aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/SparcV9RegInfo.cpp
blob: b660e89805fb1b218ab16f97b1ff4002381769a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
//===-- SparcRegInfo.cpp - Sparc Target Register Information --------------===//
//
// This file contains implementation of Sparc specific helper methods
// used for register allocation.
//
//===----------------------------------------------------------------------===//

#include "SparcInternals.h"
#include "SparcRegClassInfo.h"
#include "llvm/Target/Sparc.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/CodeGen/PhyRegAlloc.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/RegAllocCommon.h"
#include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/Function.h"
#include "llvm/DerivedTypes.h"
#include <iostream>
#include <values.h>
using std::cerr;

UltraSparcRegInfo::UltraSparcRegInfo(const UltraSparc &tgt)
  : MachineRegInfo(tgt), UltraSparcInfo(&tgt), NumOfIntArgRegs(6), 
    NumOfFloatArgRegs(32), InvalidRegNum(1000) {
   
  MachineRegClassArr.push_back(new SparcIntRegClass(IntRegClassID));
  MachineRegClassArr.push_back(new SparcFloatRegClass(FloatRegClassID));
  MachineRegClassArr.push_back(new SparcIntCCRegClass(IntCCRegClassID));
  MachineRegClassArr.push_back(new SparcFloatCCRegClass(FloatCCRegClassID));

  assert(SparcFloatRegOrder::StartOfNonVolatileRegs == 32 && 
         "32 Float regs are used for float arg passing");
}


// getZeroRegNum - returns the register that contains always zero.
// this is the unified register number
//
int UltraSparcRegInfo::getZeroRegNum() const {
  return this->getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                                SparcIntRegOrder::g0);
}

// getCallAddressReg - returns the reg used for pushing the address when a
// method is called. This can be used for other purposes between calls
//
unsigned UltraSparcRegInfo::getCallAddressReg() const {
  return this->getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                                SparcIntRegOrder::o7);
}

// Returns the register containing the return address.
// It should be made sure that this  register contains the return 
// value when a return instruction is reached.
//
unsigned UltraSparcRegInfo::getReturnAddressReg() const {
  return this->getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                                SparcIntRegOrder::i7);
}

// given the unified register number, this gives the name
// for generating assembly code or debugging.
//
const std::string UltraSparcRegInfo::getUnifiedRegName(int reg) const {
  if( reg < 32 ) 
    return SparcIntRegOrder::getRegName(reg);
  else if ( reg < (64 + 32) )
    return SparcFloatRegOrder::getRegName( reg  - 32);                  
  else if( reg < (64+32+4) )
    return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
  else if( reg < (64+32+4+2) )    // two names: %xcc and %ccr
    return SparcIntCCRegOrder::getRegName( reg -32 - 64 - 4);             
  else if (reg== InvalidRegNum)       //****** TODO: Remove */
    return "<*NoReg*>";
  else 
    assert(0 && "Invalid register number");
  return "";
}

// Get unified reg number for frame pointer
unsigned UltraSparcRegInfo::getFramePointer() const {
  return this->getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                                SparcIntRegOrder::i6);
}

// Get unified reg number for stack pointer
unsigned UltraSparcRegInfo::getStackPointer() const {
  return this->getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                                SparcIntRegOrder::o6);
}


//---------------------------------------------------------------------------
// Finds whether a call is an indirect call
//---------------------------------------------------------------------------

inline bool
isVarArgsFunction(const Type *funcType) {
  return cast<FunctionType>(cast<PointerType>(funcType)
                            ->getElementType())->isVarArg();
}

inline bool
isVarArgsCall(const MachineInstr *CallMI) {
  Value* callee = CallMI->getOperand(0).getVRegValue();
  // const Type* funcType = isa<Function>(callee)? callee->getType()
  //   : cast<PointerType>(callee->getType())->getElementType();
  const Type* funcType = callee->getType();
  return isVarArgsFunction(funcType);
}


// Get the register number for the specified integer arg#,
// assuming there are argNum total args, intArgNum int args,
// and fpArgNum FP args preceding (and not including) this one.
// Use INT regs for FP args if this is a varargs call.
// 
// Return value:
//      InvalidRegNum,  if there is no int register available for the arg. 
//      regNum,         otherwise (this is NOT the unified reg. num).
// 
inline int
UltraSparcRegInfo::regNumForIntArg(bool inCallee, bool isVarArgsCall,
                                   unsigned argNo,
                                   unsigned intArgNo, unsigned fpArgNo,
                                   unsigned& regClassId) const
{
  int firstArgReg = inCallee? SparcIntRegOrder::i0 : SparcIntRegOrder::o0;
  if (argNo >= NumOfIntArgRegs)
    return InvalidRegNum;
  else {
    regClassId = IntRegClassID;
    return isVarArgsCall? firstArgReg + argNo
                        : firstArgReg + intArgNo;
  }
}

// Get the register number for the specified FP arg#,
// assuming there are argNum total args, intArgNum int args,
// and fpArgNum FP args preceding (and not including) this one.
// Use INT regs for FP args if this is a varargs call.
// 
// Return value:
//      InvalidRegNum,  if there is no int register available for the arg. 
//      regNum,         otherwise (this is NOT the unified reg. num).
// 
inline int
UltraSparcRegInfo::regNumForFPArg(unsigned regType,
                                  bool inCallee, bool isVarArgsCall,
                                  unsigned argNo,
                                  unsigned intArgNo, unsigned fpArgNo,
                                  unsigned& regClassId) const
{
  if (isVarArgsCall) {
    assert(! isVarArgsCall &&
           "FP arguments to a varargs function should be explicitly copied "
           "to/from int registers by instruction selection!");
    return InvalidRegNum; 
  }
  else {
    regClassId = FloatRegClassID;
    if (regType == FPSingleRegType)
      return (fpArgNo*2+1 >= NumOfFloatArgRegs)?
        InvalidRegNum : SparcFloatRegOrder::f0 + (fpArgNo * 2 + 1);
    else if (regType == FPDoubleRegType)
      return (fpArgNo*2 >= NumOfFloatArgRegs)?
        InvalidRegNum : SparcFloatRegOrder::f0 + (fpArgNo * 2);
    else
      assert(0 && "Illegal FP register type");
  }
}

