aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/SparcV9Internals.h
blob: c27b9d01ac0fa8ad8a1bf61aff282d5714c4109a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
//===-- SparcInternals.h ----------------------------------------*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
// 
// This file defines stuff that is to be private to the Sparc backend, but is
// shared among different portions of the backend.
//
//===----------------------------------------------------------------------===//

#ifndef SPARC_INTERNALS_H
#define SPARC_INTERNALS_H

#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSchedInfo.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetCacheInfo.h"
#include "llvm/Target/TargetRegInfo.h"
#include "llvm/Type.h"
#include "SparcRegClassInfo.h"
#include "Config/sys/types.h"

class LiveRange;
class UltraSparc;
class Pass;

enum SparcInstrSchedClass {
  SPARC_NONE,		/* Instructions with no scheduling restrictions */
  SPARC_IEUN,		/* Integer class that can use IEU0 or IEU1 */
  SPARC_IEU0,		/* Integer class IEU0 */
  SPARC_IEU1,		/* Integer class IEU1 */
  SPARC_FPM,		/* FP Multiply or Divide instructions */
  SPARC_FPA,		/* All other FP instructions */	
  SPARC_CTI,		/* Control-transfer instructions */
  SPARC_LD,		/* Load instructions */
  SPARC_ST,		/* Store instructions */
  SPARC_SINGLE,		/* Instructions that must issue by themselves */
  
  SPARC_INV,		/* This should stay at the end for the next value */
  SPARC_NUM_SCHED_CLASSES = SPARC_INV
};


//---------------------------------------------------------------------------
// enum SparcMachineOpCode. 
// const TargetInstrDescriptor SparcMachineInstrDesc[]
// 
// Purpose:
//   Description of UltraSparc machine instructions.
// 
//---------------------------------------------------------------------------

namespace V9 {
  enum SparcMachineOpCode {
#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
          NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS)             \
   ENUM,
#include "SparcInstr.def"

    // End-of-array marker
    INVALID_OPCODE,
    NUM_REAL_OPCODES = PHI,		// number of valid opcodes
    NUM_TOTAL_OPCODES = INVALID_OPCODE
  };
}


// Array of machine instruction descriptions...
extern const TargetInstrDescriptor SparcMachineInstrDesc[];


//---------------------------------------------------------------------------
// class UltraSparcInstrInfo 
// 
// Purpose:
//   Information about individual instructions.
//   Most information is stored in the SparcMachineInstrDesc array above.
//   Other information is computed on demand, and most such functions
//   default to member functions in base class TargetInstrInfo. 
//---------------------------------------------------------------------------

struct UltraSparcInstrInfo : public TargetInstrInfo {
  UltraSparcInstrInfo();

  //
  // All immediate constants are in position 1 except the
  // store instructions and SETxx.
  // 
  virtual int getImmedConstantPos(MachineOpCode opCode) const {
    bool ignore;
    if (this->maxImmedConstant(opCode, ignore) != 0) {
      // 1st store opcode
      assert(! this->isStore((MachineOpCode) V9::STBr - 1));
      // last store opcode
      assert(! this->isStore((MachineOpCode) V9::STXFSRi + 1));

      if (opCode == V9::SETSW || opCode == V9::SETUW ||
          opCode == V9::SETX  || opCode == V9::SETHI)
        return 0;
      if (opCode >= V9::STBr && opCode <= V9::STXFSRi)
        return 2;
      return 1;
    }
    else
      return -1;
  }

  /// createNOPinstr - returns the target's implementation of NOP, which is
  /// usually a pseudo-instruction, implemented by a degenerate version of
  /// another instruction, e.g. X86: xchg ax, ax; SparcV9: sethi 0, g0
  ///
  MachineInstr* createNOPinstr() const {
    return BuildMI(V9::SETHI, 2).addZImm(0).addReg(SparcIntRegClass::g0);
  }

