aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/SparcV9Internals.h
blob: b85b58f39becc8541044108ec4d5bc72bba6b01f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
// $Id$ -*- C++ -*--
//***************************************************************************
// File:
//	SparcInternals.h
// 
// Purpose:
//       This file defines stuff that is to be private to the Sparc
//       backend, but is shared among different portions of the backend.
//**************************************************************************/


#ifndef SPARC_INTERNALS_H
#define SPARC_INTERNALS_H

#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MachineSchedInfo.h"
#include "llvm/Target/MachineFrameInfo.h"
#include "llvm/Target/MachineCacheInfo.h"
#include "llvm/Target/MachineRegInfo.h"
#include "llvm/Type.h"
#include <sys/types.h>

class LiveRange;
class UltraSparc;
class PhyRegAlloc;
class Pass;

Pass *createPrologEpilogCodeInserter(TargetMachine &TM);

// OpCodeMask definitions for the Sparc V9
// 
const OpCodeMask	Immed		= 0x00002000; // immed or reg operand?
const OpCodeMask	Annul		= 0x20000000; // annul delay instr?
const OpCodeMask	PredictTaken	= 0x00080000; // predict branch taken?


enum SparcInstrSchedClass {
  SPARC_NONE,		/* Instructions with no scheduling restrictions */
  SPARC_IEUN,		/* Integer class that can use IEU0 or IEU1 */
  SPARC_IEU0,		/* Integer class IEU0 */
  SPARC_IEU1,		/* Integer class IEU1 */
  SPARC_FPM,		/* FP Multiply or Divide instructions */
  SPARC_FPA,		/* All other FP instructions */	
  SPARC_CTI,		/* Control-transfer instructions */
  SPARC_LD,		/* Load instructions */
  SPARC_ST,		/* Store instructions */
  SPARC_SINGLE,		/* Instructions that must issue by themselves */
  
  SPARC_INV,		/* This should stay at the end for the next value */
  SPARC_NUM_SCHED_CLASSES = SPARC_INV
};


//---------------------------------------------------------------------------
// enum SparcMachineOpCode. 
// const MachineInstrDescriptor SparcMachineInstrDesc[]
// 
// Purpose:
//   Description of UltraSparc machine instructions.
// 
//---------------------------------------------------------------------------

enum SparcMachineOpCode {
#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
          NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS)             \
   ENUM,
#include "SparcInstr.def"

  // End-of-array marker
  INVALID_OPCODE,
  NUM_REAL_OPCODES = PHI,		// number of valid opcodes
  NUM_TOTAL_OPCODES = INVALID_OPCODE
};


// Array of machine instruction descriptions...
extern const MachineInstrDescriptor SparcMachineInstrDesc[];


//---------------------------------------------------------------------------
// class UltraSparcInstrInfo 
// 
// Purpose:
//   Information about individual instructions.
//   Most information is stored in the SparcMachineInstrDesc array above.
//   Other information is computed on demand, and most such functions
//   default to member functions in base class MachineInstrInfo. 
//---------------------------------------------------------------------------

class UltraSparcInstrInfo : public MachineInstrInfo {
public:
  /*ctor*/	UltraSparcInstrInfo(const TargetMachine& tgt);

  //
  // All immediate constants are in position 1 except the
  // store instructions.
  // 
  virtual int getImmedConstantPos(MachineOpCode opCode) const {
    bool ignore;
    if (this->maxImmedConstant(opCode, ignore) != 0)
      {
        assert(! this->isStore((MachineOpCode) STB - 1)); // first store is STB
        assert(! this->isStore((MachineOpCode) STD + 1)); // last  store is STD
        return (opCode >= STB && opCode <= STD)? 2 : 1;
      }
    else
      return -1;
  }
  
  virtual bool		hasResultInterlock	(MachineOpCode opCode) const
  {
    // All UltraSPARC instructions have interlocks (note that delay slots
    // are not considered here).
    // However, instructions that use the result of an FCMP produce a
    // 9-cycle stall if they are issued less than 3 cycles after the FCMP.
    // Force the compiler to insert a software interlock (i.e., gap of
    // 2 other groups, including NOPs if necessary).
    return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
  }

  //-------------------------------------------------------------------------
  // Code generation support for creating individual machine instructions
  //-------------------------------------------------------------------------
  
  // Create an instruction sequence to put the constant `val' into
  // the virtual register `dest'.  `val' may be a Constant or a
  // GlobalValue, viz., the constant address of a global variable or function.
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void  CreateCodeToLoadConst(const TargetMachine& target,
                                      Function* F,
                                      Value* val,
                                      Instruction* dest,
                                      std::vector<MachineInstr*>& mvec,
                                      MachineCodeForInstruction& mcfi) const;

