------------------------------------------------------ 

extern bool
ThisIsAChainRule(int eruleno)
{
  switch(eruleno)
    {
    case 111:	// stmt:  reg
    case 113:	// stmt:  bool
    case 123:
    case 124:
    case 125:
    case 126:
    case 127:
    case 128:
    case 129:
    case 130:
    case 131:
    case 132:
    case 133:
    case 155:
    case 221:
    case 222:
    case 241:
    case 242:
    case 243:
    case 244:
      return true; break;
      
    default:
      return false; break;
    }
}


static inline MachineOpCode 
ChooseBprInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode;
  
  Instruction* setCCInstr =
    ((InstructionNode*) instrNode->leftChild())->getInstruction();
  
  switch(setCCInstr->getOpcode())
    {
    case Instruction::SetEQ: opCode = BRZ;   break;
    case Instruction::SetNE: opCode = BRNZ;  break;
    case Instruction::SetLE: opCode = BRLEZ; break;
    case Instruction::SetGE: opCode = BRGEZ; break;
    case Instruction::SetLT: opCode = BRLZ;  break;
    case Instruction::SetGT: opCode = BRGZ;  break;
    default:
      assert(0 && "Unrecognized VM instruction!");
      opCode = INVALID_OPCODE;
      break; 
    }
  
  return opCode;
}


static inline MachineOpCode 
ChooseBpccInstruction(const InstructionNode* instrNode,
                      const BinaryOperator* setCCInstr)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
  
  if (isSigned)
    {
      switch(setCCInstr->getOpcode())
        {
        case Instruction::SetEQ: opCode = BE;  break;
        case Instruction::SetNE: opCode = BNE; break;
        case Instruction::SetLE: opCode = BLE; break;
        case Instruction::SetGE: opCode = BGE; break;
        case Instruction::SetLT: opCode = BL;  break;
        case Instruction::SetGT: opCode = BG;  break;
        default:
          assert(0 && "Unrecognized VM instruction!");
          break; 
        }
    }
  else
    {
      switch(setCCInstr->getOpcode())
        {
        case Instruction::SetEQ: opCode = BE;   break;
        case Instruction::SetNE: opCode = BNE;  break;
        case Instruction::SetLE: opCode = BLEU; break;
        case Instruction::SetGE: opCode = BCC;  break;
        case Instruction::SetLT: opCode = BCS;  break;
        case Instruction::SetGT: opCode = BGU;  break;
        default:
          assert(0 && "Unrecognized VM instruction!");
          break; 
        }
    }
  
  return opCode;
}

static inline MachineOpCode 
ChooseBFpccInstruction(const InstructionNode* instrNode,
                       const BinaryOperator* setCCInstr)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  switch(setCCInstr->getOpcode())
    {
    case Instruction::SetEQ: opCode = FBE;  break;
    case Instruction::SetNE: opCode = FBNE; break;
    case Instruction::SetLE: opCode = FBLE; break;
    case Instruction::SetGE: opCode = FBGE; break;
    case Instruction::SetLT: opCode = FBL;  break;
    case Instruction::SetGT: opCode = FBG;  break;
    default:
      assert(0 && "Unrecognized VM instruction!");
      break; 
    }
  
  return opCode;
}


static inline MachineOpCode 
ChooseBccInstruction(const InstructionNode* instrNode,
                     bool& isFPBranch)
{
  InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
  BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
  const Type* setCCType = setCCInstr->getOperand(0)->getType();
  
  isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); 
  
  if (isFPBranch) 
    return ChooseBFpccInstruction(instrNode, setCCInstr);
  else
    return ChooseBpccInstruction(instrNode, setCCInstr);
}


static inline MachineOpCode 
ChooseMovFpccInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  switch(instrNode->getInstruction()->getOpcode())
    {
    case Instruction::SetEQ: opCode = MOVFE;  break;
    case Instruction::SetNE: opCode = MOVFNE; break;
    case Instruction::SetLE: opCode = MOVFLE; break;
    case Instruction::SetGE: opCode = MOVFGE; break;
    case Instruction::SetLT: opCode = MOVFL;  break;
    case Instruction::SetGT: opCode = MOVFG;  break;
    default:
      assert(0 && "Unrecognized VM instruction!");
      break; 
    }
  
  return opCode;
}


// Assumes that SUBcc v1, v2 -> v3 has been executed.
// In most cases, we want to clear v3 and then follow it by instruction
// MOVcc 1 -> v3.
// Set mustClearReg=false if v3 need not be cleared before conditional move.
// Set valueToMove=0 if we want to conditionally move 0 instead of 1
//                      (i.e., we want to test inverse of a condition)
// (The latter two cases do not seem to arise because SetNE needs nothing.)
// 
static MachineOpCode
ChooseMovpccAfterSub(const InstructionNode* instrNode,
                     bool& mustClearReg,
                     int& valueToMove)
{
  MachineOpCode opCode = INVALID_OPCODE;
  mustClearReg = true;
  valueToMove = 1;
  
  switch(instrNode->getInstruction()->getOpcode())
    {
    case Instruction::SetEQ: opCode = MOVE;  break;
    case Instruction::SetLE: opCode = MOVLE; break;
    case Instruction::SetGE: opCode = MOVGE; break;
    case Instruction::SetLT: opCode = MOVL;  break;
    case Instruction::SetGT: opCode = MOVG;  break;
    case Instruction::SetNE: assert(0 && "No move required!"); break;
    default:		     assert(0 && "Unrecognized VM instr!"); break; 
    }
  
  return opCode;
}


static inline MachineOpCode
ChooseConvertToFloatInstr(const InstructionNode* instrNode,
                          const Type* opType)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  switch(instrNode->getOpLabel())
    {
    case ToFloatTy: 
      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
        opCode = FITOS;
      else if (opType == Type::LongTy)
        opCode = FXTOS;
      else if (opType == Type::DoubleTy)
        opCode = FDTOS;
      else if (opType == Type::FloatTy)
        ;
      else
        assert(0 && "Cannot convert this type to FLOAT on SPARC");
      break;
      
    case ToDoubleTy: 
      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
        opCode = FITOD;
      else if (opType == Type::LongTy)
        opCode = FXTOD;
      else if (opType == Type::FloatTy)
        opCode = FSTOD;
      else if (opType == Type::DoubleTy)
        ;
      else
        assert(0 && "Cannot convert this type to DOUBLE on SPARC");
      break;
      
    default:
      break;
    }
  
  return opCode;
}

static inline MachineOpCode 
ChooseConvertToIntInstr(const InstructionNode* instrNode,
                        const Type* opType)
{
  MachineOpCode opCode = INVALID_OPCODE;;
  
  int instrType = (int) instrNode->getOpLabel();
  
  if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
    {
      switch (opType->getPrimitiveID())
        {
        case Type::FloatTyID:   opCode = FSTOI; break;
        case Type::DoubleTyID:  opCode = FDTOI; break;
        default:
          assert(0 && "Non-numeric non-bool type cannot be converted to Int");
          break;
        }
    }
  else if (instrType == ToLongTy)
    {
      switch (opType->getPrimitiveID())
        {
        case Type::FloatTyID:   opCode = FSTOX; break;
        case Type::DoubleTyID:  opCode = FDTOX; break;
        default:
          assert(0 && "Non-numeric non-bool type cannot be converted to Long");
          break;
        }
    }
  else
      assert(0 && "Should not get here, Mo!");
  