  /// isNOPinstr - not having a special NOP opcode, we need to know if a given
  /// instruction is interpreted as an `official' NOP instr, i.e., there may be
  /// more than one way to `do nothing' but only one canonical way to slack off.
  ///
  bool isNOPinstr(const MachineInstr &MI) const {
    // Make sure the instruction is EXACTLY `sethi g0, 0'
    if (MI.getOpcode() == V9::SETHI && MI.getNumOperands() == 2) {
      const MachineOperand &op0 = MI.getOperand(0), &op1 = MI.getOperand(1);
      if (op0.isImmediate() && op0.getImmedValue() == 0 &&
          op1.isMachineRegister() &&
          op1.getMachineRegNum() == SparcIntRegClass::g0)
      {
        return true;
      }
    }
    return false;
  }
  
  virtual bool hasResultInterlock(MachineOpCode opCode) const
  {
    // All UltraSPARC instructions have interlocks (note that delay slots
    // are not considered here).
    // However, instructions that use the result of an FCMP produce a
    // 9-cycle stall if they are issued less than 3 cycles after the FCMP.
    // Force the compiler to insert a software interlock (i.e., gap of
    // 2 other groups, including NOPs if necessary).
    return (opCode == V9::FCMPS || opCode == V9::FCMPD || opCode == V9::FCMPQ);
  }

  //-------------------------------------------------------------------------
  // Queries about representation of LLVM quantities (e.g., constants)
  //-------------------------------------------------------------------------

  virtual bool ConstantMayNotFitInImmedField(const Constant* CV,
                                             const Instruction* I) const;

  //-------------------------------------------------------------------------
  // Code generation support for creating individual machine instructions
  //-------------------------------------------------------------------------

  // Get certain common op codes for the current target.  This and all the
  // Create* methods below should be moved to a machine code generation class
  // 
  virtual MachineOpCode getNOPOpCode() const { return V9::NOP; }

  // Get the value of an integral constant in the form that must
  // be put into the machine register.  The specified constant is interpreted
  // as (i.e., converted if necessary to) the specified destination type.  The
  // result is always returned as an uint64_t, since the representation of
  // int64_t and uint64_t are identical.  The argument can be any known const.
  // 
  // isValidConstant is set to true if a valid constant was found.
  // 
  virtual uint64_t ConvertConstantToIntType(const TargetMachine &target,
                                            const Value *V,
                                            const Type *destType,
                                            bool  &isValidConstant) const;

  // Create an instruction sequence to put the constant `val' into
  // the virtual register `dest'.  `val' may be a Constant or a
  // GlobalValue, viz., the constant address of a global variable or function.
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void  CreateCodeToLoadConst(const TargetMachine& target,
                                      Function* F,
                                      Value* val,
                                      Instruction* dest,
                                      std::vector<MachineInstr*>& mvec,
                                      MachineCodeForInstruction& mcfi) const;

  // Create an instruction sequence to copy an integer value `val'
  // to a floating point value `dest' by copying to memory and back.
  // val must be an integral type.  dest must be a Float or Double.
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void  CreateCodeToCopyIntToFloat(const TargetMachine& target,
                                       Function* F,
                                       Value* val,
                                       Instruction* dest,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const;

  // Similarly, create an instruction sequence to copy an FP value
  // `val' to an integer value `dest' by copying to memory and back.
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void  CreateCodeToCopyFloatToInt(const TargetMachine& target,
                                       Function* F,
                                       Value* val,
                                       Instruction* dest,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const;
  
  // Create instruction(s) to copy src to dest, for arbitrary types
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void CreateCopyInstructionsByType(const TargetMachine& target,
                                       Function* F,
                                       Value* src,
                                       Instruction* dest,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const;

  // Create instruction sequence to produce a sign-extended register value
  // from an arbitrary sized value (sized in bits, not bytes).
  // The generated instructions are appended to `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void CreateSignExtensionInstructions(const TargetMachine& target,
                                       Function* F,
                                       Value* srcVal,
                                       Value* destVal,
                                       unsigned int numLowBits,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const;

  // Create instruction sequence to produce a zero-extended register value
  // from an arbitrary sized value (sized in bits, not bytes).
  // The generated instructions are appended to `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void CreateZeroExtensionInstructions(const TargetMachine& target,
                                       Function* F,
                                       Value* srcVal,
                                       Value* destVal,
                                       unsigned int numLowBits,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const;
};


//----------------------------------------------------------------------------
// class UltraSparcRegInfo
//
// This class implements the virtual class TargetRegInfo for Sparc.
//
//----------------------------------------------------------------------------

class UltraSparcRegInfo : public TargetRegInfo {

private:

