1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
|
// $Id$ -*- C++ -*--
//***************************************************************************
// File:
// SparcInternals.h
//
// Purpose:
// This file defines stuff that is to be private to the Sparc
// backend, but is shared among different portions of the backend.
//**************************************************************************/
#ifndef SPARC_INTERNALS_H
#define SPARC_INTERNALS_H
#include "SparcRegClassInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/MachineSchedInfo.h"
#include "llvm/Target/MachineFrameInfo.h"
#include "llvm/Target/MachineCacheInfo.h"
#include "llvm/CodeGen/RegClass.h"
#include "llvm/Type.h"
#include <sys/types.h>
class LiveRange;
class UltraSparc;
class PhyRegAlloc;
// OpCodeMask definitions for the Sparc V9
//
const OpCodeMask Immed = 0x00002000; // immed or reg operand?
const OpCodeMask Annul = 0x20000000; // annul delay instr?
const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
enum SparcInstrSchedClass {
SPARC_NONE, /* Instructions with no scheduling restrictions */
SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
SPARC_IEU0, /* Integer class IEU0 */
SPARC_IEU1, /* Integer class IEU1 */
SPARC_FPM, /* FP Multiply or Divide instructions */
SPARC_FPA, /* All other FP instructions */
SPARC_CTI, /* Control-transfer instructions */
SPARC_LD, /* Load instructions */
SPARC_ST, /* Store instructions */
SPARC_SINGLE, /* Instructions that must issue by themselves */
SPARC_INV, /* This should stay at the end for the next value */
SPARC_NUM_SCHED_CLASSES = SPARC_INV
};
//---------------------------------------------------------------------------
// enum SparcMachineOpCode.
// const MachineInstrDescriptor SparcMachineInstrDesc[]
//
// Purpose:
// Description of UltraSparc machine instructions.
//
//---------------------------------------------------------------------------
enum SparcMachineOpCode {
#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
ENUM,
#include "SparcInstr.def"
// End-of-array marker
INVALID_OPCODE,
NUM_REAL_OPCODES = PHI, // number of valid opcodes
NUM_TOTAL_OPCODES = INVALID_OPCODE
};
// Array of machine instruction descriptions...
extern const MachineInstrDescriptor SparcMachineInstrDesc[];
//---------------------------------------------------------------------------
// class UltraSparcInstrInfo
//
// Purpose:
// Information about individual instructions.
// Most information is stored in the SparcMachineInstrDesc array above.
// Other information is computed on demand, and most such functions
// default to member functions in base class MachineInstrInfo.
//---------------------------------------------------------------------------
class UltraSparcInstrInfo : public MachineInstrInfo {
public:
/*ctor*/ UltraSparcInstrInfo(const TargetMachine& tgt);
//
// All immediate constants are in position 0 except the
// store instructions.
//
virtual int getImmmedConstantPos(MachineOpCode opCode) const {
bool ignore;
if (this->maxImmedConstant(opCode, ignore) != 0)
{
assert(! this->isStore((MachineOpCode) STB - 1)); // first store is STB
assert(! this->isStore((MachineOpCode) STD + 1)); // last store is STD
return (opCode >= STB || opCode <= STD)? 2 : 1;
}
else
return -1;
}
virtual bool hasResultInterlock (MachineOpCode opCode) const
{
// All UltraSPARC instructions have interlocks (note that delay slots
// are not considered here).
// However, instructions that use the result of an FCMP produce a
// 9-cycle stall if they are issued less than 3 cycles after the FCMP.
// Force the compiler to insert a software interlock (i.e., gap of
// 2 other groups, including NOPs if necessary).
return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
}
//-------------------------------------------------------------------------
// Code generation support for creating individual machine instructions
//-------------------------------------------------------------------------
// Create an instruction sequence to put the constant `val' into
// the virtual register `dest'. The generated instructions are
// returned in `minstrVec'. Any temporary registers (TmpInstruction)
// created are returned in `tempVec'.
//
virtual void CreateCodeToLoadConst(Value* val,
Instruction* dest,
std::vector<MachineInstr*>& minstrVec,
std::vector<TmpInstruction*>& tmp) const;
// Create an instruction sequence to copy an integer value `val'
// to a floating point value `dest' by copying to memory and back.
// val must be an integral type. dest must be a Float or Double.
// The generated instructions are returned in `minstrVec'.
// Any temp. registers (TmpInstruction) created are returned in `tempVec'.
//
virtual void CreateCodeToCopyIntToFloat(Method* method,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& minstr,
std::vector<TmpInstruction*>& temp,
TargetMachine& target) const;
// Similarly, create an instruction sequence to copy an FP value
// `val' to an integer value `dest' by copying to memory and back.