  return opCode;
}


static inline MachineOpCode 
ChooseAddInstructionByType(const Type* resultType)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  if (resultType->isIntegral() ||
      resultType->isPointerType() ||
      resultType->isMethodType() ||
      resultType->isLabelType() ||
      resultType == Type::BoolTy)
    {
      opCode = ADD;
    }
  else
    switch(resultType->getPrimitiveID())
      {
      case Type::FloatTyID:  opCode = FADDS; break;
      case Type::DoubleTyID: opCode = FADDD; break;
      default: assert(0 && "Invalid type for ADD instruction"); break; 
      }
  
  return opCode;
}


static inline MachineOpCode 
ChooseAddInstruction(const InstructionNode* instrNode)
{
  return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
}


static inline MachineInstr* 
CreateMovFloatInstruction(const InstructionNode* instrNode,
                          const Type* resultType)
{
  MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
                                          ? FMOVS : FMOVD);
  minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                            instrNode->leftChild()->getValue());
  minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
                            instrNode->getValue());
  return minstr;
}

static inline MachineInstr* 
CreateAddConstInstruction(const InstructionNode* instrNode)
{
  MachineInstr* minstr = NULL;
  
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
  assert(constOp->isConstant());
  
  // Cases worth optimizing are:
  // (1) Add with 0 for float or double: use an FMOV of appropriate type,
  //	 instead of an FADD (1 vs 3 cycles).  There is no integer MOV.
  // 
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType == Type::FloatTy ||
      resultType == Type::DoubleTy)
    {
      double dval = ((ConstPoolFP*) constOp)->getValue();
      if (dval == 0.0)
        minstr = CreateMovFloatInstruction(instrNode, resultType);
    }
  
  return minstr;
}


static inline MachineOpCode 
ChooseSubInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType->isIntegral() ||
      resultType->isPointerType())
    {
      opCode = SUB;
    }
  else
    switch(resultType->getPrimitiveID())
      {
      case Type::FloatTyID:  opCode = FSUBS; break;
      case Type::DoubleTyID: opCode = FSUBD; break;
      default: assert(0 && "Invalid type for SUB instruction"); break; 
      }
  
  return opCode;
}


static inline MachineInstr* 
CreateSubConstInstruction(const InstructionNode* instrNode)
{
  MachineInstr* minstr = NULL;
  
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
  assert(constOp->isConstant());
  
  // Cases worth optimizing are:
  // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
  //	 instead of an FSUB (1 vs 3 cycles).  There is no integer MOV.
  // 
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType == Type::FloatTy ||
      resultType == Type::DoubleTy)
    {
      double dval = ((ConstPoolFP*) constOp)->getValue();
      if (dval == 0.0)
        minstr = CreateMovFloatInstruction(instrNode, resultType);
    }
  
  return minstr;
}


static inline MachineOpCode 
ChooseFcmpInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
  switch(operand->getType()->getPrimitiveID()) {
  case Type::FloatTyID:  opCode = FCMPS; break;
  case Type::DoubleTyID: opCode = FCMPD; break;
  default: assert(0 && "Invalid type for FCMP instruction"); break; 
  }
  
  return opCode;
}


// Assumes that leftArg and rightArg are both cast instructions.
//
static inline bool
BothFloatToDouble(const InstructionNode* instrNode)
{
  InstrTreeNode* leftArg = instrNode->leftChild();
  InstrTreeNode* rightArg = instrNode->rightChild();
  InstrTreeNode* leftArgArg = leftArg->leftChild();
  InstrTreeNode* rightArgArg = rightArg->leftChild();
  assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
  
  // Check if both arguments are floats cast to double
  return (leftArg->getValue()->getType() == Type::DoubleTy &&
          leftArgArg->getValue()->getType() == Type::FloatTy &&
          rightArgArg->getValue()->getType() == Type::FloatTy);
}


static inline MachineOpCode 
ChooseMulInstruction(const InstructionNode* instrNode,
                     bool checkCasts)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  if (checkCasts && BothFloatToDouble(instrNode))
    {
      return opCode = FSMULD;
    }
  // else fall through and use the regular multiply instructions
  
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType->isIntegral())
    {
      opCode = MULX;
    }
  else
    switch(resultType->getPrimitiveID())
      {
      case Type::FloatTyID:  opCode = FMULS; break;
      case Type::DoubleTyID: opCode = FMULD; break;
      default: assert(0 && "Invalid type for MUL instruction"); break; 
      }
  
  return opCode;
}


static inline MachineInstr*
CreateIntNegInstruction(TargetMachine& target,
                        Value* vreg)
{
  MachineInstr* minstr = new MachineInstr(SUB);
  minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
  minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
  minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
  return minstr;
}


static inline MachineInstr* 
CreateMulConstInstruction(TargetMachine &target,
                          const InstructionNode* instrNode,
                          MachineInstr*& getMinstr2)
{
  MachineInstr* minstr = NULL;
  getMinstr2 = NULL;
  bool needNeg = false;

  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
  assert(constOp->isConstant());
  
  // Cases worth optimizing are:
  // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
  // (2) Multiply by 2^x for integer types: replace with Shift
  // 
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType->isIntegral() || resultType->isPointerType())
    {
      unsigned pow;
      bool isValidConst;
      int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
      if (isValidConst)
        {
          bool needNeg = false;
          if (C < 0)
            {
              needNeg = true;
              C = -C;
            }
          
          if (C == 0 || C == 1)
            {
              minstr = new MachineInstr(ADD);
              
              if (C == 0)
                minstr->SetMachineOperand(0,
                                          target.getRegInfo().getZeroRegNum());
              else
                minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
                                          instrNode->leftChild()->getValue());
              minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
            }
          else if (IsPowerOf2(C, pow))
            {
              minstr = new MachineInstr((resultType == Type::LongTy)
                                        ? SLLX : SLL);
              minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                           instrNode->leftChild()->getValue());
              minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
                                           pow);
            }
          
          if (minstr && needNeg)
            { // insert <reg = SUB 0, reg> after the instr to flip the sign
              getMinstr2 = CreateIntNegInstruction(target,
                                                   instrNode->getValue());
            }
        }
    }
  else
    {
      if (resultType == Type::FloatTy ||
          resultType == Type::DoubleTy)
        {
          bool isValidConst;
          double dval = ((ConstPoolFP*) constOp)->getValue();
          
          if (isValidConst)
            {
              if (dval == 0)
                {
                  minstr = new MachineInstr((resultType == Type::FloatTy)
                                            ? FITOS : FITOD);
                  minstr->SetMachineOperand(0,
                                        target.getRegInfo().getZeroRegNum());
                }
              else if (fabs(dval) == 1)
                {
                  bool needNeg = (dval < 0);
                  