  // Number of registers used for passing int args (usually 6: %o0 - %o5)
  //
  unsigned const NumOfIntArgRegs;

  // Number of registers used for passing float args (usually 32: %f0 - %f31)
  //
  unsigned const NumOfFloatArgRegs;

  // ========================  Private Methods =============================

  // The following methods are used to color special live ranges (e.g.
  // function args and return values etc.) with specific hardware registers
  // as required. See SparcRegInfo.cpp for the implementation.
  //
  void suggestReg4RetAddr(MachineInstr *RetMI, 
			  LiveRangeInfo &LRI) const;

  void suggestReg4CallAddr(MachineInstr *CallMI, LiveRangeInfo &LRI) const;
  
  // Helper used by the all the getRegType() functions.
  int getRegTypeForClassAndType(unsigned regClassID, const Type* type) const;

public:
  // Type of registers available in Sparc. There can be several reg types
  // in the same class. For instace, the float reg class has Single/Double
  // types
  //
  enum RegTypes {
    IntRegType,
    FPSingleRegType,
    FPDoubleRegType,
    IntCCRegType,
    FloatCCRegType,
    SpecialRegType
  };

  // The actual register classes in the Sparc
  //
  // **** WARNING: If this enum order is changed, also modify 
  // getRegisterClassOfValue method below since it assumes this particular 
  // order for efficiency.
  // 
  enum RegClassIDs { 
    IntRegClassID,                      // Integer
    FloatRegClassID,                    // Float (both single/double)
    IntCCRegClassID,                    // Int Condition Code
    FloatCCRegClassID,                  // Float Condition code
    SpecialRegClassID                   // Special (unallocated) registers
  };

  UltraSparcRegInfo(const UltraSparc &tgt);

  // To find the register class used for a specified Type
  //
  unsigned getRegClassIDOfType(const Type *type,
                               bool isCCReg = false) const;

  // To find the register class to which a specified register belongs
  //
  unsigned getRegClassIDOfRegType(int regType) const;
  
  // getZeroRegNum - returns the register that contains always zero this is the
  // unified register number
  //
  virtual int getZeroRegNum() const;

  // getCallAddressReg - returns the reg used for pushing the address when a
  // function is called. This can be used for other purposes between calls
  //
  unsigned getCallAddressReg() const;

  // Returns the register containing the return address.
  // It should be made sure that this  register contains the return 
  // value when a return instruction is reached.
  //
  unsigned getReturnAddressReg() const;

  // Number of registers used for passing int args (usually 6: %o0 - %o5)
  // and float args (usually 32: %f0 - %f31)
  //
  unsigned const getNumOfIntArgRegs() const   { return NumOfIntArgRegs; }
  unsigned const getNumOfFloatArgRegs() const { return NumOfFloatArgRegs; }
  
  // Compute which register can be used for an argument, if any
  // 
  int regNumForIntArg(bool inCallee, bool isVarArgsCall,
                      unsigned argNo, unsigned& regClassId) const;

  int regNumForFPArg(unsigned RegType, bool inCallee, bool isVarArgsCall,
                     unsigned argNo, unsigned& regClassId) const;
  
  // The following methods are used to color special live ranges (e.g.
  // function args and return values etc.) with specific hardware registers
  // as required. See SparcRegInfo.cpp for the implementation for Sparc.
  //
  void suggestRegs4MethodArgs(const Function *Meth, 
			      LiveRangeInfo& LRI) const;

  void suggestRegs4CallArgs(MachineInstr *CallMI, 
			    LiveRangeInfo& LRI) const; 

  void suggestReg4RetValue(MachineInstr *RetMI, 
                           LiveRangeInfo& LRI) const;
  
  void colorMethodArgs(const Function *Meth,  LiveRangeInfo& LRI,
                       std::vector<MachineInstr*>& InstrnsBefore,
                       std::vector<MachineInstr*>& InstrnsAfter) const;

  // method used for printing a register for debugging purposes
  //
  void printReg(const LiveRange *LR) const;
  
  // returns the # of bytes of stack space allocated for each register
  // type. For Sparc, currently we allocate 8 bytes on stack for all 
  // register types. We can optimize this later if necessary to save stack
  // space (However, should make sure that stack alignment is correct)
  //
  inline int getSpilledRegSize(int RegType) const {
    return 8;
  }