  // Create an instruction sequence to copy an integer value `val'
  // to a floating point value `dest' by copying to memory and back.
  // val must be an integral type.  dest must be a Float or Double.
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void  CreateCodeToCopyIntToFloat(const TargetMachine& target,
                                       Function* F,
                                       Value* val,
                                       Instruction* dest,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const;

  // Similarly, create an instruction sequence to copy an FP value
  // `val' to an integer value `dest' by copying to memory and back.
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void  CreateCodeToCopyFloatToInt(const TargetMachine& target,
                                       Function* F,
                                       Value* val,
                                       Instruction* dest,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const;
  
  // Create instruction(s) to copy src to dest, for arbitrary types
  // The generated instructions are returned in `mvec'.
  // Any temp. registers (TmpInstruction) created are recorded in mcfi.
  // Any stack space required is allocated via mcff.
  // 
  virtual void CreateCopyInstructionsByType(const TargetMachine& target,
                                       Function* F,
                                       Value* src,
                                       Instruction* dest,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const;

  // Create instruction sequence to produce a sign-extended register value
  // from an arbitrary sized value (sized in bits, not bytes).
  // Any stack space required is allocated via mcff.
  // 
  virtual void CreateSignExtensionInstructions(const TargetMachine& target,
                                       Function* F,
                                       Value* unsignedSrcVal,
                                       unsigned int srcSizeInBits,
                                       Value* dest,
                                       std::vector<MachineInstr*>& mvec,
                                       MachineCodeForInstruction& mcfi) const;
};


//----------------------------------------------------------------------------
// class UltraSparcRegInfo
//
// This class implements the virtual class MachineRegInfo for Sparc.
//
//----------------------------------------------------------------------------

class UltraSparcRegInfo : public MachineRegInfo {
  // The actual register classes in the Sparc
  //
  enum RegClassIDs { 
    IntRegClassID,                      // Integer
    FloatRegClassID,                    // Float (both single/double)
    IntCCRegClassID,                    // Int Condition Code
    FloatCCRegClassID                   // Float Condition code
  };


  // Type of registers available in Sparc. There can be several reg types
  // in the same class. For instace, the float reg class has Single/Double
  // types
  //
  enum RegTypes {
    IntRegType,
    FPSingleRegType,
    FPDoubleRegType,
    IntCCRegType,
    FloatCCRegType
  };

  // **** WARNING: If the above enum order is changed, also modify 
  // getRegisterClassOfValue method below since it assumes this particular 
  // order for efficiency.


  // reverse pointer to get info about the ultra sparc machine
  //
  const UltraSparc *const UltraSparcInfo;

  // Number of registers used for passing int args (usually 6: %o0 - %o5)
  //
  unsigned const NumOfIntArgRegs;

  // Number of registers used for passing float args (usually 32: %f0 - %f31)
  //
  unsigned const NumOfFloatArgRegs;

  // An out of bound register number that can be used to initialize register
  // numbers. Useful for error detection.
  //
  int const InvalidRegNum;


  // ========================  Private Methods =============================

  // The following methods are used to color special live ranges (e.g.
  // function args and return values etc.) with specific hardware registers
  // as required. See SparcRegInfo.cpp for the implementation.
  //
  void setCallOrRetArgCol(LiveRange *LR, unsigned RegNo,
                          const MachineInstr *MI, 
                          std::hash_map<const MachineInstr *,
                                        AddedInstrns *> &AIMap) const;

  MachineInstr *getCopy2RegMI(const Value *SrcVal, unsigned Reg,
                              unsigned RegClassID) const;

  void suggestReg4RetAddr(const MachineInstr *RetMI, 
			  LiveRangeInfo &LRI) const;

  void suggestReg4CallAddr(const MachineInstr *CallMI, LiveRangeInfo &LRI,
			   std::vector<RegClass *> RCList) const;

  void InitializeOutgoingArg(const MachineInstr* CallMI, AddedInstrns *CallAI,
                             PhyRegAlloc &PRA, LiveRange* LR,
                             unsigned regType, unsigned RegClassID,
                             int  UniArgReg, unsigned int argNo,
                             std::vector<MachineInstr *>& AddedInstrnsBefore)
    const;
  
  // The following 4 methods are used to find the RegType (see enum above)
  // of a LiveRange, Value and using the unified RegClassID
  int getRegType(unsigned regClassID, const Type* type) const;
  int getRegType(const LiveRange *LR) const;
  int getRegType(const Value *Val) const;
  int getRegType(int reg) const;