                  MachineOpCode opCode = needNeg
                    ? (resultType == Type::FloatTy? FNEGS : FNEGD)
                    : (resultType == Type::FloatTy? FMOVS : FMOVD);
                  
                  minstr = new MachineInstr(opCode);
                  minstr->SetMachineOperand(0,
                                           MachineOperand::MO_VirtualRegister,
                                           instrNode->leftChild()->getValue());
                } 
            }
        }
    }
  
  if (minstr != NULL)
    minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
                              instrNode->getValue());   
  
  return minstr;
}


static inline MachineOpCode 
ChooseDivInstruction(TargetMachine &target,
                     const InstructionNode* instrNode)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType->isIntegral())
    opCode = resultType->isSigned()? SDIVX : UDIVX;
  else
    switch(resultType->getPrimitiveID())
      {
      case Type::FloatTyID:  opCode = FDIVS; break;
      case Type::DoubleTyID: opCode = FDIVD; break;
      default: assert(0 && "Invalid type for DIV instruction"); break; 
      }
  
  return opCode;
}


static inline MachineInstr* 
CreateDivConstInstruction(TargetMachine &target,
                          const InstructionNode* instrNode,
                          MachineInstr*& getMinstr2)
{
  MachineInstr* minstr = NULL;
  getMinstr2 = NULL;
  
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
  assert(constOp->isConstant());
  
  // Cases worth optimizing are:
  // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
  // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
  // 
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType->isIntegral())
    {
      unsigned pow;
      bool isValidConst;
      int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
      if (isValidConst)
        {
          bool needNeg = false;
          if (C < 0)
            {
              needNeg = true;
              C = -C;
            }
          
          if (C == 1)
            {
              minstr = new MachineInstr(ADD);
              minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
                                          instrNode->leftChild()->getValue());
              minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
            }
          else if (IsPowerOf2(C, pow))
            {
              MachineOpCode opCode= ((resultType->isSigned())
                                     ? (resultType==Type::LongTy)? SRAX : SRA
                                     : (resultType==Type::LongTy)? SRLX : SRL);
              minstr = new MachineInstr(opCode);
              minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                           instrNode->leftChild()->getValue());
              minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
                                           pow);
            }
          
          if (minstr && needNeg)
            { // insert <reg = SUB 0, reg> after the instr to flip the sign
              getMinstr2 = CreateIntNegInstruction(target,
                                                   instrNode->getValue());
            }
        }
    }
  else
    {
      if (resultType == Type::FloatTy ||
          resultType == Type::DoubleTy)
        {
          bool isValidConst;
          double dval = ((ConstPoolFP*) constOp)->getValue();
          
          if (isValidConst && fabs(dval) == 1)
            {
              bool needNeg = (dval < 0);
              
              MachineOpCode opCode = needNeg
                ? (resultType == Type::FloatTy? FNEGS : FNEGD)
                : (resultType == Type::FloatTy? FMOVS : FMOVD);
              
              minstr = new MachineInstr(opCode);
              minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                           instrNode->leftChild()->getValue());
            } 
        }
    }
  
  if (minstr != NULL)
    minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
                              instrNode->getValue());   
  
  return minstr;
}


static inline MachineOpCode
ChooseLoadInstruction(const Type *DestTy)
{
  switch (DestTy->getPrimitiveID()) {
  case Type::BoolTyID:
  case Type::UByteTyID:   return LDUB;
  case Type::SByteTyID:   return LDSB;
  case Type::UShortTyID:  return LDUH;
  case Type::ShortTyID:   return LDSH;
  case Type::UIntTyID:    return LDUW;
  case Type::IntTyID:     return LDSW;
  case Type::PointerTyID:
  case Type::ULongTyID:
  case Type::LongTyID:    return LDX;
  case Type::FloatTyID:   return LD;
  case Type::DoubleTyID:  return LDD;
  default: assert(0 && "Invalid type for Load instruction");
  }
  
  return 0;
}


static inline MachineOpCode
ChooseStoreInstruction(const Type *DestTy)
{
  switch (DestTy->getPrimitiveID()) {
  case Type::BoolTyID:
  case Type::UByteTyID:
  case Type::SByteTyID:   return STB;
  case Type::UShortTyID:
  case Type::ShortTyID:   return STH;
  case Type::UIntTyID:
  case Type::IntTyID:     return STW;
  case Type::PointerTyID:
  case Type::ULongTyID:
  case Type::LongTyID:    return STX;
  case Type::FloatTyID:   return ST;
  case Type::DoubleTyID:  return STD;
  default: assert(0 && "Invalid type for Store instruction");
  }
  
  return 0;
}


//------------------------------------------------------------------------ 
// Function SetOperandsForMemInstr
//
// Choose addressing mode for the given load or store instruction.
// Use [reg+reg] if it is an indexed reference, and the index offset is
//		 not a constant or if it cannot fit in the offset field.
// Use [reg+offset] in all other cases.
// 
// This assumes that all array refs are "lowered" to one of these forms:
//	%x = load (subarray*) ptr, constant	; single constant offset
//	%x = load (subarray*) ptr, offsetVal	; single non-constant offset
// Generally, this should happen via strength reduction + LICM.
// Also, strength reduction should take care of using the same register for
// the loop index variable and an array index, when that is profitable.
//------------------------------------------------------------------------ 

static void
SetOperandsForMemInstr(MachineInstr* minstr,
                       const InstructionNode* vmInstrNode,
                       const TargetMachine& target)
{
  MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
  
  // Variables to hold the index vector, ptr value, and offset value.
  // The major work here is to extract these for all 3 instruction types
  // and then call the common function SetMemOperands_Internal().
  // 
  const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
  vector<ConstPoolVal*>* newIdxVec = NULL;
  Value* ptrVal;
  Value* arrayOffsetVal = NULL;
  
  // Test if a GetElemPtr instruction is being folded into this mem instrn.
  // If so, it will be in the left child for Load and GetElemPtr,
  // and in the right child for Store instructions.
  // 
  InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
                             ? vmInstrNode->rightChild()
                             : vmInstrNode->leftChild()); 
  
  if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
      ptrChild->getOpLabel() == GetElemPtrIdx)
    {
      // There is a GetElemPtr instruction and there may be a chain of
      // more than one.  Use the pointer value of the last one in the chain.
      // Fold the index vectors from the entire chain and from the mem
      // instruction into one single index vector.
      // Finally, we never fold for an array instruction so make that NULL.
      
      newIdxVec = new vector<ConstPoolVal*>;
      ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
      
      newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
      idxVec = newIdxVec;
      
      assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
             && "GetElemPtr cannot be folded into array refs in selection");
    }
  else
    {
      // There is no GetElemPtr instruction.
      // Use the pointer value and the index vector from the Mem instruction.
      // If it is an array reference, get the array offset value.
      // 
      ptrVal = memInst->getPtrOperand();

      const Type* opType =
        ((const PointerType*) ptrVal->getType())->getValueType();
      if (opType->isArrayType())
        {
          assert((memInst->getNumOperands()
                  == (unsigned) 1 + memInst->getFirstOffsetIdx())
                 && "Array refs must be lowered before Instruction Selection");
          
          arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
        }
    }
  
  SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
                          *idxVec, target);
  
  if (newIdxVec != NULL)
    delete newIdxVec;
}


static void
SetMemOperands_Internal(MachineInstr* minstr,
                        const InstructionNode* vmInstrNode,
                        Value* ptrVal,
                        Value* arrayOffsetVal,
                        const vector<ConstPoolVal*>& idxVec,
                        const TargetMachine& target)
{
  MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
  