//---------------------------------------------------------------------------
// Finds the return value of a sparc specific call instruction
//---------------------------------------------------------------------------

const Value * 
UltraSparcRegInfo::getCallInstRetVal(const MachineInstr *CallMI) const {
  unsigned OpCode = CallMI->getOpCode();
  unsigned NumOfImpRefs = CallMI->getNumImplicitRefs();

  if (OpCode == CALL) {

    // The one before the last implicit operand is the return value of 
    // a CALL instr
    //
    if( NumOfImpRefs > 1 )
      if (CallMI->implicitRefIsDefined(NumOfImpRefs-2)) 
	return CallMI->getImplicitRef(NumOfImpRefs-2); 

  } else if (OpCode == JMPLCALL) {

    // The last implicit operand is the return value of a JMPL
    // 
    if(NumOfImpRefs > 0)
      if (CallMI->implicitRefIsDefined(NumOfImpRefs-1))
	return CallMI->getImplicitRef(NumOfImpRefs-1); 
  } else
    assert(0 && "OpCode must be CALL/JMPL for a call instr");

  return NULL;
}


const Value * 
UltraSparcRegInfo::getCallInstIndirectAddrVal(const MachineInstr *CallMI) const
{
  return (CallMI->getOpCode() == JMPLCALL)?
    CallMI->getOperand(0).getVRegValue() : NULL;
}


//---------------------------------------------------------------------------
// Finds the return address of a call sparc specific call instruction
//---------------------------------------------------------------------------
const Value *
UltraSparcRegInfo::getCallInstRetAddr(const MachineInstr *CallMI) const {
  unsigned OpCode = CallMI->getOpCode();

  if (OpCode == CALL) {
    unsigned NumOfImpRefs =  CallMI->getNumImplicitRefs();

    assert( NumOfImpRefs && "CALL instr must have at least on ImpRef");

    // The last implicit operand is the return address of a CALL instr
    //
    return CallMI->getImplicitRef(NumOfImpRefs-1); 

  } else if(OpCode == JMPLCALL) {
    MachineOperand &MO = (MachineOperand &)CallMI->getOperand(2);
    return MO.getVRegValue();
  }
  
  assert(0 && "OpCode must be CALL/JMPL for a call instr");
  return 0;
}

// The following 3  methods are used to find the RegType (see enum above)
// of a LiveRange, Value and using the unified RegClassID
//
int UltraSparcRegInfo::getRegType(const LiveRange *LR) const {
  switch (LR->getRegClass()->getID()) {
  case IntRegClassID: return IntRegType; 
  case FloatRegClassID: {
    const Type *Typ = LR->getType();
    if (Typ == Type::FloatTy) 
      return FPSingleRegType;
    else if (Typ == Type::DoubleTy)
      return FPDoubleRegType;
    assert(0 && "Unknown type in FloatRegClass");
  }
  case IntCCRegClassID: return IntCCRegType; 
  case FloatCCRegClassID: return FloatCCRegType; 
  default: assert( 0 && "Unknown reg class ID");
    return 0;
  }
}

int UltraSparcRegInfo::getRegType(const Value *Val) const {
  unsigned Typ;
  
  switch (getRegClassIDOfValue(Val)) {
  case IntRegClassID: return IntRegType; 
  case FloatRegClassID:
    if (Val->getType() == Type::FloatTy)
      return FPSingleRegType;
    else if (Val->getType() == Type::DoubleTy)
      return FPDoubleRegType;
    assert(0 && "Unknown type in FloatRegClass");
    
  case IntCCRegClassID:   return IntCCRegType; 
  case FloatCCRegClassID: return FloatCCRegType; 
  default: assert(0 && "Unknown reg class ID");
    return 0;
  }
}

int UltraSparcRegInfo::getRegType(int reg) const {
  if (reg < 32) 
    return IntRegType;
  else if (reg < (32 + 32))
    return FPSingleRegType;
  else if (reg < (64 + 32))
    return FPDoubleRegType;
  else if (reg < (64+32+4))
    return FloatCCRegType;
  else if (reg < (64+32+4+2))  
    return IntCCRegType;             
  else 
    assert(0 && "Invalid register number in getRegType");
  return 0;
}





//---------------------------------------------------------------------------
// Finds the # of actual arguments of the call instruction
//---------------------------------------------------------------------------
unsigned 
UltraSparcRegInfo::getCallInstNumArgs(const MachineInstr *CallMI) const {

  unsigned OpCode = CallMI->getOpCode();
  unsigned NumOfImpRefs = CallMI->getNumImplicitRefs();

  if (OpCode == CALL) {
    switch (NumOfImpRefs) {
    case 0: assert(0 && "A CALL inst must have at least one ImpRef (RetAddr)");
    case 1: return 0;
    default:  // two or more implicit refs
      if (CallMI->implicitRefIsDefined(NumOfImpRefs-2)) 
	return NumOfImpRefs - 2;
      else 
	return NumOfImpRefs - 1;
    }
  } else if (OpCode == JMPLCALL) {

    // The last implicit operand is the return value of a JMPL instr
    if( NumOfImpRefs > 0 ) {
      if (CallMI->implicitRefIsDefined(NumOfImpRefs-1)) 
	return NumOfImpRefs - 1;
      else 
	return NumOfImpRefs;
    }
    else 
      return NumOfImpRefs;
  }

  assert(0 && "OpCode must be CALL/JMPL for a call instr");
  return 0;
}



//---------------------------------------------------------------------------
// Suggests a register for the ret address in the RET machine instruction.
// We always suggest %i7 by convention.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestReg4RetAddr(const MachineInstr *RetMI, 
					   LiveRangeInfo& LRI) const {

  assert( (RetMI->getNumOperands() >= 2)
          && "JMPL/RETURN must have 3 and 2 operands respectively");
  