// See the previous function for information about return values.
//
virtual void CreateCodeToCopyFloatToInt(Method* method,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& minstr,
std::vector<TmpInstruction*>& temp,
TargetMachine& target) const;
// create copy instruction(s)
virtual void
CreateCopyInstructionsByType(const TargetMachine& target,
Value* src,
Instruction* dest,
std::vector<MachineInstr*>& minstr) const;
};
//----------------------------------------------------------------------------
// class UltraSparcRegInfo
//
// This class implements the virtual class MachineRegInfo for Sparc.
//
//----------------------------------------------------------------------------
class UltraSparcRegInfo : public MachineRegInfo
{
private:
// The actual register classes in the Sparc
//
enum RegClassIDs {
IntRegClassID, // Integer
FloatRegClassID, // Float (both single/double)
IntCCRegClassID, // Int Condition Code
FloatCCRegClassID // Float Condition code
};
// Type of registers available in Sparc. There can be several reg types
// in the same class. For instace, the float reg class has Single/Double
// types
//
enum RegTypes {
IntRegType,
FPSingleRegType,
FPDoubleRegType,
IntCCRegType,
FloatCCRegType
};
// **** WARNING: If the above enum order is changed, also modify
// getRegisterClassOfValue method below since it assumes this particular
// order for efficiency.
// reverse pointer to get info about the ultra sparc machine
//
const UltraSparc *const UltraSparcInfo;
// Number of registers used for passing int args (usually 6: %o0 - %o5)
//
unsigned const NumOfIntArgRegs;
// Number of registers used for passing float args (usually 32: %f0 - %f31)
//
unsigned const NumOfFloatArgRegs;
// An out of bound register number that can be used to initialize register
// numbers. Useful for error detection.
//
int const InvalidRegNum;
// ======================== Private Methods =============================
// The following methods are used to color special live ranges (e.g.
// method args and return values etc.) with specific hardware registers
// as required. See SparcRegInfo.cpp for the implementation.
//
void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo,
const MachineInstr *MI,AddedInstrMapType &AIMap)const;
MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg,
unsigned RegClassID) const ;
void suggestReg4RetAddr(const MachineInstr * RetMI,
LiveRangeInfo& LRI) const;
void suggestReg4CallAddr(const MachineInstr * CallMI, LiveRangeInfo& LRI,
std::vector<RegClass *> RCList) const;
// The following methods are used to find the addresses etc. contained
// in specail machine instructions like CALL/RET
//
Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ;
const Value *getCallInstRetAddr(const MachineInstr *CallMI) const;
const unsigned getCallInstNumArgs(const MachineInstr *CallMI) const;
// The following 3 methods are used to find the RegType (see enum above)
// of a LiveRange, Value and using the unified RegClassID
int getRegType(const LiveRange *const LR) const {
unsigned Typ;
switch( (LR->getRegClass())->getID() ) {
case IntRegClassID: return IntRegType;
case FloatRegClassID:
Typ = LR->getTypeID();
if( Typ == Type::FloatTyID )
return FPSingleRegType;
else if( Typ == Type::DoubleTyID )
return FPDoubleRegType;
else assert(0 && "Unknown type in FloatRegClass");
case IntCCRegClassID: return IntCCRegType;
case FloatCCRegClassID: return FloatCCRegType ;
default: assert( 0 && "Unknown reg class ID");
return 0;
}
}
int getRegType(const Value *const Val) const {
unsigned Typ;
switch( getRegClassIDOfValue(Val) ) {
case IntRegClassID: return IntRegType;
case FloatRegClassID:
Typ = (Val->getType())->getPrimitiveID();
if( Typ == Type::FloatTyID )
return FPSingleRegType;
else if( Typ == Type::DoubleTyID )
return FPDoubleRegType;
else assert(0 && "Unknown type in FloatRegClass");
case IntCCRegClassID: return IntCCRegType;
case FloatCCRegClassID: return FloatCCRegType ;
default: assert( 0 && "Unknown reg class ID");
return 0;
}
}
int getRegType(int reg) const {
if( reg < 32 )
return IntRegType;
else if ( reg < (32 + 32) )
return FPSingleRegType;
else if ( reg < (64 + 32) )
return FPDoubleRegType;
else if( reg < (64+32+4) )
return FloatCCRegType;
else if( reg < (64+32+4+2) )
return IntCCRegType;
else
assert(0 && "Invalid register number in getRegType");
}
// The following methods are used to generate copy instructions to move
// data between condition code registers
//
MachineInstr * cpCCR2IntMI(const unsigned IntReg) const;
MachineInstr * cpInt2CCRMI(const unsigned IntReg) const;
// Used to generate a copy instruction based on the register class of
// value.