  // Initialize so we default to storing the offset in a register.
  int64_t smallConstOffset;
  Value* valueForRegOffset = NULL;
  MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;

  // Check if there is an index vector and if so, if it translates to
  // a small enough constant to fit in the immediate-offset field.
  // 
  if (idxVec.size() > 0)
    {
      bool isConstantOffset = false;
      unsigned offset;
      
      const PointerType* ptrType = (PointerType*) ptrVal->getType();
      
      if (ptrType->getValueType()->isStructType())
        {
          // the offset is always constant for structs
          isConstantOffset = true;
          
          // Compute the offset value using the index vector
          offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
        }
      else
        {
          // It must be an array ref.  Check if the offset is a constant,
          // and that the indexing has been lowered to a single offset.
          // 
          assert(ptrType->getValueType()->isArrayType());
          assert(arrayOffsetVal != NULL
                 && "Expect to be given Value* for array offsets");
          
          if (ConstPoolVal *CPV = arrayOffsetVal->castConstant())
            {
              isConstantOffset = true;  // always constant for structs
              assert(arrayOffsetVal->getType()->isIntegral());
              offset = (CPV->getType()->isSigned()
                        ? ((ConstPoolSInt*)CPV)->getValue()
                        : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
            }
          else
            {
              valueForRegOffset = arrayOffsetVal;
            }
        }
      
      if (isConstantOffset)
        {
          // create a virtual register for the constant
          valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
        }
    }
  else
    {
      offsetOpType = MachineOperand::MO_SignExtendedImmed;
      smallConstOffset = 0;
    }
  
  // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
  // It is the left child in the instruction tree in all cases.
  Value* leftVal = vmInstrNode->leftChild()->getValue();
  minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
  
  // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
  // Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
  //
  unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
  if (offsetOpType == MachineOperand::MO_VirtualRegister)
    {
      assert(valueForRegOffset != NULL);
      minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); 
    }
  else
    minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
  
  if (memInst->getOpcode() == Instruction::Store)
    minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
  else
    minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
                                 vmInstrNode->getValue());
}


static inline MachineInstr*
CreateIntSetInstruction(int64_t C, bool isSigned, Value* dest)
{
  MachineInstr* minstr;
  if (isSigned)
    {
      minstr = new MachineInstr(SETSW);
      minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
    }
  else
    {
      minstr = new MachineInstr(SETUW);
      minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
    }
  
  minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
  
  return minstr;
}


// Create an instruction sequence to load a constant into a register.
// This always creates either one or two instructions.
// If two instructions are created, the second one is returned in getMinstr2
// The implicit virtual register used to hold the constant is returned in
// tmpReg.
// 
static MachineInstr*
CreateLoadConstInstr(const TargetMachine &target,
                     Instruction* vmInstr,
                     Value* val,
                     Instruction* dest,
                     MachineInstr*& getMinstr2)
{
  assert(val->isConstant());
  
  MachineInstr* minstr1 = NULL;
  
  getMinstr2 = NULL;
  
  // Use a "set" instruction for known constants that can go in an integer reg.
  // Use a "set" instruction followed by a int-to-float conversion for known
  // constants that must go in a floating point reg but have an integer value.
  // Use a "load" instruction for all other constants, in particular,
  // floating point constants.
  // 
  const Type* valType = val->getType();
  
  if (valType->isIntegral() || valType == Type::BoolTy)
    {
      bool isValidConstant;
      int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
      assert(isValidConstant && "Unrecognized constant");
      minstr1 = CreateIntSetInstruction(C, valType->isSigned(), dest);
    }
  else
    {
      
#undef MOVE_INT_TO_FP_REG_AVAILABLE
#ifdef MOVE_INT_TO_FP_REG_AVAILABLE
      //
      // This code was written to generate the following sequence:
      //        SET[SU]W <int-const> <int-reg>
      //        FITO[SD] <int-reg>   <fp-reg>
      // (it really should have moved the int-reg to an fp-reg and then FITOS).
      // But for now the only way to move a value from an int-reg to an fp-reg
      // is via memory.  Leave this code here but unused.
      // 
      assert(valType == Type::FloatTy || valType == Type::DoubleTy);
      double dval = ((ConstPoolFP*) val)->getValue();
      if (dval == (int64_t) dval)
        {
          // The constant actually has an integer value, so use a
          // [set; int-to-float] sequence instead of a load instruction.
          // 
          TmpInstruction* tmpReg2 = NULL;
          if (dval != 0.0)
            { // First, create an integer constant of the same value as dval
              ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
                                                       (int64_t) dval);
              // Create another TmpInstruction for the hidden integer register
              tmpReg2 = new TmpInstruction(Instruction::UserOp1, ival, NULL);
              vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
              
              // Create the `SET' instruction
              minstr1 = CreateIntSetInstruction((int64_t)dval, true, tmpReg2);
              tmpReg2->addMachineInstruction(minstr1);
            }
          
          // In which variable do we put the second instruction?
          MachineInstr*& instr2 = (minstr1)? getMinstr2 : minstr1;
          
          // Create the int-to-float instruction
          instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
          
          if (dval == 0.0)
            instr2->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
          else
            instr2->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                         tmpReg2);
          
          instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
                                         dest);
        }
      else
#endif MOVE_INT_TO_FP_REG_AVAILABLE
        
        {
          // Make an instruction sequence to load the constant, viz:
          //            SETSW <addr-of-constant>, tmpReg2
          //            LOAD  /*addr*/ tmpReg2, /*offset*/ 0, dest
          // set the offset field to 0.
          // 
          int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0

          // Create another TmpInstruction for the hidden integer register
          TmpInstruction* tmpReg2 =
            new TmpInstruction(Instruction::UserOp1, val, NULL);
          vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
          
          minstr1 = new MachineInstr(SETUW);
          minstr1->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,val);
          minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
                                        tmpReg2);
          tmpReg2->addMachineInstruction(minstr1);
          
          getMinstr2 = new MachineInstr(ChooseLoadInstruction(val->getType()));
          getMinstr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
                                          tmpReg2);
          getMinstr2->SetMachineOperand(1,MachineOperand::MO_SignExtendedImmed,
                                          zeroOffset);
          getMinstr2->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
                                          dest);
        }
    }
  
  assert(minstr1);
  return minstr1;
}

// Special handling for constant operands:
// -- if the constant is 0, use the hardwired 0 register, if any;
// -- if the constant is of float or double type but has an integer value,
//    use int-to-float conversion instruction instead of generating a load;
// -- if the constant fits in the IMMEDIATE field, use that field;
// -- else insert instructions to put the constant into a register, either
//    directly or by loading explicitly from the constant pool.
// 
static unsigned
FixConstantOperands(const InstructionNode* vmInstrNode,
                    MachineInstr** mvec,
                    unsigned numInstr,
                    TargetMachine& target)
{
  static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];

  unsigned numNew = 0;
  Instruction* vmInstr = vmInstrNode->getInstruction();
  
  for (unsigned i=0; i < numInstr; i++)
    {
      MachineInstr* minstr = mvec[i];
      const MachineInstrDescriptor& instrDesc =
        target.getInstrInfo().getDescriptor(minstr->getOpCode());
      
      for (unsigned op=0; op < minstr->getNumOperands(); op++)
        {
          const MachineOperand& mop = minstr->getOperand(op);
          