  MachineOperand & MO  = ( MachineOperand &) RetMI->getOperand(0);

  // return address is always mapped to i7
  //
  MO.setRegForValue( getUnifiedRegNum( IntRegClassID, SparcIntRegOrder::i7) );
  
  // Possible Optimization: 
  // Instead of setting the color, we can suggest one. In that case,
  // we have to test later whether it received the suggested color.
  // In that case, a LR has to be created at the start of method.
  // It has to be done as follows (remove the setRegVal above):

  // const Value *RetAddrVal = MO.getVRegValue();
  // assert( RetAddrVal && "LR for ret address must be created at start");
  // LiveRange * RetAddrLR = LRI.getLiveRangeForValue( RetAddrVal);  
  // RetAddrLR->setSuggestedColor(getUnifiedRegNum( IntRegClassID, 
  // SparcIntRegOrdr::i7) );
}


//---------------------------------------------------------------------------
// Suggests a register for the ret address in the JMPL/CALL machine instr.
// Sparc ABI dictates that %o7 be used for this purpose.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestReg4CallAddr(const MachineInstr * CallMI,
					    LiveRangeInfo& LRI,
					 std::vector<RegClass *> RCList) const {


  const Value *RetAddrVal = getCallInstRetAddr( CallMI );

  // RetAddrVal cannot be NULL (asserted in  getCallInstRetAddr)
  // create a new LR for the return address and color it
  
  LiveRange * RetAddrLR = new LiveRange();  
  RetAddrLR->insert( RetAddrVal );
  unsigned RegClassID = getRegClassIDOfValue( RetAddrVal );
  RetAddrLR->setRegClass( RCList[RegClassID] );
  RetAddrLR->setColor(getUnifiedRegNum(IntRegClassID,SparcIntRegOrder::o7));
  LRI.addLRToMap( RetAddrVal, RetAddrLR);
  
}




//---------------------------------------------------------------------------
//  This method will suggest colors to incoming args to a method. 
//  According to the Sparc ABI, the first 6 incoming args are in 
//  %i0 - %i5 (if they are integer) OR in %f0 - %f31 (if they are float).
//  If the arg is passed on stack due to the lack of regs, NOTHING will be
//  done - it will be colored (or spilled) as a normal live range.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestRegs4MethodArgs(const Function *Meth, 
					       LiveRangeInfo& LRI) const 
{
  // check if this is a varArgs function. needed for choosing regs.
  bool isVarArgs = isVarArgsFunction(Meth->getType());
  
  // get the argument list
  const Function::ArgumentListType& ArgList = Meth->getArgumentList();
  
  // for each argument.  count INT and FP arguments separately.
  for( unsigned argNo=0, intArgNo=0, fpArgNo=0;
       argNo != ArgList.size(); ++argNo)
    {
      // get the LR of arg
      LiveRange *LR = LRI.getLiveRangeForValue((const Value *)ArgList[argNo]); 
      assert( LR && "No live range found for method arg");
      
      unsigned regType = getRegType( LR );
      unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg (unused)
      
      int regNum = (regType == IntRegType)
        ? regNumForIntArg(true, isVarArgs, argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
        : regNumForFPArg(regType, true, isVarArgs, argNo, intArgNo, fpArgNo++, regClassIDOfArgReg); 
      
      if(regNum != InvalidRegNum)
        LR->setSuggestedColor(regNum);
    }
}



//---------------------------------------------------------------------------
// This method is called after graph coloring to move incoming args to
// the correct hardware registers if they did not receive the correct
// (suggested) color through graph coloring.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::colorMethodArgs(const Function *Meth, 
					LiveRangeInfo &LRI,
					AddedInstrns *FirstAI) const {

  // check if this is a varArgs function. needed for choosing regs.
  bool isVarArgs = isVarArgsFunction(Meth->getType());
                                                 // get the argument list
  const Function::ArgumentListType& ArgList = Meth->getArgumentList();
                                                 // get an iterator to arg list
  MachineInstr *AdMI;

  // for each argument
  for( unsigned argNo=0, intArgNo=0, fpArgNo=0;
       argNo != ArgList.size(); ++argNo) {    
    // get the LR of arg
    LiveRange *LR = LRI.getLiveRangeForValue((Value*)ArgList[argNo]); 
    assert( LR && "No live range found for method arg");

    unsigned regType = getRegType( LR );
    unsigned RegClassID = (LR->getRegClass())->getID();
    
    // Find whether this argument is coming in a register (if not, on stack)
    // Also find the correct register the argument must use (UniArgReg)
    //
    bool isArgInReg = false;
    unsigned UniArgReg = InvalidRegNum;	// reg that LR MUST be colored with
    unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg
    
    int regNum = (regType == IntRegType)
      ? regNumForIntArg(true, isVarArgs, argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
      : regNumForFPArg(regType, true, isVarArgs, argNo, intArgNo, fpArgNo++, regClassIDOfArgReg);
    
    if(regNum != InvalidRegNum) {
      isArgInReg = true;
      UniArgReg = getUnifiedRegNum( regClassIDOfArgReg, regNum);
    }
    
    if( LR->hasColor() ) {              // if this arg received a register

      unsigned UniLRReg = getUnifiedRegNum(  RegClassID, LR->getColor() );

      // if LR received the correct color, nothing to do
      //
      if( UniLRReg == UniArgReg )
	continue;

      // We are here because the LR did not receive the suggested 
      // but LR received another register.
      // Now we have to copy the %i reg (or stack pos of arg) 
      // to the register the LR was colored with.
      