//
MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg,
const int RegType) const;
// The following 2 methods are used to order the instructions addeed by
// the register allocator in association with method calling. See
// SparcRegInfo.cpp for more details
//
void moveInst2OrdVec(std::vector<MachineInstr *> &OrdVec,
MachineInstr *UnordInst,
PhyRegAlloc &PRA) const;
void OrderAddedInstrns(std::vector<MachineInstr *> &UnordVec,
std::vector<MachineInstr *> &OrdVec,
PhyRegAlloc &PRA) const;
// To find whether a particular call is to a var arg method
//
bool isVarArgCall(const MachineInstr *CallMI) const;
public:
// constructor
//
UltraSparcRegInfo(const TargetMachine& tgt ) :
MachineRegInfo(tgt),
UltraSparcInfo(& (const UltraSparc&) tgt),
NumOfIntArgRegs(6),
NumOfFloatArgRegs(32),
InvalidRegNum(1000) {
MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) );
MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID));
assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 &&
"32 Float regs are used for float arg passing");
}
~UltraSparcRegInfo(void) { } // empty destructor
// To get complete machine information structure using the machine register
// information
//
inline const UltraSparc & getUltraSparcInfo() const {
return *UltraSparcInfo;
}
// To find the register class of a Value
//
inline unsigned getRegClassIDOfValue (const Value *const Val,
bool isCCReg = false) const {
Type::PrimitiveID ty = (Val->getType())->getPrimitiveID();
unsigned res;
if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
(ty == Type::MethodTyID) || (ty == Type::PointerTyID) )
res = IntRegClassID; // sparc int reg (ty=0: void)
else if( ty <= Type::DoubleTyID)
res = FloatRegClassID; // sparc float reg class
else {
std::cerr << "TypeID: " << ty << "\n";
assert(0 && "Cannot resolve register class for type");
return 0;
}
if(isCCReg)
return res + 2; // corresponidng condition code regiser
else
return res;
}
// returns the register that contains always zero
// this is the unified register number
//
inline int getZeroRegNum() const { return SparcIntRegOrder::g0; }
// returns the reg used for pushing the address when a method is called.
// This can be used for other purposes between calls
//
unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; }
// Returns the register containing the return address.
// It should be made sure that this register contains the return
// value when a return instruction is reached.
//
unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; }
// The following methods are used to color special live ranges (e.g.
// method args and return values etc.) with specific hardware registers
// as required. See SparcRegInfo.cpp for the implementation for Sparc.
//
void suggestRegs4MethodArgs(const Method *const Meth,
LiveRangeInfo& LRI) const;
void suggestRegs4CallArgs(const MachineInstr *const CallMI,
LiveRangeInfo& LRI,
std::vector<RegClass *> RCL) const;
void suggestReg4RetValue(const MachineInstr *const RetMI,
LiveRangeInfo& LRI) const;
void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI,
AddedInstrns *const FirstAI) const;
void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI,
AddedInstrns *const CallAI, PhyRegAlloc &PRA,
const BasicBlock *BB) const;
void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI,
AddedInstrns *const RetAI) const;
// method used for printing a register for debugging purposes
//
static void printReg(const LiveRange *const LR) ;
// this method provides a unique number for each register
//
inline int getUnifiedRegNum(int RegClassID, int reg) const {
if( RegClassID == IntRegClassID && reg < 32 )
return reg;
else if ( RegClassID == FloatRegClassID && reg < 64)
return reg + 32; // we have 32 int regs
else if( RegClassID == FloatCCRegClassID && reg < 4)
return reg + 32 + 64; // 32 int, 64 float
else if( RegClassID == IntCCRegClassID )
return 4+ 32 + 64; // only int cc reg
else if (reg==InvalidRegNum)
return InvalidRegNum;
else
assert(0 && "Invalid register class or reg number");
return 0;
}
// given the unified register number, this gives the name
// for generating assembly code or debugging.