          // skip the result position (for efficiency below) and any other
          // positions already marked as not a virtual register
          if (instrDesc.resultPos == (int) op || 
              mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
              mop.getVRegValue() == NULL)
            {
              continue;
            }
          
          Value* opValue = mop.getVRegValue();
          
          if (opValue->isConstant())
            {
              unsigned int machineRegNum;
              int64_t immedValue;
              MachineOperand::MachineOperandType opType =
                ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
                                 /*canUseImmed*/ (op == 1),
                                 machineRegNum, immedValue);
              
              if (opType == MachineOperand::MO_MachineRegister)
                minstr->SetMachineOperand(op, machineRegNum);
              else if (opType == MachineOperand::MO_VirtualRegister)
                {
                  // value is constant and must be loaded into a register.
                  // First, create a tmp virtual register (TmpInstruction)
                  // to hold the constant.
                  // This will replace the constant operand in `minstr'.
                  TmpInstruction* tmpReg =
                    new TmpInstruction(Instruction::UserOp1, opValue, NULL);
                  vmInstr->getMachineInstrVec().addTempValue(tmpReg);
                  minstr->SetMachineOperand(op, opType, tmpReg);
                  
                  MachineInstr *minstr1, *minstr2;
                  minstr1 = CreateLoadConstInstr(target, vmInstr,
                                                 opValue, tmpReg, minstr2);
                  tmpReg->addMachineInstruction(minstr1);
                  
                  loadConstVec[numNew++] = minstr1;
                  if (minstr2 != NULL)
                    loadConstVec[numNew++] = minstr2;
                }
              else
                minstr->SetMachineOperand(op, opType, immedValue);
            }
        }
    }
  
  if (numNew > 0)
    {
      // Insert the new instructions *before* the old ones by moving
      // the old ones over `numNew' positions (last-to-first, of course!).
      // We do check *after* returning that we did not exceed the vector mvec.
      for (int i=numInstr-1; i >= 0; i--)
        mvec[i+numNew] = mvec[i];
      
      for (unsigned i=0; i < numNew; i++)
        mvec[i] = loadConstVec[i];
    }
  
  return (numInstr + numNew);
}


// 
// Substitute operand `operandNum' of the instruction in node `treeNode'
// in place the use(s) of that instruction in node `parent'.
// 
static void
ForwardOperand(InstructionNode* treeNode,
               InstrTreeNode*   parent,
               int operandNum)
{
  assert(treeNode && parent && "Invalid invocation of ForwardOperand");
  
  Instruction* unusedOp = treeNode->getInstruction();
  Value* fwdOp = unusedOp->getOperand(operandNum);

  // The parent itself may be a list node, so find the real parent instruction
  while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
    {
      parent = parent->parent();
      assert(parent && "ERROR: Non-instruction node has no parent in tree.");
    }
  InstructionNode* parentInstrNode = (InstructionNode*) parent;
  
  Instruction* userInstr = parentInstrNode->getInstruction();
  MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
  for (unsigned i=0, N=mvec.size(); i < N; i++)
    {
      MachineInstr* minstr = mvec[i];
      for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++)
        {
          const MachineOperand& mop = minstr->getOperand(i);
          if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
              mop.getVRegValue() == unusedOp)
            {
              minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
                                           fwdOp);
            }
        }
    }
}


MachineInstr*
CreateCopyInstructionsByType(const TargetMachine& target,
                             Value* src,
                             Instruction* dest,
                             MachineInstr*& getMinstr2)
{
  getMinstr2 = NULL;                    // initialize second return value
  
  MachineInstr* minstr1 = NULL;
  
  const Type* resultType = dest->getType();
  
  MachineOpCode opCode = ChooseAddInstructionByType(resultType);
  if (opCode == INVALID_OPCODE)
    {
      assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
      return NULL;
    }
  
  // if `src' is a constant that doesn't fit in the immed field, generate
  // a load instruction instead of an add
  if (src->isConstant())
    {
      unsigned int machineRegNum;
      int64_t immedValue;
      MachineOperand::MachineOperandType opType =
        ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
                         machineRegNum, immedValue);
      
      if (opType == MachineOperand::MO_VirtualRegister)
        { // value is constant and cannot fit in immed field for the ADD
          minstr1 = CreateLoadConstInstr(target, dest, src, dest, getMinstr2);
        }
    }
  
  if (minstr1 == NULL)
    { // Create the appropriate add instruction.
      // Make `src' the second operand, in case it is a constant
      // Use (unsigned long) 0 for a NULL pointer value.
      // 
      const Type* nullValueType =
        (resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy
                                                           : resultType;
      minstr1 = new MachineInstr(opCode);
      minstr1->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                 ConstPoolVal::getNullConstant(nullValueType));
      minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src);
      minstr1->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
    }
  
  return minstr1;
}


// This function is currently unused and incomplete but will be 
// used if we have a linear layout of basic blocks in LLVM code.
// It decides which branch should fall-through, and whether an
// extra unconditional branch is needed (when neither falls through).
// 
void
ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
{
  BranchInst* brInstr = (BranchInst*) vmInstr;
  
  brPattern.flipCondition = false;
  brPattern.targetBB      = brInstr->getSuccessor(0);
  brPattern.extraBranch   = NULL;
  
  assert(brInstr->getNumSuccessors() > 1 &&
         "Unnecessary analysis for unconditional branch");
  
  assert(0 && "Fold branches in peephole optimization");
}


//******************* Externally Visible Functions *************************/


//------------------------------------------------------------------------ 
// External Function: GetInstructionsByRule
//
// Purpose:
//   Choose machine instructions for the SPARC according to the
//   patterns chosen by the BURG-generated parser.
//------------------------------------------------------------------------ 

unsigned
GetInstructionsByRule(InstructionNode* subtreeRoot,
                      int ruleForNode,
                      short* nts,
                      TargetMachine &target,
                      MachineInstr** mvec)
{
  int numInstr = 1;			// initialize for common case
  bool checkCast = false;		// initialize here to use fall-through
  Value *leftVal, *rightVal;
  const Type* opType;
  int nextRule;
  int forwardOperandNum = -1;
  int64_t s0 = 0;			// variables holding zero to avoid
  uint64_t u0 = 0;			// overloading ambiguities below
  
  mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL;	// just for safety
  
  // 
  // Let's check for chain rules outside the switch so that we don't have
  // to duplicate the list of chain rule production numbers here again
  // 
  if (ThisIsAChainRule(ruleForNode))
    {
      // Chain rules have a single nonterminal on the RHS.
      // Get the rule that matches the RHS non-terminal and use that instead.
      // 
      assert(nts[0] && ! nts[1]
             && "A chain rule should have only one RHS non-terminal!");
      nextRule = burm_rule(subtreeRoot->state, nts[0]);
      nts = burm_nts[nextRule];
      numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
    }
  else
    {
      switch(ruleForNode) {
      case 1:	// stmt:   Ret
      case 2:	// stmt:   RetValue(reg)
                // NOTE: Prepass of register allocation is responsible
                //	 for moving return value to appropriate register.
                // Mark the return-address register as a hidden virtual reg.
                // Mark the return value   register as an implicit use.
        {		
        ReturnInst* returnInstr = (ReturnInst*) subtreeRoot->getInstruction();
        assert(returnInstr->getOpcode() == Instruction::Ret);
        
        Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
                                                    returnInstr, NULL);
        returnInstr->getMachineInstrVec().addTempValue(returnReg);

        if (returnInstr->getReturnValue() != NULL)
          returnInstr->getMachineInstrVec().addImplicitUse(
                                             returnInstr->getReturnValue());
        
        mvec[0] = new MachineInstr(RETURN);
        mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                      returnReg);
        mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s0);
        
        returnReg->addMachineInstruction(mvec[0]);
        
        mvec[numInstr++] = new MachineInstr(NOP); // delay slot
        break;
        }  
        
      case 3:	// stmt:   Store(reg,reg)
      case 4:	// stmt:   Store(reg,ptrreg)
        mvec[0] = new MachineInstr(
                       ChooseStoreInstruction(
                            subtreeRoot->leftChild()->getValue()->getType()));
        SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
        break;

      case 5:	// stmt:   BrUncond
        mvec[0] = new MachineInstr(BA);
        mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
                                      (Value*)NULL);
        mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
              ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
        
        // delay slot
        mvec[numInstr++] = new MachineInstr(NOP);
        break;

      case 206:	// stmt:   BrCond(setCCconst)
        // setCCconst => boolean was computed with `%b = setCC type reg1 const'
        // If the constant is ZERO, we can use the branch-on-integer-register
        // instructions and avoid the SUBcc instruction entirely.
        // Otherwise this is just the same as case 5, so just fall through.
        {
        InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
        assert(constNode &&
               constNode->getNodeType() ==InstrTreeNode::NTConstNode);
        ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
        bool isValidConst;

        if ((constVal->getType()->isIntegral()
             || constVal->getType()->isPointerType())
            && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
            && isValidConst)
          {
            // That constant is a zero after all...
            // Use the left child of setCC as the first argument!
            mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
            mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                          subtreeRoot->leftChild()->leftChild()->getValue());
            mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
              ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));

            // delay slot
            mvec[numInstr++] = new MachineInstr(NOP);

            // false branch
            int n = numInstr++; 
            mvec[n] = new MachineInstr(BA);
            mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
                                          (Value*) NULL);
            mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
               ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
            
            // delay slot
            mvec[numInstr++] = new MachineInstr(NOP);
            
            break;
          }
        // ELSE FALL THROUGH
        }

      case 6:	// stmt:   BrCond(bool)
        // bool => boolean was computed with some boolean operator
        // (SetCC, Not, ...).  We need to check whether the type was a FP,
        // signed int or unsigned int, and check the branching condition in
        // order to choose the branch to use.
        // 
        {
        bool isFPBranch;
        mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot,
                                                        isFPBranch));
        mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
                                      subtreeRoot->leftChild()->getValue());
        mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
              ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));

        // delay slot
        mvec[numInstr++] = new MachineInstr(NOP);

        // false branch
        int n = numInstr++;
        mvec[n] = new MachineInstr(BA);
        mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
                                      (Value*) NULL);
        mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
              ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
        
        // delay slot
        mvec[numInstr++] = new MachineInstr(NOP);
        break;
        }
        
      case 208:	// stmt:   BrCond(boolconst)
        {
        // boolconst => boolean is a constant; use BA to first or second label
        ConstPoolVal* constVal =
          subtreeRoot->leftChild()->getValue()->castConstantAsserting();
        unsigned dest = ((ConstPoolBool*) constVal)->getValue()? 0 : 1;
        
        mvec[0] = new MachineInstr(BA);
        mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
                                      (Value*) NULL);
        mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
          ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest));
        
        // delay slot
        mvec[numInstr++] = new MachineInstr(NOP);
        break;
        }
        
      case   8:	// stmt:   BrCond(boolreg)
        // boolreg   => boolean is stored in an existing register.
        // Just use the branch-on-integer-register instruction!
        // 
        {
        mvec[0] = new MachineInstr(BRNZ);
        mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                      subtreeRoot->leftChild()->getValue());
        mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
              ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));

        // delay slot
        mvec[numInstr++] = new MachineInstr(NOP); // delay slot

        // false branch
        int n = numInstr++;
        mvec[n] = new MachineInstr(BA);
        mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
                                      (Value*) NULL);
        mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
              ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
        
        // delay slot
        mvec[numInstr++] = new MachineInstr(NOP);
        break;
        }  
      
      case 9:	// stmt:   Switch(reg)
        assert(0 && "*** SWITCH instruction is not implemented yet.");
        numInstr = 0;
        break;

      case 10:	// reg:   VRegList(reg, reg)
        assert(0 && "VRegList should never be the topmost non-chain rule");
        break;

      case 21:	// reg:   Not(reg):	Implemented as reg = reg XOR-NOT 0
        mvec[0] = new MachineInstr(XNOR);
        mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                      subtreeRoot->leftChild()->getValue());
        mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
        mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
                                     subtreeRoot->getValue());
        break;

      case 322:	// reg:   ToBoolTy(bool):
      case 22:	// reg:   ToBoolTy(reg):
        opType = subtreeRoot->leftChild()->getValue()->getType();
        assert(opType->isIntegral() || opType == Type::BoolTy);
        numInstr = 0;
        forwardOperandNum = 0;
        break;

      case 23:	// reg:   ToUByteTy(reg)
      case 25:	// reg:   ToUShortTy(reg)
      case 27:	// reg:   ToUIntTy(reg)
      case 29:	// reg:   ToULongTy(reg)
        opType = subtreeRoot->leftChild()->getValue()->getType();
        assert(opType->isIntegral() ||
               opType->isPointerType() ||
               opType == Type::BoolTy && "Cast is illegal for other types");
        numInstr = 0;
        forwardOperandNum = 0;
        break;
        
      case 24:	// reg:   ToSByteTy(reg)
      case 26:	// reg:   ToShortTy(reg)
      case 28:	// reg:   ToIntTy(reg)
      case 30:	// reg:   ToLongTy(reg)
        opType = subtreeRoot->leftChild()->getValue()->getType();
        if (opType->isIntegral() || opType == Type::BoolTy)
          {
            numInstr = 0;
            forwardOperandNum = 0;
          }
        else
          {
            mvec[0] = new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,
                                                              opType));
            Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
          }
        break;
        
      case  31:	// reg:   ToFloatTy(reg):
      case  32:	// reg:   ToDoubleTy(reg):
      case 232:	// reg:   ToDoubleTy(Constant):
        