  // The following methods are used to generate copy instructions to move
  // data between condition code registers
  //
  MachineInstr *cpCCR2IntMI(unsigned IntReg) const;
  MachineInstr *cpInt2CCRMI(unsigned IntReg) const;

  // Used to generate a copy instruction based on the register class of
  // value.
  //
  MachineInstr *cpValue2RegMI(Value *Val,  unsigned DestReg,
                              int RegType) const;


  // The following 2 methods are used to order the instructions addeed by
  // the register allocator in association with function calling. See
  // SparcRegInfo.cpp for more details
  //
  void moveInst2OrdVec(std::vector<MachineInstr *> &OrdVec,
                       MachineInstr *UnordInst,
		       PhyRegAlloc &PRA) const;

  void OrderAddedInstrns(std::vector<MachineInstr *> &UnordVec, 
                         std::vector<MachineInstr *> &OrdVec,
                         PhyRegAlloc &PRA) const;


  // Compute which register can be used for an argument, if any
  // 
  int regNumForIntArg(bool inCallee, bool isVarArgsCall,
                      unsigned argNo, unsigned intArgNo, unsigned fpArgNo,
                      unsigned& regClassId) const;

  int regNumForFPArg(unsigned RegType, bool inCallee, bool isVarArgsCall,
                     unsigned argNo, unsigned intArgNo, unsigned fpArgNo,
                     unsigned& regClassId) const;
  
public:
  UltraSparcRegInfo(const UltraSparc &tgt);

  // To get complete machine information structure using the machine register
  // information
  //
  inline const UltraSparc &getUltraSparcInfo() const { 
    return *UltraSparcInfo;
  }

  // To find the register class used for a specified Type
  //
  inline unsigned getRegClassIDOfType(const Type *type,
                                      bool isCCReg = false) const {
    Type::PrimitiveID ty = type->getPrimitiveID();
    unsigned res;
    
    // FIXME: Comparing types like this isn't very safe...
    if ((ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
	(ty == Type::FunctionTyID) ||  (ty == Type::PointerTyID) )
      res = IntRegClassID;             // sparc int reg (ty=0: void)
    else if (ty <= Type::DoubleTyID)
      res = FloatRegClassID;           // sparc float reg class
    else { 
      //std::cerr << "TypeID: " << ty << "\n";
      assert(0 && "Cannot resolve register class for type");
      return 0;
    }

    if(isCCReg)
      return res + 2;      // corresponidng condition code regiser 
    else 
      return res;
  }

  // To find the register class of a Value
  //
  inline unsigned getRegClassIDOfValue(const Value *Val,
                                       bool isCCReg = false) const {
    return getRegClassIDOfType(Val->getType(), isCCReg);
  }

  

  // getZeroRegNum - returns the register that contains always zero this is the
  // unified register number
  //
  virtual int getZeroRegNum() const;

  // getCallAddressReg - returns the reg used for pushing the address when a
  // function is called. This can be used for other purposes between calls
  //
  unsigned getCallAddressReg() const;

  // Returns the register containing the return address.
  // It should be made sure that this  register contains the return 
  // value when a return instruction is reached.
  //
  unsigned getReturnAddressReg() const;

  // Number of registers used for passing int args (usually 6: %o0 - %o5)
  // and float args (usually 32: %f0 - %f31)
  //
  unsigned const GetNumOfIntArgRegs() const   { return NumOfIntArgRegs; }
  unsigned const GetNumOfFloatArgRegs() const { return NumOfFloatArgRegs; }
  
  // The following methods are used to color special live ranges (e.g.
  // function args and return values etc.) with specific hardware registers
  // as required. See SparcRegInfo.cpp for the implementation for Sparc.
  //
  void suggestRegs4MethodArgs(const Function *Meth, 
			      LiveRangeInfo& LRI) const;

  void suggestRegs4CallArgs(const MachineInstr *CallMI, 
			    LiveRangeInfo& LRI,
                            std::vector<RegClass *> RCL) const; 

  void suggestReg4RetValue(const MachineInstr *RetMI, 
                           LiveRangeInfo& LRI) const;


  void colorMethodArgs(const Function *Meth,  LiveRangeInfo &LRI,
		       AddedInstrns *FirstAI) const;

  void colorCallArgs(const MachineInstr *CallMI, LiveRangeInfo &LRI,
		     AddedInstrns *CallAI,  PhyRegAlloc &PRA,
		     const BasicBlock *BB) const;

  void colorRetValue(const MachineInstr *RetI,   LiveRangeInfo& LRI,
		     AddedInstrns *RetAI) const;