//
inline const std::string getUnifiedRegName(int reg) const {
if( reg < 32 )
return SparcIntRegOrder::getRegName(reg);
else if ( reg < (64 + 32) )
return SparcFloatRegOrder::getRegName( reg - 32);
else if( reg < (64+32+4) )
return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
else if( reg < (64+32+4+2) ) // two names: %xcc and %ccr
return SparcIntCCRegOrder::getRegName( reg -32 - 64 - 4);
else if (reg== InvalidRegNum) //****** TODO: Remove */
return "<*NoReg*>";
else
assert(0 && "Invalid register number");
return "";
}
// The fllowing methods are used by instruction selection
//
inline unsigned getRegNumInCallersWindow(int reg) {
if (reg == InvalidRegNum || reg >= 32)
return reg;
return SparcIntRegOrder::getRegNumInCallersWindow(reg);
}
inline bool mustBeRemappedInCallersWindow(int reg) {
return (reg != InvalidRegNum && reg < 32);
}
// returns the # of bytes of stack space allocated for each register
// type. For Sparc, currently we allocate 8 bytes on stack for all
// register types. We can optimize this later if necessary to save stack
// space (However, should make sure that stack alignment is correct)
//
inline int getSpilledRegSize(const int RegType) const {
return 8;
}
// To obtain the return value contained in a CALL machine instruction
//
const Value * getCallInstRetVal(const MachineInstr *CallMI) const;
// The following methods are used to generate "copy" machine instructions
// for an architecture.
//
MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg,
const int RegType) const;
MachineInstr * cpReg2MemMI(const unsigned SrcReg, const unsigned DestPtrReg,
const int Offset, const int RegType) const;
MachineInstr * cpMem2RegMI(const unsigned SrcPtrReg, const int Offset,
const unsigned DestReg, const int RegType) const;
MachineInstr* cpValue2Value(Value *Src, Value *Dest) const;
// To see whether a register is a volatile (i.e., whehter it must be
// preserved acorss calls)
//
inline bool isRegVolatile(const int RegClassID, const int Reg) const {
return (MachineRegClassArr[RegClassID])->isRegVolatile(Reg);
}
inline unsigned getFramePointer() const {
return SparcIntRegOrder::i6;
}
inline unsigned getStackPointer() const {
return SparcIntRegOrder::o6;
}
inline int getInvalidRegNum() const {
return InvalidRegNum;
}
// This method inserts the caller saving code for call instructions
//
void insertCallerSavingCode(const MachineInstr *MInst,
const BasicBlock *BB, PhyRegAlloc &PRA ) const;
};
/*---------------------------------------------------------------------------
Scheduling guidelines for SPARC IIi:
I-Cache alignment rules (pg 326)
-- Align a branch target instruction so that it's entire group is within
the same cache line (may be 1-4 instructions).
** Don't let a branch that is predicted taken be the last instruction
on an I-cache line: delay slot will need an entire line to be fetched
-- Make a FP instruction or a branch be the 4th instruction in a group.
For branches, there are tradeoffs in reordering to make this happen
(see pg. 327).
** Don't put a branch in a group that crosses a 32-byte boundary!
An artificial branch is inserted after every 32 bytes, and having
another branch will force the group to be broken into 2 groups.
iTLB rules:
-- Don't let a loop span two memory pages, if possible
Branch prediction performance:
-- Don't make the branch in a delay slot the target of a branch
-- Try not to have 2 predicted branches within a group of 4 instructions
(because each such group has a single branch target field).
-- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
the wrong prediction bits being used in some cases).
D-Cache timing constraints:
-- Signed int loads of less than 64 bits have 3 cycle latency, not 2
-- All other loads that hit in D-Cache have 2 cycle latency
-- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
-- Mis-aligned loads or stores cause a trap. In particular, replace
mis-aligned FP double precision l/s with 2 single-precision l/s.
-- Simulations of integer codes show increase in avg. group size of
33% when code (including esp. non-faulting loads) is moved across
one branch, and 50% across 2 branches.
E-Cache timing constraints:
-- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
Store buffer timing constraints:
-- Stores can be executed in same cycle as instruction producing the value
-- Stores are buffered and have lower priority for E-cache until
highwater mark is reached in the store buffer (5 stores)
Pipeline constraints:
-- Shifts can only use IEU0.
-- CC setting instructions can only use IEU1.
-- Several other instructions must only use IEU1:
EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
-- Two instructions cannot store to the same register file in a single cycle
(single write port per file).
Issue and grouping constraints:
-- FP and branch instructions must use slot 4.
-- Shift instructions cannot be grouped with other IEU0-specific instructions.
-- CC setting instructions cannot be grouped with other IEU1-specific instrs.
-- Several instructions must be issued in a single-instruction group:
MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
-- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
--
--
Branch delay slot scheduling rules:
-- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
has a 9-instruction penalty: the entire pipeline is flushed when the
second instruction reaches stage 9 (W-Writeback).
-- Avoid putting multicycle instructions, and instructions that may cause
load misses, in the delay slot of an annulling branch.
-- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
delay slot of an annulling branch.
*--------------------------------------------------------------------------- */
//---------------------------------------------------------------------------
// List of CPUResources for UltraSPARC IIi.