        // If this instruction has a parent (a user) in the tree 
        // and the user is translated as an FsMULd instruction,
        // then the cast is unnecessary.  So check that first.
        // In the future, we'll want to do the same for the FdMULq instruction,
        // so do the check here instead of only for ToFloatTy(reg).
        // 
        if (subtreeRoot->parent() != NULL &&
            ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
          {
            numInstr = 0;
            forwardOperandNum = 0;
          }
        else
          {
            opType = subtreeRoot->leftChild()->getValue()->getType();
            MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType);
            if (opCode == INVALID_OPCODE)	// no conversion needed
              {
                numInstr = 0;
                forwardOperandNum = 0;
              }
            else
              {
                mvec[0] = new MachineInstr(opCode);
                Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
              }
          }
        break;

      case 19:	// reg:   ToArrayTy(reg):
      case 20:	// reg:   ToPointerTy(reg):
        numInstr = 0;
        forwardOperandNum = 0;
        break;

      case 233:	// reg:   Add(reg, Constant)
        mvec[0] = CreateAddConstInstruction(subtreeRoot);
        if (mvec[0] != NULL)
          break;
        // ELSE FALL THROUGH

      case 33:	// reg:   Add(reg, reg)
        mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case 234:	// reg:   Sub(reg, Constant)
        mvec[0] = CreateSubConstInstruction(subtreeRoot);
        if (mvec[0] != NULL)
          break;
        // ELSE FALL THROUGH

      case 34:	// reg:   Sub(reg, reg)
        mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case 135:	// reg:   Mul(todouble, todouble)
        checkCast = true;
        // FALL THROUGH 

      case 35:	// reg:   Mul(reg, reg)
        mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast));
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case 335:	// reg:   Mul(todouble, todoubleConst)
        checkCast = true;
        // FALL THROUGH 

      case 235:	// reg:   Mul(reg, Constant)
        mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]);
        if (mvec[0] == NULL)
          {
            mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot,
                                                            checkCast));
            Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
          }
        else
          if (mvec[1] != NULL)
            ++numInstr;
        break;

      case 236:	// reg:   Div(reg, Constant)
        mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]);
        if (mvec[0] != NULL)
          {
            if (mvec[1] != NULL)
              ++numInstr;
          }
        else
        // ELSE FALL THROUGH

      case 36:	// reg:   Div(reg, reg)
        mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case  37:	// reg:   Rem(reg, reg)
      case 237:	// reg:   Rem(reg, Constant)
        assert(0 && "REM instruction unimplemented for the SPARC.");
        break;

      case  38:	// reg:   And(reg, reg)
      case 238:	// reg:   And(reg, Constant)
        mvec[0] = new MachineInstr(AND);
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case 138:	// reg:   And(reg, not)
        mvec[0] = new MachineInstr(ANDN);
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case  39:	// reg:   Or(reg, reg)
      case 239:	// reg:   Or(reg, Constant)
        mvec[0] = new MachineInstr(ORN);
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case 139:	// reg:   Or(reg, not)
        mvec[0] = new MachineInstr(ORN);
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case  40:	// reg:   Xor(reg, reg)
      case 240:	// reg:   Xor(reg, Constant)
        mvec[0] = new MachineInstr(XOR);
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case 140:	// reg:   Xor(reg, not)
        mvec[0] = new MachineInstr(XNOR);
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case 41:	// boolconst:   SetCC(reg, Constant)
        // Check if this is an integer comparison, and
        // there is a parent, and the parent decided to use
        // a branch-on-integer-register instead of branch-on-condition-code.
        // If so, the SUBcc instruction is not required.
        // (However, we must still check for constants to be loaded from
        // the constant pool so that such a load can be associated with
        // this instruction.)
        // 
        // Otherwise this is just the same as case 42, so just fall through.
        // 
        if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
            subtreeRoot->parent() != NULL)
          {
            InstructionNode* parent = (InstructionNode*) subtreeRoot->parent();
            assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode);
            const vector<MachineInstr*>&
              minstrVec = parent->getInstruction()->getMachineInstrVec();
            MachineOpCode parentOpCode;
            if (parent->getInstruction()->getOpcode() == Instruction::Br &&
                (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
                parentOpCode <= BRGEZ)
              {
                numInstr = 0;		// don't forward the operand!
                break;
              }
          }
        // ELSE FALL THROUGH

      case 42:	// bool:   SetCC(reg, reg):
      {
        // If result of the SetCC is only used for a single branch, we can
        // discard the result.  Otherwise, the boolean value must go into
        // an integer register.
        // 
        bool keepBoolVal = (subtreeRoot->parent() == NULL ||
                            ((InstructionNode*) subtreeRoot->parent())
                            ->getInstruction()->getOpcode() !=Instruction::Br);
        bool subValIsBoolVal =
          subtreeRoot->getInstruction()->getOpcode() == Instruction::SetNE;
        bool keepSubVal = keepBoolVal && subValIsBoolVal;
        bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
        
        bool mustClearReg;
        int valueToMove;
        MachineOpCode movOpCode;
        
        if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
            subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
          {
            // Integer condition: dest. should be %g0 or an integer register.
            // If result must be saved but condition is not SetEQ then we need
            // a separate instruction to compute the bool result, so discard
            // result of SUBcc instruction anyway.
            // 
            mvec[0] = new MachineInstr(SUBcc);
            Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal);
            
            // mark the 4th operand as being a CC register, and a "result"
            mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
                                          subtreeRoot->getValue(),/*def*/true);
            
            if (computeBoolVal)
              { // recompute bool using the integer condition codes
                movOpCode =
                  ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
              }
          }
        else
          {
            // FP condition: dest of FCMP should be some FCCn register
            mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
            mvec[0]->SetMachineOperand(0,MachineOperand::MO_CCRegister,
                                         subtreeRoot->getValue());
            mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
                                         subtreeRoot->leftChild()->getValue());
            mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
                                        subtreeRoot->rightChild()->getValue());
            
            if (computeBoolVal)
              {// recompute bool using the FP condition codes
                mustClearReg = true;
                valueToMove = 1;
                movOpCode = ChooseMovFpccInstruction(subtreeRoot);
              }
          }
        
        if (computeBoolVal)
          {
            if (mustClearReg)
              {// Unconditionally set register to 0
               int n = numInstr++;
               mvec[n] = new MachineInstr(SETHI);
               mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,
                                            s0);
               mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
                                            subtreeRoot->getValue());
              }
            