      // if the arg is coming in UniArgReg register, it MUST go into
      // the UniLRReg register
      //
      if( isArgInReg ) {
	AdMI = cpReg2RegMI( UniArgReg, UniLRReg, regType );

	if( regClassIDOfArgReg != RegClassID ) {
          assert(0 &&
                 "FP arguments to a varargs function should be explicitly "
                 "copied to/from int registers by instruction selection!");
          
	  // It is a variable argument call: the float reg must go in a %o reg.
	  // We have to move an int reg to a float reg via memory.
          // 
          assert(isVarArgs &&
                 RegClassID == FloatRegClassID && 
                 regClassIDOfArgReg == IntRegClassID &&
                 "This should only be an Int register for an FP argument");
          
 	  int TmpOff = MachineCodeForMethod::get(Meth).pushTempValue(target,  
                                                getSpilledRegSize(regType));
	  AdMI = cpReg2MemMI(UniArgReg, getFramePointer(), TmpOff, IntRegType);
          FirstAI->InstrnsBefore.push_back(AdMI);   
          
	  AdMI = cpMem2RegMI(getFramePointer(), TmpOff,	UniLRReg, regType);
          FirstAI->InstrnsBefore.push_back(AdMI);   
	}
	else {	
	  AdMI = cpReg2RegMI(UniArgReg, UniLRReg, regType );
          FirstAI->InstrnsBefore.push_back( AdMI );   
	}
      }
      else {

	// Now the arg is coming on stack. Since the LR recieved a register,
	// we just have to load the arg on stack into that register
	//
        const MachineFrameInfo& frameInfo = target.getFrameInfo();
	int offsetFromFP =
          frameInfo.getIncomingArgOffset(MachineCodeForMethod::get(Meth),
                                         argNo);
        
	AdMI = cpMem2RegMI(getFramePointer(), offsetFromFP, 
			   UniLRReg, regType );
        FirstAI->InstrnsBefore.push_back( AdMI );   
      }
      
    } // if LR received a color

    else {                             

      // Now, the LR did not receive a color. But it has a stack offset for
      // spilling.
      // So, if the arg is coming in UniArgReg register,  we can just move
      // that on to the stack pos of LR

      if( isArgInReg ) {
        
	if( regClassIDOfArgReg != RegClassID ) {
          assert(0 &&
                 "FP arguments to a varargs function should be explicitly "
                 "copied to/from int registers by instruction selection!");
          
	  // It must be a float arg for a variable argument call, which
          // must come in a %o reg.  Move the int reg to the stack.
          // 
          assert(isVarArgs && regClassIDOfArgReg == IntRegClassID &&
                 "This should only be an Int register for an FP argument");
          
          AdMI = cpReg2MemMI(UniArgReg, getFramePointer(), 
                             LR->getSpillOffFromFP(), IntRegType );
        }
        else {
          AdMI = cpReg2MemMI(UniArgReg, getFramePointer(), 
                             LR->getSpillOffFromFP(), regType );
        }
        
        FirstAI->InstrnsBefore.push_back( AdMI );   
      }

      else {

	// Now the arg is coming on stack. Since the LR did NOT 
	// recieved a register as well, it is allocated a stack position. We
	// can simply change the stack position of the LR. We can do this,
	// since this method is called before any other method that makes
	// uses of the stack pos of the LR (e.g., updateMachineInstr)

        const MachineFrameInfo& frameInfo = target.getFrameInfo();
	int offsetFromFP =
          frameInfo.getIncomingArgOffset(MachineCodeForMethod::get(Meth),
                                         argNo);
        
	LR->modifySpillOffFromFP( offsetFromFP );
      }

    }

  }  // for each incoming argument

}



//---------------------------------------------------------------------------
// This method is called before graph coloring to suggest colors to the
// outgoing call args and the return value of the call.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestRegs4CallArgs(const MachineInstr *CallMI, 
					     LiveRangeInfo& LRI,
					 std::vector<RegClass *> RCList) const {
  assert ( (UltraSparcInfo->getInstrInfo()).isCall(CallMI->getOpCode()) );

  // check if this is a varArgs function. needed for choosing regs.
  bool isVarArgs = isVarArgsCall(CallMI);
  
  suggestReg4CallAddr(CallMI, LRI, RCList);


  // First color the return value of the call instruction. The return value
  // will be in %o0 if the value is an integer type, or in %f0 if the 
  // value is a float type.

  // the return value cannot have a LR in machine instruction since it is
  // only defined by the call instruction

  // if type is not void,  create a new live range and set its 
  // register class and add to LRI


  const Value *RetVal = getCallInstRetVal( CallMI );


  if (RetVal) {
    assert ((!LRI.getLiveRangeForValue(RetVal)) && 
	    "LR for ret Value of call already definded!");

    // create a new LR for the return value
    LiveRange *RetValLR = new LiveRange();  
    RetValLR->insert(RetVal);
    unsigned RegClassID = getRegClassIDOfValue(RetVal);
    RetValLR->setRegClass(RCList[RegClassID]);
    LRI.addLRToMap(RetVal, RetValLR);
    
    // now suggest a register depending on the register class of ret arg

    if( RegClassID == IntRegClassID ) 
      RetValLR->setSuggestedColor(SparcIntRegOrder::o0);
    else if (RegClassID == FloatRegClassID ) 
      RetValLR->setSuggestedColor(SparcFloatRegOrder::f0 );
    else assert( 0 && "Unknown reg class for return value of call\n");
  }

  
  // Now suggest colors for arguments (operands) of the call instruction.
  // Colors are suggested only if the arg number is smaller than the
  // the number of registers allocated for argument passing.
  // Now, go thru call args - implicit operands of the call MI

  unsigned NumOfCallArgs =  getCallInstNumArgs( CallMI );
  
  for(unsigned argNo=0, i=0, intArgNo=0, fpArgNo=0;
       i < NumOfCallArgs; ++i, ++argNo) {    

    const Value *CallArg = CallMI->getImplicitRef(i);
    