//---------------------------------------------------------------------------
const CPUResource AllIssueSlots( "All Instr Slots", 4);
const CPUResource IntIssueSlots( "Int Instr Slots", 3);
const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1);
const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1);
// IEUN instructions can use either Alu and should use IAluN.
// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
const CPUResource IAluN("Int ALU 1or2", 2);
const CPUResource IAlu0("Int ALU 1", 1);
const CPUResource IAlu1("Int ALU 2", 1);
const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
const CPUResource LdReturn("Load Return Unit", 1);
const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK
const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
//---------------------------------------------------------------------------
// const InstrClassRUsage SparcRUsageDesc[]
//
// Purpose:
// Resource usage information for instruction in each scheduling class.
// The InstrRUsage Objects for individual classes are specified first.
// Note that fetch and decode are decoupled from the execution pipelines
// via an instr buffer, so they are not included in the cycles below.
//---------------------------------------------------------------------------
const InstrClassRUsage NoneClassRUsage = {
SPARC_NONE,
/*totCycles*/ 7,
/* maxIssueNum */ 4,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 0,
/* V[] */ {
/*Cycle G */
/*Ccle E */
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
const InstrClassRUsage IEUNClassRUsage = {
SPARC_IEUN,
/*totCycles*/ 7,
/* maxIssueNum */ 3,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 4,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ IntIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAluN.rid, 1, 1 },
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage IEU0ClassRUsage = {
SPARC_IEU0,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 5,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ IntIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAluN.rid, 1, 1 },
{ IAlu0.rid, 1, 1 },
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage IEU1ClassRUsage = {
SPARC_IEU1,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 5,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ IntIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAluN.rid, 1, 1 },
{ IAlu1.rid, 1, 1 },
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage FPMClassRUsage = {
SPARC_FPM,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 7,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ FPMIssueSlots.rid, 0, 1 },
/*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
/*Cycle C */ { FPMAluC1.rid, 2, 1 },
/*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
/*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
/*Cycle N1*/
/*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage FPAClassRUsage = {
SPARC_FPA,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 7,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ FPAIssueSlots.rid, 0, 1 },
/*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
/*Cycle C */ { FPAAluC1.rid, 2, 1 },
/*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
/*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
/*Cycle N1*/
/*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage LDClassRUsage = {
SPARC_LD,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2, },
/*numEntries*/ 6,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ First3IssueSlots.rid, 0, 1 },
{ LSIssueSlots.rid, 0, 1 },
/*Cycle E */ { LSAluC1.rid, 1, 1 },
/*Cycle C */ { LSAluC2.rid, 2, 1 },
{ LdReturn.rid, 2, 1 },
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
const InstrClassRUsage STClassRUsage = {
SPARC_ST,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 4,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ First3IssueSlots.rid, 0, 1 },
{ LSIssueSlots.rid, 0, 1 },
/*Cycle E */ { LSAluC1.rid, 1, 1 },
/*Cycle C */ { LSAluC2.rid, 2, 1 }
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
const InstrClassRUsage CTIClassRUsage = {
SPARC_CTI,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 4,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ CTIIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAlu0.rid, 1, 1 },
/*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
const InstrClassRUsage SingleClassRUsage = {
SPARC_SINGLE,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ true,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 1,
/* feasibleSlots[] */ { 0 },
/*numEntries*/ 5,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ AllIssueSlots.rid, 0, 1 },
{ AllIssueSlots.rid, 0, 1 },
{ AllIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAlu0.rid, 1, 1 }
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
const InstrClassRUsage SparcRUsageDesc[] = {
NoneClassRUsage,
IEUNClassRUsage,
IEU0ClassRUsage,
IEU1ClassRUsage,
FPMClassRUsage,
FPAClassRUsage,
CTIClassRUsage,
LDClassRUsage,
STClassRUsage,
SingleClassRUsage
};
//---------------------------------------------------------------------------
// const InstrIssueDelta SparcInstrIssueDeltas[]
//
// Purpose:
// Changes to issue restrictions information in InstrClassRUsage for
// instructions that differ from other instructions in their class.
//---------------------------------------------------------------------------
const InstrIssueDelta SparcInstrIssueDeltas[] = {
// opCode, isSingleIssue, breaksGroup, numBubbles
// Special cases for single-issue only
// Other single issue cases are below.