  // method used for printing a register for debugging purposes
  //
  static void printReg(const LiveRange *LR);

  // this method provides a unique number for each register 
  //
  inline int getUnifiedRegNum(int RegClassID, int reg) const {

    if( RegClassID == IntRegClassID && reg < 32 ) 
      return reg;
    else if ( RegClassID == FloatRegClassID && reg < 64)
      return reg + 32;                  // we have 32 int regs
    else if( RegClassID == FloatCCRegClassID && reg < 4)
      return reg + 32 + 64;             // 32 int, 64 float
    else if( RegClassID == IntCCRegClassID ) 
      return reg + 4+ 32 + 64;                // only int cc reg
    else if (reg==InvalidRegNum)                
      return InvalidRegNum;
    else  
      assert(0 && "Invalid register class or reg number");
    return 0;
  }

  // given the unified register number, this gives the name
  // for generating assembly code or debugging.
  //
  virtual const std::string getUnifiedRegName(int reg) const;


  // returns the # of bytes of stack space allocated for each register
  // type. For Sparc, currently we allocate 8 bytes on stack for all 
  // register types. We can optimize this later if necessary to save stack
  // space (However, should make sure that stack alignment is correct)
  //
  inline int getSpilledRegSize(int RegType) const {
    return 8;
  }


  // To obtain the return value and the indirect call address (if any)
  // contained in a CALL machine instruction
  //
  const Value * getCallInstRetVal(const MachineInstr *CallMI) const;
  const Value * getCallInstIndirectAddrVal(const MachineInstr *CallMI) const;

  // The following methods are used to generate "copy" machine instructions
  // for an architecture.
  //
  void cpReg2RegMI(unsigned SrcReg, unsigned DestReg,
                   int RegType, vector<MachineInstr*>& mvec) const;
  
  void cpReg2MemMI(unsigned SrcReg, unsigned DestPtrReg,
                   int Offset, int RegType, vector<MachineInstr*>& mvec) const;

  void cpMem2RegMI(unsigned SrcPtrReg, int Offset, unsigned DestReg,
                   int RegType, vector<MachineInstr*>& mvec) const;

  void cpValue2Value(Value *Src, Value *Dest,
                     vector<MachineInstr*>& mvec) const;

  // To see whether a register is a volatile (i.e., whehter it must be
  // preserved acorss calls)
  //
  inline bool isRegVolatile(int RegClassID, int Reg) const {
    return MachineRegClassArr[RegClassID]->isRegVolatile(Reg);
  }


  virtual unsigned getFramePointer() const;
  virtual unsigned getStackPointer() const;

  virtual int getInvalidRegNum() const {
    return InvalidRegNum;
  }

  // This method inserts the caller saving code for call instructions
  //
  void insertCallerSavingCode(const MachineInstr *MInst, 
			      const BasicBlock *BB, PhyRegAlloc &PRA ) const;
};




//---------------------------------------------------------------------------
// class UltraSparcSchedInfo
// 
// Purpose:
//   Interface to instruction scheduling information for UltraSPARC.
//   The parameter values above are based on UltraSPARC IIi.
//---------------------------------------------------------------------------


class UltraSparcSchedInfo: public MachineSchedInfo {
public:
  UltraSparcSchedInfo(const TargetMachine &tgt);
protected:
  virtual void initializeResources();
};


//---------------------------------------------------------------------------
// class UltraSparcFrameInfo 
// 
// Purpose:
//   Interface to stack frame layout info for the UltraSPARC.
//   Starting offsets for each area of the stack frame are aligned at
//   a multiple of getStackFrameSizeAlignment().
//---------------------------------------------------------------------------

class UltraSparcFrameInfo: public MachineFrameInfo {
public:
  UltraSparcFrameInfo(const TargetMachine &tgt) : MachineFrameInfo(tgt) {}
  
public:
  int  getStackFrameSizeAlignment() const { return StackFrameSizeAlignment;}
  int  getMinStackFrameSize()       const { return MinStackFrameSize; }
  int  getNumFixedOutgoingArgs()    const { return NumFixedOutgoingArgs; }
  int  getSizeOfEachArgOnStack()    const { return SizeOfEachArgOnStack; }
  bool argsOnStackHaveFixedSize()   const { return true; }