    // get the LR of call operand (parameter)
    LiveRange *const LR = LRI.getLiveRangeForValue(CallArg); 

    // not possible to have a null LR since all args (even consts)  
    // must be defined before
    if (!LR) {          
      cerr << " ERROR: In call instr, no LR for arg: " << RAV(CallArg) << "\n";
      assert(0 && "NO LR for call arg");  
    }
    
    unsigned regType = getRegType( LR );
    unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg (unused)

    // Choose a register for this arg depending on whether it is
    // an INT or FP value, and if it is a varargs call
    int regNum = (regType == IntRegType)
      ? regNumForIntArg(false, isVarArgs, argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
      : regNumForFPArg(regType, false, isVarArgs, argNo, intArgNo, fpArgNo++, regClassIDOfArgReg); 
    
    // If a register could be allocated, use it.
    // If not, do NOTHING as this will be colored as a normal value.
    if(regNum != InvalidRegNum)
      LR->setSuggestedColor(regNum);
    
  } // for all call arguments

}


//---------------------------------------------------------------------------
// After graph coloring, we have call this method to see whehter the return
// value and the call args received the correct colors. If not, we have
// to instert copy instructions.
//---------------------------------------------------------------------------

void UltraSparcRegInfo::colorCallArgs(const MachineInstr *CallMI,
				      LiveRangeInfo &LRI,
				      AddedInstrns *CallAI,
				      PhyRegAlloc &PRA,
				      const BasicBlock *BB) const {

  assert ( (UltraSparcInfo->getInstrInfo()).isCall(CallMI->getOpCode()) );

  // First color the return value of the call.
  // If there is a LR for the return value, it means this
  // method returns a value
  
  MachineInstr *AdMI;

  const Value *RetVal = getCallInstRetVal( CallMI );

  if (RetVal) {
    LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal );

    if (!RetValLR) {
      cerr << "\nNo LR for:" << RAV(RetVal) << "\n";
      assert(0 && "ERR:No LR for non-void return value");
    }

    unsigned RegClassID = (RetValLR->getRegClass())->getID();    
    bool recvCorrectColor = false;

    unsigned CorrectCol;                // correct color for ret value
    if(RegClassID == IntRegClassID)
      CorrectCol = SparcIntRegOrder::o0;
    else if(RegClassID == FloatRegClassID)
      CorrectCol = SparcFloatRegOrder::f0;
    else {
      assert( 0 && "Unknown RegClass");
      return;
    }

    // if the LR received the correct color, NOTHING to do

    if(  RetValLR->hasColor() )
      if( RetValLR->getColor() == CorrectCol )
	recvCorrectColor = true;


    // if we didn't receive the correct color for some reason, 
    // put copy instruction
    
    if( !recvCorrectColor ) {

      unsigned regType = getRegType( RetValLR );

      // the  reg that LR must be colored with 
      unsigned UniRetReg = getUnifiedRegNum( RegClassID, CorrectCol);	
      
      if( RetValLR->hasColor() ) {
	
	unsigned 
	  UniRetLRReg=getUnifiedRegNum(RegClassID,RetValLR->getColor());
	
	// the return value is coming in UniRetReg but has to go into
	// the UniRetLRReg

	AdMI = cpReg2RegMI( UniRetReg, UniRetLRReg, regType ); 	

      } // if LR has color
      else {

	// if the LR did NOT receive a color, we have to move the return
	// value coming in UniRetReg to the stack pos of spilled LR
	
	AdMI = 	cpReg2MemMI(UniRetReg, getFramePointer(), 
			    RetValLR->getSpillOffFromFP(), regType );
      }

      CallAI->InstrnsAfter.push_back( AdMI );
      
    } // the LR didn't receive the suggested color  
    
  } // if there a return value
  

  //-------------------------------------------
  // Now color all args of the call instruction
  //-------------------------------------------

  std::vector<MachineInstr *> AddedInstrnsBefore;

  unsigned NumOfCallArgs =  getCallInstNumArgs( CallMI );

  bool isVarArgs = isVarArgsCall(CallMI);
  if (DEBUG_RA && isVarArgs) cerr << "\nVar arg call found!!\n";

  for(unsigned argNo=0, i=0, intArgNo=0, fpArgNo=0;
      i < NumOfCallArgs; ++i, ++argNo) {    

    const Value *CallArg = CallMI->getImplicitRef(i);

    // get the LR of call operand (parameter)
    LiveRange *const LR = LRI.getLiveRangeForValue(CallArg); 

    unsigned regType = getRegType( CallArg );
    unsigned RegClassID = getRegClassIDOfValue( CallArg);
    
    // find whether this argument is coming in a register (if not, on stack)
    // Also find the correct register the argument must use (UniArgReg)
    //
    bool isArgInReg = false;
    unsigned UniArgReg = InvalidRegNum;	// reg that LR MUST be colored with
    unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg
    
    int regNum = (regType == IntRegType)
      ? regNumForIntArg(false, isVarArgs, argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
      : regNumForFPArg(regType, false, isVarArgs, argNo, intArgNo, fpArgNo++, regClassIDOfArgReg); 
    
    if(regNum != InvalidRegNum) {
      isArgInReg = true;
      UniArgReg = getUnifiedRegNum( regClassIDOfArgReg, regNum);
    }
    
    // not possible to have a null LR since all args (even consts)  
    // must be defined before
    if (!LR) {          
      cerr << " ERROR: In call instr, no LR for arg:  " << RAV(CallArg) <<"\n";
      assert(0 && "NO LR for call arg");  
    }

    if (LR->hasColor()) {
      unsigned UniLRReg = getUnifiedRegNum( RegClassID,  LR->getColor() );

      // if LR received the correct color, nothing to do
      if( UniLRReg == UniArgReg )
	continue;

      // We are here because though the LR is allocated a register, it
      // was not allocated the suggested register. So, we have to copy %ix reg 
      // (or stack pos of arg) to the register it was colored with