//{ LDDA, true, true, 0 },
//{ STDA, true, true, 0 },
//{ LDDF, true, true, 0 },
//{ LDDFA, true, true, 0 },
{ ADDC, true, true, 0 },
{ ADDCcc, true, true, 0 },
{ SUBC, true, true, 0 },
{ SUBCcc, true, true, 0 },
//{ LDSTUB, true, true, 0 },
//{ SWAP, true, true, 0 },
//{ SWAPA, true, true, 0 },
//{ CAS, true, true, 0 },
//{ CASA, true, true, 0 },
//{ CASX, true, true, 0 },
//{ CASXA, true, true, 0 },
//{ LDFSR, true, true, 0 },
//{ LDFSRA, true, true, 0 },
//{ LDXFSR, true, true, 0 },
//{ LDXFSRA, true, true, 0 },
//{ STFSR, true, true, 0 },
//{ STFSRA, true, true, 0 },
//{ STXFSR, true, true, 0 },
//{ STXFSRA, true, true, 0 },
//{ SAVED, true, true, 0 },
//{ RESTORED, true, true, 0 },
//{ FLUSH, true, true, 9 },
//{ FLUSHW, true, true, 9 },
//{ ALIGNADDR, true, true, 0 },
{ RETURN, true, true, 0 },
//{ DONE, true, true, 0 },
//{ RETRY, true, true, 0 },
//{ TCC, true, true, 0 },
//{ SHUTDOWN, true, true, 0 },
// Special cases for breaking group *before*
// CURRENTLY NOT SUPPORTED!
{ CALL, false, false, 0 },
{ JMPLCALL, false, false, 0 },
{ JMPLRET, false, false, 0 },
// Special cases for breaking the group *after*
{ MULX, true, true, (4+34)/2 },
{ FDIVS, false, true, 0 },
{ FDIVD, false, true, 0 },
{ FDIVQ, false, true, 0 },
{ FSQRTS, false, true, 0 },
{ FSQRTD, false, true, 0 },
{ FSQRTQ, false, true, 0 },
//{ FCMP{LE,GT,NE,EQ}, false, true, 0 },
// Instructions that introduce bubbles
//{ MULScc, true, true, 2 },
//{ SMULcc, true, true, (4+18)/2 },
//{ UMULcc, true, true, (4+19)/2 },
{ SDIVX, true, true, 68 },
{ UDIVX, true, true, 68 },
//{ SDIVcc, true, true, 36 },
//{ UDIVcc, true, true, 37 },
{ WRCCR, true, true, 4 },
//{ WRPR, true, true, 4 },
//{ RDCCR, true, true, 0 }, // no bubbles after, but see below
//{ RDPR, true, true, 0 },
};
//---------------------------------------------------------------------------
// const InstrRUsageDelta SparcInstrUsageDeltas[]
//
// Purpose:
// Changes to resource usage information in InstrClassRUsage for
// instructions that differ from other instructions in their class.
//---------------------------------------------------------------------------
const InstrRUsageDelta SparcInstrUsageDeltas[] = {
// MachineOpCode, Resource, Start cycle, Num cycles
//
// JMPL counts as a load/store instruction for issue!
//
{ JMPLCALL, LSIssueSlots.rid, 0, 1 },
{ JMPLRET, LSIssueSlots.rid, 0, 1 },
//
// Many instructions cannot issue for the next 2 cycles after an FCMP
// We model that with a fake resource FCMPDelayCycle.
//
{ FCMPS, FCMPDelayCycle.rid, 1, 3 },
{ FCMPD, FCMPDelayCycle.rid, 1, 3 },
{ FCMPQ, FCMPDelayCycle.rid, 1, 3 },
{ MULX, FCMPDelayCycle.rid, 1, 1 },
{ SDIVX, FCMPDelayCycle.rid, 1, 1 },
{ UDIVX, FCMPDelayCycle.rid, 1, 1 },
//{ SMULcc, FCMPDelayCycle.rid, 1, 1 },
//{ UMULcc, FCMPDelayCycle.rid, 1, 1 },
//{ SDIVcc, FCMPDelayCycle.rid, 1, 1 },
//{ UDIVcc, FCMPDelayCycle.rid, 1, 1 },
{ STD, FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
{ FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
//
// Some instructions are stalled in the GROUP stage if a CTI is in
// the E or C stage. We model that with a fake resource CTIDelayCycle.
//
{ LDD, CTIDelayCycle.rid, 1, 1 },
//{ LDDA, CTIDelayCycle.rid, 1, 1 },
//{ LDDSTUB, CTIDelayCycle.rid, 1, 1 },
//{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
//{ SWAP, CTIDelayCycle.rid, 1, 1 },
//{ SWAPA, CTIDelayCycle.rid, 1, 1 },
//{ CAS, CTIDelayCycle.rid, 1, 1 },
//{ CASA, CTIDelayCycle.rid, 1, 1 },
//{ CASX, CTIDelayCycle.rid, 1, 1 },
//{ CASXA, CTIDelayCycle.rid, 1, 1 },
//
// Signed int loads of less than dword size return data in cycle N1 (not C)
// and put all loads in consecutive cycles into delayed load return mode.