  // To obtain the return value and the indirect call address (if any)
  // contained in a CALL machine instruction
  //
  const Value * getCallInstRetVal(const MachineInstr *CallMI) const;
  const Value * getCallInstIndirectAddrVal(const MachineInstr *CallMI) const;

  // The following methods are used to generate "copy" machine instructions
  // for an architecture.
  //
  // The function regTypeNeedsScratchReg() can be used to check whether a
  // scratch register is needed to copy a register of type `regType' to
  // or from memory.  If so, such a scratch register can be provided by
  // the caller (e.g., if it knows which regsiters are free); otherwise
  // an arbitrary one will be chosen and spilled by the copy instructions.
  //
  bool regTypeNeedsScratchReg(int RegType,
                              int& scratchRegClassId) const;

  void cpReg2RegMI(std::vector<MachineInstr*>& mvec,
                   unsigned SrcReg, unsigned DestReg,
                   int RegType) const;

  void cpReg2MemMI(std::vector<MachineInstr*>& mvec,
                   unsigned SrcReg, unsigned DestPtrReg,
                   int Offset, int RegType, int scratchReg = -1) const;

  void cpMem2RegMI(std::vector<MachineInstr*>& mvec,
                   unsigned SrcPtrReg, int Offset, unsigned DestReg,
                   int RegType, int scratchReg = -1) const;

  void cpValue2Value(Value *Src, Value *Dest,
                     std::vector<MachineInstr*>& mvec) const;

  // Get the register type for a register identified different ways.
  // Note that getRegTypeForLR(LR) != getRegTypeForDataType(LR->getType())!
  // The reg class of a LR depends both on the Value types in it and whether
  // they are CC registers or not (for example).
  int getRegTypeForDataType(const Type* type) const;
  int getRegTypeForLR(const LiveRange *LR) const;
  int getRegType(int unifiedRegNum) const;

  virtual unsigned getFramePointer() const;
  virtual unsigned getStackPointer() const;
};




//---------------------------------------------------------------------------
// class UltraSparcSchedInfo
// 
// Purpose:
//   Interface to instruction scheduling information for UltraSPARC.
//   The parameter values above are based on UltraSPARC IIi.
//---------------------------------------------------------------------------


class UltraSparcSchedInfo: public TargetSchedInfo {
public:
  UltraSparcSchedInfo(const TargetMachine &tgt);
protected:
  virtual void initializeResources();
};


//---------------------------------------------------------------------------
// class UltraSparcFrameInfo 
// 
// Purpose:
//   Interface to stack frame layout info for the UltraSPARC.
//   Starting offsets for each area of the stack frame are aligned at
//   a multiple of getStackFrameSizeAlignment().
//---------------------------------------------------------------------------

class UltraSparcFrameInfo: public TargetFrameInfo {
  const TargetMachine &target;
public:
  UltraSparcFrameInfo(const TargetMachine &TM)
    : TargetFrameInfo(StackGrowsDown, StackFrameSizeAlignment, 0), target(TM) {}
  
public:
  // These methods provide constant parameters of the frame layout.
  // 
  int  getStackFrameSizeAlignment() const { return StackFrameSizeAlignment;}
  int  getMinStackFrameSize()       const { return MinStackFrameSize; }
  int  getNumFixedOutgoingArgs()    const { return NumFixedOutgoingArgs; }
  int  getSizeOfEachArgOnStack()    const { return SizeOfEachArgOnStack; }
  bool argsOnStackHaveFixedSize()   const { return true; }

  // This method adjusts a stack offset to meet alignment rules of target.
  // The fixed OFFSET (0x7ff) must be subtracted and the result aligned.
  virtual int  adjustAlignment                  (int unalignedOffset,
                                                 bool growUp,
                                                 unsigned int align) const {
    return unalignedOffset + (growUp? +1:-1)*((unalignedOffset-OFFSET) % align);
  }