      // the LR is colored with UniLRReg but has to go into  UniArgReg
      // to pass it as an argument

      if( isArgInReg ) {

	if( regClassIDOfArgReg != RegClassID ) {
          assert(0 &&
                 "FP arguments to a varargs function should be explicitly "
                 "copied to/from int registers by instruction selection!");
          
	  // It must be a float arg for a variable argument call, which
          // must come in a %o reg.
	  // We have to move a float reg to an int reg via memory.
          // 
          assert(isVarArgs &&
                 RegClassID == FloatRegClassID && 
                 regClassIDOfArgReg == IntRegClassID &&
                 "This should only be an Int register for an FP argument");
          
	  // The store instruction will be directly added to  
	  // CallAI->InstrnsBefore since it does not need reordering
	  // 
 	  int TmpOff = PRA.mcInfo.pushTempValue(target,  
                                                getSpilledRegSize(regType));
          
	  AdMI = cpReg2MemMI(UniLRReg, getFramePointer(), TmpOff, regType );
	  CallAI->InstrnsBefore.push_back( AdMI ); 

	  AdMI = cpMem2RegMI(getFramePointer(), TmpOff,	UniArgReg, IntRegType);
	  AddedInstrnsBefore.push_back( AdMI ); 
	}

	else {	
	  AdMI = cpReg2RegMI(UniLRReg, UniArgReg, regType );
	  AddedInstrnsBefore.push_back( AdMI ); 
	}

      } else {
	// Now, we have to pass the arg on stack. Since LR received a register
	// we just have to move that register to the stack position where
	// the argument must be passed

        const MachineFrameInfo& frameInfo = target.getFrameInfo();
	int argOffset =
          frameInfo.getOutgoingArgOffset(PRA.mcInfo, argNo);
        
	AdMI = cpReg2MemMI(UniLRReg, getStackPointer(), argOffset, regType );

	// Now add the instruction. We can directly add to
	// CallAI->InstrnsBefore since we are just saving a reg on stack
	//
	CallAI->InstrnsBefore.push_back( AdMI ); 

	//cerr << "\nCaution: Passing a reg on stack";
      }


    } else {                          // LR is not colored (i.e., spilled)      
      
      if( isArgInReg ) {

	// Now the LR did NOT recieve a register but has a stack poistion.
	// Since, the outgoing arg goes in a register we just have to insert
	// a load instruction to load the LR to outgoing register

	if( regClassIDOfArgReg != RegClassID ) {
          assert(isVarArgs && regClassIDOfArgReg == IntRegClassID &&
                 "This should only be an Int register for an FP argument");
          
	  AdMI = cpMem2RegMI(getFramePointer(), LR->getSpillOffFromFP(),
			     UniArgReg, IntRegType );
        }
	else
	  AdMI = cpMem2RegMI(getFramePointer(), LR->getSpillOffFromFP(),
			     UniArgReg, regType );
        
	cerr << "\nCaution: Loading a spilled val to a reg as a call arg";
	AddedInstrnsBefore.push_back( AdMI );  // Now add the instruction
      }
      
      else {
	// Now, we have to pass the arg on stack. Since LR  also did NOT
	// receive a register we have to move an argument in memory to 
	// outgoing parameter on stack.
	
	// Optimize: Optimize when reverse pointers in MahineInstr are
	// introduced. 
	// call PRA.getUnusedRegAtMI(....) to get an unused reg. Only if this
	// fails, then use the following code. Currently, we cannot call the
	// above method since we cannot find LVSetBefore without the BB 
	
	int TReg = PRA.getUniRegNotUsedByThisInst( LR->getRegClass(), CallMI );

	int TmpOff = PRA.mcInfo.pushTempValue(target,  
			            getSpilledRegSize(getRegType(LR)) );

        
        const MachineFrameInfo& frameInfo = target.getFrameInfo();
	int argOffset =
          frameInfo.getOutgoingArgOffset(PRA.mcInfo, argNo);
        
	MachineInstr *Ad1, *Ad2, *Ad3, *Ad4;
        
	// Sequence:
	// (1) Save TReg on stack    
	// (2) Load LR value into TReg from stack pos of LR
	// (3) Store Treg on outgoing Arg pos on stack
	// (4) Load the old value of TReg from stack to TReg (restore it)

	Ad1 = cpReg2MemMI(TReg, getFramePointer(), TmpOff, regType );
	Ad2 = cpMem2RegMI(getFramePointer(), LR->getSpillOffFromFP(), 
			  TReg, regType ); 
	Ad3 = cpReg2MemMI(TReg, getStackPointer(), argOffset, regType );
	Ad4 = cpMem2RegMI(getFramePointer(), TmpOff, TReg, regType ); 

	// We directly add to CallAI->InstrnsBefore instead of adding to
	// AddedInstrnsBefore since these instructions must not be
	// reordered.
        
	CallAI->InstrnsBefore.push_back( Ad1 );  
	CallAI->InstrnsBefore.push_back( Ad2 );  
	CallAI->InstrnsBefore.push_back( Ad3 );  
	CallAI->InstrnsBefore.push_back( Ad4 );  

	cerr << "\nCaution: Call arg moved from stack2stack for: " << *CallMI ;
      }
    }
  }  // for each parameter in call instruction


  // if we added any instruction before the call instruction, verify
  // that they are in the proper order and if not, reorder them

  if (!AddedInstrnsBefore.empty()) {

    if (DEBUG_RA) {
      cerr << "\nCalling reorder with instrns: \n";
      for(unsigned i=0; i < AddedInstrnsBefore.size(); i++)
	cerr  << *(AddedInstrnsBefore[i]);
    }

    std::vector<MachineInstr *> TmpVec;
    OrderAddedInstrns(AddedInstrnsBefore, TmpVec, PRA);

    if (DEBUG_RA) {
      cerr << "\nAfter reordering instrns: \n";
      for(unsigned i = 0; i < TmpVec.size(); i++)
	cerr << *TmpVec[i];
    }