//
{ LDSB, LdReturn.rid, 2, -1 },
{ LDSB, LdReturn.rid, 3, 1 },
{ LDSH, LdReturn.rid, 2, -1 },
{ LDSH, LdReturn.rid, 3, 1 },
{ LDSW, LdReturn.rid, 2, -1 },
{ LDSW, LdReturn.rid, 3, 1 },
//
// RDPR from certain registers and RD from any register are not dispatchable
// until four clocks after they reach the head of the instr. buffer.
// Together with their single-issue requirement, this means all four issue
// slots are effectively blocked for those cycles, plus the issue cycle.
// This does not increase the latency of the instruction itself.
//
{ RDCCR, AllIssueSlots.rid, 0, 5 },
{ RDCCR, AllIssueSlots.rid, 0, 5 },
{ RDCCR, AllIssueSlots.rid, 0, 5 },
{ RDCCR, AllIssueSlots.rid, 0, 5 },
#undef EXPLICIT_BUBBLES_NEEDED
#ifdef EXPLICIT_BUBBLES_NEEDED
//
// MULScc inserts one bubble.
// This means it breaks the current group (captured in UltraSparcSchedInfo)
// *and occupies all issue slots for the next cycle
//
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
//
// SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
// We just model this with a simple average.
//
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
// SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//
// MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
//
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
{ MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
//
// SDIVcc inserts 36 bubbles.
//
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
// UDIVcc inserts 37 bubbles.
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//
// SDIVX inserts 68 bubbles.
//
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
{ SDIVX, AllIssueSlots.rid, 2, 68-1 },
//
// UDIVX inserts 68 bubbles.
//
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
{ UDIVX, AllIssueSlots.rid, 2, 68-1 },
//
// WR inserts 4 bubbles.
//
//{ WR, AllIssueSlots.rid, 2, 68-1 },
//{ WR, AllIssueSlots.rid, 2, 68-1 },
//{ WR, AllIssueSlots.rid, 2, 68-1 },
//{ WR, AllIssueSlots.rid, 2, 68-1 },
//
// WRPR inserts 4 bubbles.
//
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
//
// DONE inserts 9 bubbles.
//
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
//{ DONE, AllIssueSlots.rid, 2, 9-1 },
//
// RETRY inserts 9 bubbles.
//
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
#endif /*EXPLICIT_BUBBLES_NEEDED */
};
// Additional delays to be captured in code:
// 1. RDPR from several state registers (page 349)
// 2. RD from *any* register (page 349)
// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
// 4. Integer store can be in same group as instr producing value to store.
// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
// follow an annulling branch cannot be issued in the same group or in
// the 3 groups following the branch.
// 9. A predicted annulled load does not stall dependent instructions.
// Other annulled delay slot instructions *do* stall dependents, so
// nothing special needs to be done for them during scheduling.
//10. Do not put a load use that may be annulled in the same group as the
// branch. The group will stall until the load returns.
//11. Single-prec. FP loads lock 2 registers, for dependency checking.
//
//
// Additional delays we cannot or will not capture:
// 1. If DCTI is last word of cache line, it is delayed until next line can be
// fetched. Also, other DCTI alignment-related delays (pg 352)
// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
// Also, several other store-load and load-store conflicts (pg 358)
// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
// 4. There can be at most 8 outstanding buffered store instructions
// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
//---------------------------------------------------------------------------
// class UltraSparcSchedInfo
//
// Purpose:
// Interface to instruction scheduling information for UltraSPARC.
// The parameter values above are based on UltraSPARC IIi.
//---------------------------------------------------------------------------
class UltraSparcSchedInfo: public MachineSchedInfo {
public:
/*ctor*/ UltraSparcSchedInfo (const TargetMachine& tgt);
/*dtor*/ virtual ~UltraSparcSchedInfo () {}
protected:
virtual void initializeResources ();
};
//---------------------------------------------------------------------------
// class UltraSparcFrameInfo
//
// Purpose:
// Interface to stack frame layout info for the UltraSPARC.
// Starting offsets for each area of the stack frame are aligned at
// a multiple of getStackFrameSizeAlignment().
//---------------------------------------------------------------------------
class UltraSparcFrameInfo: public MachineFrameInfo {
public:
/*ctor*/ UltraSparcFrameInfo(const TargetMachine& tgt) : MachineFrameInfo(tgt) {}
public:
int getStackFrameSizeAlignment () const { return StackFrameSizeAlignment;}
int getMinStackFrameSize () const { return MinStackFrameSize; }
int getNumFixedOutgoingArgs () const { return NumFixedOutgoingArgs; }
int getSizeOfEachArgOnStack () const { return SizeOfEachArgOnStack; }
bool argsOnStackHaveFixedSize () const { return true; }
//
// These methods compute offsets using the frame contents for a
// particular method. The frame contents are obtained from the
// MachineCodeInfoForMethod object for the given method.