  //
  // These methods compute offsets using the frame contents for a
  // particular function.  The frame contents are obtained from the
  // MachineCodeInfoForMethod object for the given function.
  // 
  int getFirstIncomingArgOffset  (MachineCodeForMethod& mcInfo,
                                  bool& growUp) const
  {
    growUp = true;                         // arguments area grows upwards
    return FirstIncomingArgOffsetFromFP;
  }
  int getFirstOutgoingArgOffset  (MachineCodeForMethod& mcInfo,
                                  bool& growUp) const
  {
    growUp = true;                         // arguments area grows upwards
    return FirstOutgoingArgOffsetFromSP;
  }
  int getFirstOptionalOutgoingArgOffset(MachineCodeForMethod& mcInfo,
                                        bool& growUp)const
  {
    growUp = true;                         // arguments area grows upwards
    return FirstOptionalOutgoingArgOffsetFromSP;
  }
  
  int getFirstAutomaticVarOffset (MachineCodeForMethod& mcInfo,
                                  bool& growUp) const;
  int getRegSpillAreaOffset      (MachineCodeForMethod& mcInfo,
                                  bool& growUp) const;
  int getTmpAreaOffset           (MachineCodeForMethod& mcInfo,
                                  bool& growUp) const;
  int getDynamicAreaOffset       (MachineCodeForMethod& mcInfo,
                                  bool& growUp) const;

  //
  // These methods specify the base register used for each stack area
  // (generally FP or SP)
  // 
  virtual int getIncomingArgBaseRegNum()               const {
    return (int) target.getRegInfo().getFramePointer();
  }
  virtual int getOutgoingArgBaseRegNum()               const {
    return (int) target.getRegInfo().getStackPointer();
  }
  virtual int getOptionalOutgoingArgBaseRegNum()       const {
    return (int) target.getRegInfo().getStackPointer();
  }
  virtual int getAutomaticVarBaseRegNum()              const {
    return (int) target.getRegInfo().getFramePointer();
  }
  virtual int getRegSpillAreaBaseRegNum()              const {
    return (int) target.getRegInfo().getFramePointer();
  }
  virtual int getDynamicAreaBaseRegNum()               const {
    return (int) target.getRegInfo().getStackPointer();
  }
  
private:
  // All stack addresses must be offset by 0x7ff (2047) on Sparc V9.
  static const int OFFSET                                  = (int) 0x7ff;
  static const int StackFrameSizeAlignment                 =  16;
  static const int MinStackFrameSize                       = 176;
  static const int NumFixedOutgoingArgs                    =   6;
  static const int SizeOfEachArgOnStack                    =   8;
  static const int StaticAreaOffsetFromFP                  =  0 + OFFSET;
  static const int FirstIncomingArgOffsetFromFP            = 128 + OFFSET;
  static const int FirstOptionalIncomingArgOffsetFromFP    = 176 + OFFSET;
  static const int FirstOutgoingArgOffsetFromSP            = 128 + OFFSET;
  static const int FirstOptionalOutgoingArgOffsetFromSP    = 176 + OFFSET;
};


//---------------------------------------------------------------------------
// class UltraSparcCacheInfo 
// 
// Purpose:
//   Interface to cache parameters for the UltraSPARC.
//   Just use defaults for now.
//---------------------------------------------------------------------------

class UltraSparcCacheInfo: public MachineCacheInfo {
public:
  UltraSparcCacheInfo(const TargetMachine &T) : MachineCacheInfo(T) {} 
};


//---------------------------------------------------------------------------
// class UltraSparcMachine 
// 
// Purpose:
//   Primary interface to machine description for the UltraSPARC.
//   Primarily just initializes machine-dependent parameters in
//   class TargetMachine, and creates machine-dependent subclasses
//   for classes such as InstrInfo, SchedInfo and RegInfo. 
//---------------------------------------------------------------------------

class UltraSparc : public TargetMachine {
private:
  UltraSparcInstrInfo instrInfo;
  UltraSparcSchedInfo schedInfo;
  UltraSparcRegInfo   regInfo;
  UltraSparcFrameInfo frameInfo;
  UltraSparcCacheInfo cacheInfo;
public:
  UltraSparc();
  
  virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
  virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
  virtual const MachineRegInfo   &getRegInfo()   const { return regInfo; }
  virtual const MachineFrameInfo &getFrameInfo() const { return frameInfo; }
  virtual const MachineCacheInfo &getCacheInfo() const { return cacheInfo; }

  //
  // addPassesToEmitAssembly - Add passes to the specified pass manager to get
  // assembly langage code emited.  For sparc, we have to do ...
  //
  virtual void addPassesToEmitAssembly(PassManager &PM, std::ostream &Out);

private:
  Pass *getFunctionAsmPrinterPass(PassManager &PM, std::ostream &Out);
  Pass *getModuleAsmPrinterPass(PassManager &PM, std::ostream &Out);
  Pass *getEmitBytecodeToAsmPass(std::ostream &Out);
};

#endif