    // copy the results back from TmpVec to InstrnsBefore
    for(unsigned i=0; i < TmpVec.size(); i++)
      CallAI->InstrnsBefore.push_back( TmpVec[i] );
  }


  // now insert caller saving code for this call instruction
  //
  insertCallerSavingCode(CallMI, BB, PRA);
}

//---------------------------------------------------------------------------
// This method is called for an LLVM return instruction to identify which
// values will be returned from this method and to suggest colors.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestReg4RetValue(const MachineInstr *RetMI, 
                                            LiveRangeInfo &LRI) const {

  assert( (UltraSparcInfo->getInstrInfo()).isReturn( RetMI->getOpCode() ) );

    suggestReg4RetAddr(RetMI, LRI);

  // if there is an implicit ref, that has to be the ret value
  if(  RetMI->getNumImplicitRefs() > 0 ) {

    // The first implicit operand is the return value of a return instr
    const Value *RetVal =  RetMI->getImplicitRef(0);

    LiveRange *const LR = LRI.getLiveRangeForValue( RetVal ); 

    if (!LR) {
      cerr << "\nNo LR for:" << RAV(RetVal) << "\n";
      assert(0 && "No LR for return value of non-void method");
    }

    unsigned RegClassID = (LR->getRegClass())->getID();
      
    if (RegClassID == IntRegClassID) 
      LR->setSuggestedColor(SparcIntRegOrder::i0);
    else if (RegClassID == FloatRegClassID) 
      LR->setSuggestedColor(SparcFloatRegOrder::f0);
  }
}



//---------------------------------------------------------------------------
// Colors the return value of a method to %i0 or %f0, if possible. If it is
// not possilbe to directly color the LR, insert a copy instruction to move
// the LR to %i0 or %f0. When the LR is spilled, instead of the copy, we 
// have to put a load instruction.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::colorRetValue(const MachineInstr *RetMI, 
				      LiveRangeInfo &LRI,
				      AddedInstrns *RetAI) const {

  assert((UltraSparcInfo->getInstrInfo()).isReturn( RetMI->getOpCode()));

  // if there is an implicit ref, that has to be the ret value
  if(RetMI->getNumImplicitRefs() > 0) {

    // The first implicit operand is the return value of a return instr
    const Value *RetVal =  RetMI->getImplicitRef(0);

    LiveRange *LR = LRI.getLiveRangeForValue(RetVal); 

    if (!LR) {
      cerr << "\nNo LR for:" << RAV(RetVal) << "\n";
      // assert( LR && "No LR for return value of non-void method");
      return;
    }

    unsigned RegClassID =  getRegClassIDOfValue(RetVal);
    unsigned regType = getRegType( RetVal );

    unsigned CorrectCol;
    if(RegClassID == IntRegClassID)
      CorrectCol = SparcIntRegOrder::i0;
    else if(RegClassID == FloatRegClassID)
      CorrectCol = SparcFloatRegOrder::f0;
    else {
      assert (0 && "Unknown RegClass");
      return;
    }

    // if the LR received the correct color, NOTHING to do

    if (LR->hasColor() && LR->getColor() == CorrectCol)
      return;

    unsigned UniRetReg = getUnifiedRegNum(RegClassID, CorrectCol);

    if (LR->hasColor()) {

      // We are here because the LR was allocted a regiter
      // It may be the suggested register or not

      // copy the LR of retun value to i0 or f0

      unsigned UniLRReg =getUnifiedRegNum( RegClassID, LR->getColor());

      // the LR received  UniLRReg but must be colored with UniRetReg
      // to pass as the return value
      RetAI->InstrnsBefore.push_back(cpReg2RegMI(UniLRReg, UniRetReg, regType));
    }
    else {                              // if the LR is spilled
      MachineInstr *AdMI = cpMem2RegMI(getFramePointer(),
                                       LR->getSpillOffFromFP(), 
                                       UniRetReg, regType); 
      RetAI->InstrnsBefore.push_back(AdMI);
      cerr << "\nCopied the return value from stack\n";
    }
  
  } // if there is a return value

}


//---------------------------------------------------------------------------
// Copy from a register to register. Register number must be the unified
// register number
//---------------------------------------------------------------------------

MachineInstr * UltraSparcRegInfo::cpReg2RegMI(unsigned SrcReg,
                                              unsigned DestReg,
					      int RegType) const {
  assert( ((int)SrcReg != InvalidRegNum) && ((int)DestReg != InvalidRegNum) &&
	  "Invalid Register");
  
  MachineInstr * MI = NULL;

  switch( RegType ) {
    
  case IntRegType:
  case IntCCRegType:
  case FloatCCRegType: 
    MI = new MachineInstr(ADD, 3);
    MI->SetMachineOperandReg(0, SrcReg, false);
    MI->SetMachineOperandReg(1, this->getZeroRegNum(), false);
    MI->SetMachineOperandReg(2, DestReg, true);
    break;

  case FPSingleRegType:
    MI = new MachineInstr(FMOVS, 2);
    MI->SetMachineOperandReg(0, SrcReg, false);
    MI->SetMachineOperandReg(1, DestReg, true);
    break;

  case FPDoubleRegType:
    MI = new MachineInstr(FMOVD, 2);
    MI->SetMachineOperandReg(0, SrcReg, false);    
    MI->SetMachineOperandReg(1, DestReg, true);
    break;

  default:
    assert(0 && "Unknow RegType");
  }

  return MI;
}

//---------------------------------------------------------------------------
// Copy from a register to memory (i.e., Store). Register number must 
// be the unified register number
//---------------------------------------------------------------------------