  // These methods compute offsets using the frame contents for a
  // particular function.  The frame contents are obtained from the
  // MachineCodeInfoForMethod object for the given function.
  // 
  int getFirstIncomingArgOffset  (MachineFunction& mcInfo,
                                  bool& growUp) const
  {
    growUp = true;                         // arguments area grows upwards
    return FirstIncomingArgOffsetFromFP;
  }
  int getFirstOutgoingArgOffset  (MachineFunction& mcInfo,
                                  bool& growUp) const
  {
    growUp = true;                         // arguments area grows upwards
    return FirstOutgoingArgOffsetFromSP;
  }
  int getFirstOptionalOutgoingArgOffset(MachineFunction& mcInfo,
                                        bool& growUp)const
  {
    growUp = true;                         // arguments area grows upwards
    return FirstOptionalOutgoingArgOffsetFromSP;
  }
  
  int getFirstAutomaticVarOffset (MachineFunction& mcInfo,
                                  bool& growUp) const;
  int getRegSpillAreaOffset      (MachineFunction& mcInfo,
                                  bool& growUp) const;
  int getTmpAreaOffset           (MachineFunction& mcInfo,
                                  bool& growUp) const;
  int getDynamicAreaOffset       (MachineFunction& mcInfo,
                                  bool& growUp) const;

  //
  // These methods specify the base register used for each stack area
  // (generally FP or SP)
  // 
  virtual int getIncomingArgBaseRegNum()               const {
    return (int) target.getRegInfo().getFramePointer();
  }
  virtual int getOutgoingArgBaseRegNum()               const {
    return (int) target.getRegInfo().getStackPointer();
  }
  virtual int getOptionalOutgoingArgBaseRegNum()       const {
    return (int) target.getRegInfo().getStackPointer();
  }
  virtual int getAutomaticVarBaseRegNum()              const {
    return (int) target.getRegInfo().getFramePointer();
  }
  virtual int getRegSpillAreaBaseRegNum()              const {
    return (int) target.getRegInfo().getFramePointer();
  }
  virtual int getDynamicAreaBaseRegNum()               const {
    return (int) target.getRegInfo().getStackPointer();
  }

  virtual int getIncomingArgOffset(MachineFunction& mcInfo,
				   unsigned argNum) const {
    assert(argsOnStackHaveFixedSize()); 
  
    unsigned relativeOffset = argNum * getSizeOfEachArgOnStack();
    bool growUp;                          // do args grow up or down
    int firstArg = getFirstIncomingArgOffset(mcInfo, growUp);
    return growUp ? firstArg + relativeOffset : firstArg - relativeOffset; 
  }

  virtual int getOutgoingArgOffset(MachineFunction& mcInfo,
				   unsigned argNum) const {
    assert(argsOnStackHaveFixedSize()); 
    //assert(((int) argNum - this->getNumFixedOutgoingArgs())
    //     <= (int) mcInfo.getInfo()->getMaxOptionalNumArgs());
    
    unsigned relativeOffset = argNum * getSizeOfEachArgOnStack();
    bool growUp;                          // do args grow up or down
    int firstArg = getFirstOutgoingArgOffset(mcInfo, growUp);
    return growUp ? firstArg + relativeOffset : firstArg - relativeOffset; 
  }
  
private:
  /*----------------------------------------------------------------------
    This diagram shows the stack frame layout used by llc on Sparc V9.
    Note that only the location of automatic variables, spill area,
    temporary storage, and dynamically allocated stack area are chosen
    by us.  The rest conform to the Sparc V9 ABI.
    All stack addresses are offset by OFFSET = 0x7ff (2047).

    Alignment assumptions and other invariants:
    (1) %sp+OFFSET and %fp+OFFSET are always aligned on 16-byte boundary
    (2) Variables in automatic, spill, temporary, or dynamic regions
        are aligned according to their size as in all memory accesses.
    (3) Everything below the dynamically allocated stack area is only used
        during a call to another function, so it is never needed when
        the current function is active.  This is why space can be allocated
        dynamically by incrementing %sp any time within the function.
    
    STACK FRAME LAYOUT:

       ...
       %fp+OFFSET+176      Optional extra incoming arguments# 1..N
       %fp+OFFSET+168      Incoming argument #6
       ...                 ...
       %fp+OFFSET+128      Incoming argument #1
       ...                 ...
    ---%fp+OFFSET-0--------Bottom of caller's stack frame--------------------
       %fp+OFFSET-8        Automatic variables <-- ****TOP OF STACK FRAME****
                           Spill area
                           Temporary storage
       ...