            // Now conditionally move `valueToMove' (0 or 1) into the register
            int n = numInstr++;
            mvec[n] = new MachineInstr(movOpCode);
            mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
                                          subtreeRoot->getValue());
            mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
                                          valueToMove);
            mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
                                          subtreeRoot->getValue());
          }
        break;
      }    

      case 43:	// boolreg: VReg
      case 44:	// boolreg: Constant
        numInstr = 0;
        break;

      case 51:	// reg:   Load(reg)
      case 52:	// reg:   Load(ptrreg)
      case 53:	// reg:   LoadIdx(reg,reg)
      case 54:	// reg:   LoadIdx(ptrreg,reg)
        mvec[0] = new MachineInstr(ChooseLoadInstruction(
                                     subtreeRoot->getValue()->getType()));
        SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
        break;

      case 55:	// reg:   GetElemPtr(reg)
      case 56:	// reg:   GetElemPtrIdx(reg,reg)
        if (subtreeRoot->parent() != NULL)
          {
            // Check if the parent was an array access.
            // If so, we still need to generate this instruction.
            MemAccessInst* memInst = (MemAccessInst*)
              subtreeRoot->getInstruction();
            const PointerType* ptrType =
              (const PointerType*) memInst->getPtrOperand()->getType();
            if (! ptrType->getValueType()->isArrayType())
              {// we don't need a separate instr
                numInstr = 0;		// don't forward operand!
                break;
              }
          }
        // else in all other cases we need to a separate ADD instruction
        mvec[0] = new MachineInstr(ADD);
        SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
        break;

      case 57:	// reg:   Alloca: Implement as 2 instructions:
                    //	sub %sp, tmp -> %sp
        {		//	add %sp, 0   -> result
        Instruction* instr = subtreeRoot->getInstruction();
        const PointerType* instrType = (const PointerType*) instr->getType();
        assert(instrType->isPointerType());
        int tsize = (int)
          target.findOptimalStorageSize(instrType->getValueType());
        assert(tsize != 0 && "Just to check when this can happen");
        
        // Create a temporary Value to hold the constant type-size
        ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);

        // Instruction 1: sub %sp, tsize -> %sp
        // tsize is always constant, but it may have to be put into a
        // register if it doesn't fit in the immediate field.
        // 
        mvec[0] = new MachineInstr(SUB);
        mvec[0]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
        mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
                                      valueForTSize);
        mvec[0]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);

        // Instruction 2: add %sp, 0 -> result
        numInstr++;
        mvec[1] = new MachineInstr(ADD);
        mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
        mvec[1]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
        mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
                                      instr);
        break;
        }
        
      case 58:	// reg:   Alloca(reg): Implement as 3 instructions:
                //	mul num, typeSz -> tmp
                //	sub %sp, tmp    -> %sp
        {	//	add %sp, 0      -> result
        Instruction* instr = subtreeRoot->getInstruction();
        const PointerType* instrType = (const PointerType*) instr->getType();
        assert(instrType->isPointerType() &&
               instrType->getValueType()->isArrayType());
        const Type* eltType =
          ((ArrayType*) instrType->getValueType())->getElementType();
        int tsize = (int) target.findOptimalStorageSize(eltType);

        assert(tsize != 0 && "Just to check when this can happen");
        // if (tsize == 0)
          // {
            // numInstr = 0;
            // break;
          // }
        //else go on to create the instructions needed...

        // Create a temporary Value to hold the constant type-size
        ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);

        // Create a temporary value to hold `tmp'
        Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
                                          subtreeRoot->leftChild()->getValue(),
                                          NULL /*could insert tsize here*/);
        subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
        
        // Instruction 1: mul numElements, typeSize -> tmp
        mvec[0] = new MachineInstr(MULX);
        mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                    subtreeRoot->leftChild()->getValue());
        mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
                                      valueForTSize);
        mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
                                      tmpInstr);

        tmpInstr->addMachineInstruction(mvec[0]);

        // Instruction 2: sub %sp, tmp -> %sp
        numInstr++;
        mvec[1] = new MachineInstr(SUB);
        mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
        mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
                                      tmpInstr);
        mvec[1]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
        
        // Instruction 3: add %sp, 0 -> result
        numInstr++;
        mvec[2] = new MachineInstr(ADD);
        mvec[2]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
        mvec[2]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
        mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
                                      instr);
        break;
        }

      case 61:	// reg:   Call
                // Generate a call-indirect (i.e., JMPL) for now to expose
                // the potential need for registers.  If an absolute address
                // is available, replace this with a CALL instruction.
                // Mark both the indirection register and the return-address
        	// register as hidden virtual registers.
                // Also, mark the operands of the Call as implicit operands
                // of the machine instruction.
        {
        CallInst* callInstr = (CallInst*) subtreeRoot->getInstruction();
        Method* callee = callInstr->getCalledMethod();
        assert(callInstr->getOpcode() == Instruction::Call); 
        
        Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
                                                     callee, NULL);
        Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
                                                     callInstr, NULL);

        // Note temporary values and implicit uses in mvec
        callInstr->getMachineInstrVec().addTempValue(jmpAddrReg);
        callInstr->getMachineInstrVec().addTempValue(retAddrReg);
        for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i)
          if (callInstr->getOperand(i) != callee)
            callInstr->getMachineInstrVec().addImplicitUse(
                                                   callInstr->getOperand(i));
        
        // Generate the machine instruction and its operands
        mvec[0] = new MachineInstr(JMPL);
        mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                      jmpAddrReg);
        mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
                                      (int64_t) 0);
        mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
                                      retAddrReg);
        
        // NOTE: jmpAddrReg will be loaded by a different instruction generated
        //   by the final code generator, so we just mark the CALL instruction
        //   as computing that value.
        //   The retAddrReg is actually computed by the CALL instruction.
        //
        jmpAddrReg->addMachineInstruction(mvec[0]);
        retAddrReg->addMachineInstruction(mvec[0]);
        
        mvec[numInstr++] = new MachineInstr(NOP); // delay slot
        break;
        }

      case 62:	// reg:   Shl(reg, reg)
        opType = subtreeRoot->leftChild()->getValue()->getType();
        assert(opType->isIntegral()
               || opType == Type::BoolTy
               || opType->isPointerType()&& "Shl unsupported for other types");
        mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case 63:	// reg:   Shr(reg, reg)
        opType = subtreeRoot->leftChild()->getValue()->getType();
        assert(opType->isIntegral()
               || opType == Type::BoolTy
               || opType->isPointerType() &&"Shr unsupported for other types");
        mvec[0] = new MachineInstr((opType->isSigned()
                                    ? ((opType == Type::LongTy)? SRAX : SRA)
                                    : ((opType == Type::LongTy)? SRLX : SRL)));
        Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
        break;

      case 64:	// reg:   Phi(reg,reg)
      {		// This instruction has variable #operands, so resultPos is 0.
        Instruction* phi = subtreeRoot->getInstruction();
        mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
        mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
                                      subtreeRoot->getValue());
        for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
          mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
                                          phi->getOperand(i));
        break;
      }  
      case 71:	// reg:     VReg
      case 72:	// reg:     Constant
        numInstr = 0;			// don't forward the value
        break;

      default:
        assert(0 && "Unrecognized BURG rule");
        numInstr = 0;
        break;
      }
    }
  
  if (forwardOperandNum >= 0)
    { // We did not generate a machine instruction but need to use operand.
      // If user is in the same tree, replace Value in its machine operand.
      // If not, insert a copy instruction which should get coalesced away
      // by register allocation.
      if (subtreeRoot->parent() != NULL)
        ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
      else
        {
          MachineInstr *minstr1 = NULL, *minstr2 = NULL;
          minstr1 = CreateCopyInstructionsByType(target,
                subtreeRoot->getInstruction()->getOperand(forwardOperandNum),
                subtreeRoot->getInstruction(), minstr2);
          assert(minstr1);
          mvec[numInstr++] = minstr1;
          if (minstr2 != NULL)
            mvec[numInstr++] = minstr2;
        }
    }
  
  if (! ThisIsAChainRule(ruleForNode))
    numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
  
  return numInstr;
}