//
int getFirstIncomingArgOffset (MachineCodeForMethod& mcInfo,
bool& pos) const
{
pos = true; // arguments area grows upwards
return FirstIncomingArgOffsetFromFP;
}
int getFirstOutgoingArgOffset (MachineCodeForMethod& mcInfo,
bool& pos) const
{
pos = true; // arguments area grows upwards
return FirstOutgoingArgOffsetFromSP;
}
int getFirstOptionalOutgoingArgOffset(MachineCodeForMethod& mcInfo,
bool& pos)const
{
pos = true; // arguments area grows upwards
return FirstOptionalOutgoingArgOffsetFromSP;
}
int getFirstAutomaticVarOffset (MachineCodeForMethod& mcInfo,
bool& pos) const;
int getRegSpillAreaOffset (MachineCodeForMethod& mcInfo,
bool& pos) const;
int getTmpAreaOffset (MachineCodeForMethod& mcInfo,
bool& pos) const;
int getDynamicAreaOffset (MachineCodeForMethod& mcInfo,
bool& pos) const;
//
// These methods specify the base register used for each stack area
// (generally FP or SP)
//
virtual int getIncomingArgBaseRegNum() const {
return (int) target.getRegInfo().getFramePointer();
}
virtual int getOutgoingArgBaseRegNum() const {
return (int) target.getRegInfo().getStackPointer();
}
virtual int getOptionalOutgoingArgBaseRegNum() const {
return (int) target.getRegInfo().getStackPointer();
}
virtual int getAutomaticVarBaseRegNum() const {
return (int) target.getRegInfo().getFramePointer();
}
virtual int getRegSpillAreaBaseRegNum() const {
return (int) target.getRegInfo().getFramePointer();
}
virtual int getDynamicAreaBaseRegNum() const {
return (int) target.getRegInfo().getStackPointer();
}
private:
// All stack addresses must be offset by 0x7ff (2047) on Sparc V9.
static const int OFFSET = (int) 0x7ff;
static const int StackFrameSizeAlignment = 16;
static const int MinStackFrameSize = 176;
static const int NumFixedOutgoingArgs = 6;
static const int SizeOfEachArgOnStack = 8;
static const int StaticAreaOffsetFromFP = 0 + OFFSET;
static const int FirstIncomingArgOffsetFromFP = 128 + OFFSET;
static const int FirstOptionalIncomingArgOffsetFromFP = 176 + OFFSET;
static const int FirstOutgoingArgOffsetFromSP = 128 + OFFSET;
static const int FirstOptionalOutgoingArgOffsetFromSP = 176 + OFFSET;
};
//---------------------------------------------------------------------------
// class UltraSparcCacheInfo
//
// Purpose:
// Interface to cache parameters for the UltraSPARC.
// Just use defaults for now.
//---------------------------------------------------------------------------
class UltraSparcCacheInfo: public MachineCacheInfo {
public:
/*ctor*/ UltraSparcCacheInfo (const TargetMachine& target) :
MachineCacheInfo(target) {}
};
//---------------------------------------------------------------------------
// class UltraSparcMachine
//
// Purpose:
// Primary interface to machine description for the UltraSPARC.
// Primarily just initializes machine-dependent parameters in
// class TargetMachine, and creates machine-dependent subclasses
// for classes such as InstrInfo, SchedInfo and RegInfo.
//---------------------------------------------------------------------------
class UltraSparc : public TargetMachine {
private:
UltraSparcInstrInfo instrInfo;
UltraSparcSchedInfo schedInfo;
UltraSparcRegInfo regInfo;
UltraSparcFrameInfo frameInfo;
UltraSparcCacheInfo cacheInfo;
public:
UltraSparc();
virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
virtual const MachineRegInfo &getRegInfo() const { return regInfo; }
virtual const MachineFrameInfo &getFrameInfo() const { return frameInfo; }
virtual const MachineCacheInfo &getCacheInfo() const { return cacheInfo; }
//
// addPassesToEmitAssembly - Add passes to the specified pass manager to get
// assembly langage code emited. For sparc, we have to do ...
//
virtual void addPassesToEmitAssembly(PassManager &PM, std::ostream &Out);
private:
Pass *getMethodAsmPrinterPass(PassManager &PM, std::ostream &Out);
Pass *getModuleAsmPrinterPass(PassManager &PM, std::ostream &Out);
};
#endif
|