       %sp+OFFSET+176+8N   Bottom of dynamically allocated stack area
       %sp+OFFSET+168+8N   Optional extra outgoing argument# N
       ...                 ...
       %sp+OFFSET+176      Optional extra outgoing argument# 1
       %sp+OFFSET+168      Outgoing argument #6
       ...                 ...
       %sp+OFFSET+128      Outgoing argument #1
       %sp+OFFSET+120      Save area for %i7
       ...                 ...
       %sp+OFFSET+0        Save area for %l0 <-- ****BOTTOM OF STACK FRAME****

   *----------------------------------------------------------------------*/

  // All stack addresses must be offset by 0x7ff (2047) on Sparc V9.
  static const int OFFSET                                  = (int) 0x7ff;
  static const int StackFrameSizeAlignment                 =  16;
  static const int MinStackFrameSize                       = 176;
  static const int NumFixedOutgoingArgs                    =   6;
  static const int SizeOfEachArgOnStack                    =   8;
  static const int FirstIncomingArgOffsetFromFP            = 128 + OFFSET;
  static const int FirstOptionalIncomingArgOffsetFromFP    = 176 + OFFSET;
  static const int StaticAreaOffsetFromFP                  =   0 + OFFSET;
  static const int FirstOutgoingArgOffsetFromSP            = 128 + OFFSET;
  static const int FirstOptionalOutgoingArgOffsetFromSP    = 176 + OFFSET;
};


//---------------------------------------------------------------------------
// class UltraSparcCacheInfo 
// 
// Purpose:
//   Interface to cache parameters for the UltraSPARC.
//   Just use defaults for now.
//---------------------------------------------------------------------------

struct UltraSparcCacheInfo: public TargetCacheInfo {
  UltraSparcCacheInfo(const TargetMachine &T) : TargetCacheInfo(T) {} 
};


/// createStackSlotsPass - External interface to stack-slots pass that enters 2
/// empty slots at the top of each function stack
Pass *createStackSlotsPass(const TargetMachine &TM);

// Interface to pre-selection pass that specializes LLVM code for a target
// machine.
Pass *createPreSelectionPass(TargetMachine &Target);

// External interface to peephole optimization pass operating on machine code.
FunctionPass *createPeepholeOptsPass(TargetMachine &Target);


//---------------------------------------------------------------------------
// class UltraSparc 
// 
// Purpose:
//   Primary interface to machine description for the UltraSPARC.
//   Primarily just initializes machine-dependent parameters in
//   class TargetMachine, and creates machine-dependent subclasses
//   for classes such as InstrInfo, SchedInfo and RegInfo. 
//---------------------------------------------------------------------------

class UltraSparc : public TargetMachine {
  UltraSparcInstrInfo instrInfo;
  UltraSparcSchedInfo schedInfo;
  UltraSparcRegInfo   regInfo;
  UltraSparcFrameInfo frameInfo;
  UltraSparcCacheInfo cacheInfo;
public:
  UltraSparc();

  virtual const TargetInstrInfo  &getInstrInfo() const { return instrInfo; }
  virtual const TargetSchedInfo  &getSchedInfo() const { return schedInfo; }
  virtual const TargetRegInfo    &getRegInfo()   const { return regInfo; }
  virtual const TargetFrameInfo  &getFrameInfo() const { return frameInfo; }
  virtual const TargetCacheInfo  &getCacheInfo() const { return cacheInfo; }

  virtual bool addPassesToEmitAssembly(PassManager &PM, std::ostream &Out);
  virtual bool addPassesToJITCompile(FunctionPassManager &PM);
  virtual bool addPassesToEmitMachineCode(FunctionPassManager &PM,
                                          MachineCodeEmitter &MCE);
  virtual void replaceMachineCodeForFunction(void *Old, void *New);

  // getPrologEpilogInsertionPass - Inserts prolog/epilog code.
  FunctionPass* getPrologEpilogInsertionPass();

  // getFunctionAsmPrinterPass - Writes out machine code for a single function
  Pass* getFunctionAsmPrinterPass(std::ostream &Out);

  // getModuleAsmPrinterPass - Writes generated machine code to assembly file.
  Pass* getModuleAsmPrinterPass(std::ostream &Out);

  // getBytecodeAsmPrinterPass - Emits final LLVM bytecode to assembly file.
  Pass* getBytecodeAsmPrinterPass(std::ostream &Out);
};

#endif