MachineInstr * UltraSparcRegInfo::cpReg2MemMI(unsigned SrcReg, 
					      unsigned DestPtrReg,
					      int Offset, int RegType) const {
  MachineInstr * MI = NULL;
  switch( RegType ) {
  case IntRegType:
  case FloatCCRegType: 
    MI = new MachineInstr(STX, 3);
    MI->SetMachineOperandReg(0, SrcReg, false);
    MI->SetMachineOperandReg(1, DestPtrReg, false);
    MI->SetMachineOperandConst(2, MachineOperand:: MO_SignExtendedImmed, 
                               (int64_t) Offset);
    break;

  case FPSingleRegType:
    MI = new MachineInstr(ST, 3);
    MI->SetMachineOperandReg(0, SrcReg, false);
    MI->SetMachineOperandReg(1, DestPtrReg, false);
    MI->SetMachineOperandConst(2, MachineOperand:: MO_SignExtendedImmed, 
                               (int64_t) Offset);
    break;

  case FPDoubleRegType:
    MI = new MachineInstr(STD, 3);
    MI->SetMachineOperandReg(0, SrcReg, false);
    MI->SetMachineOperandReg(1, DestPtrReg, false);
    MI->SetMachineOperandConst(2, MachineOperand:: MO_SignExtendedImmed, 
                               (int64_t) Offset);
    break;

  case IntCCRegType:
    assert( 0 && "Cannot directly store %ccr to memory");
    
  default:
    assert(0 && "Unknow RegType in cpReg2MemMI");
  }

  return MI;
}


//---------------------------------------------------------------------------
// Copy from memory to a reg (i.e., Load) Register number must be the unified
// register number
//---------------------------------------------------------------------------


MachineInstr * UltraSparcRegInfo::cpMem2RegMI(unsigned SrcPtrReg,	
					      int Offset,
					      unsigned DestReg,
					      int RegType) const {
  MachineInstr * MI = NULL;
  switch (RegType) {
  case IntRegType:
  case FloatCCRegType: 
    MI = new MachineInstr(LDX, 3);
    MI->SetMachineOperandReg(0, SrcPtrReg, false);
    MI->SetMachineOperandConst(1, MachineOperand:: MO_SignExtendedImmed, 
                               (int64_t) Offset);
    MI->SetMachineOperandReg(2, DestReg, true);
    break;

  case FPSingleRegType:
    MI = new MachineInstr(LD, 3);
    MI->SetMachineOperandReg(0, SrcPtrReg, false);
    MI->SetMachineOperandConst(1, MachineOperand:: MO_SignExtendedImmed, 
                               (int64_t) Offset);
    MI->SetMachineOperandReg(2, DestReg, true);

    break;

  case FPDoubleRegType:
    MI = new MachineInstr(LDD, 3);
    MI->SetMachineOperandReg(0, SrcPtrReg, false);
    MI->SetMachineOperandConst(1, MachineOperand:: MO_SignExtendedImmed, 
                               (int64_t) Offset);
    MI->SetMachineOperandReg(2, DestReg, true);
    break;

  case IntCCRegType:
    assert( 0 && "Cannot directly load into %ccr from memory");

  default:
    assert(0 && "Unknown RegType in cpMem2RegMI");
  }

  return MI;
}





//---------------------------------------------------------------------------
// Generate a copy instruction to copy a value to another. Temporarily
// used by PhiElimination code.
//---------------------------------------------------------------------------


MachineInstr *UltraSparcRegInfo::cpValue2Value(Value *Src, Value *Dest) const {
  int RegType = getRegType( Src );

  assert( (RegType==getRegType(Src))  && "Src & Dest are diff types");

  MachineInstr * MI = NULL;

  switch( RegType ) {
  case IntRegType:
    MI = new MachineInstr(ADD, 3);
    MI->SetMachineOperandVal(0, MachineOperand:: MO_VirtualRegister, Src, false);
    MI->SetMachineOperandReg(1, this->getZeroRegNum(), false);
    MI->SetMachineOperandVal(2, MachineOperand:: MO_VirtualRegister, Dest, true);
    break;

  case FPSingleRegType:
    MI = new MachineInstr(FMOVS, 2);
    MI->SetMachineOperandVal(0, MachineOperand:: MO_VirtualRegister, Src, false);
    MI->SetMachineOperandVal(1, MachineOperand:: MO_VirtualRegister, Dest, true);
    break;


  case FPDoubleRegType:
    MI = new MachineInstr(FMOVD, 2);
    MI->SetMachineOperandVal(0, MachineOperand:: MO_VirtualRegister, Src, false);
    MI->SetMachineOperandVal(1, MachineOperand:: MO_VirtualRegister, Dest, true);
    break;

  default:
    assert(0 && "Unknow RegType in CpValu2Value");
  }

  return MI;
}






//----------------------------------------------------------------------------
// This method inserts caller saving/restoring instructons before/after
// a call machine instruction. The caller saving/restoring instructions are
// inserted like:
//
//    ** caller saving instructions
//    other instructions inserted for the call by ColorCallArg
//    CALL instruction
//    other instructions inserted for the call ColorCallArg
//    ** caller restoring instructions
//
//----------------------------------------------------------------------------


void UltraSparcRegInfo::insertCallerSavingCode(const MachineInstr *MInst, 
					       const BasicBlock *BB,
					       PhyRegAlloc &PRA) const {

  // has set to record which registers were saved/restored
  //
  std::hash_set<unsigned> PushedRegSet;

  // Now find the LR of the return value of the call
  // The last *implicit operand* is the return value of a call
  // Insert it to to he PushedRegSet since we must not save that register
  // and restore it after the call.
  // We do this because, we look at the LV set *after* the instruction
  // to determine, which LRs must be saved across calls. The return value
  // of the call is live in this set - but we must not save/restore it.


  const Value *RetVal = getCallInstRetVal( MInst );

  if (RetVal) {
    LiveRange *RetValLR = PRA.LRI.getLiveRangeForValue( RetVal );
    assert(RetValLR && "No LR for RetValue of call");

    if (RetValLR->hasColor())
      PushedRegSet.insert(
	 getUnifiedRegNum((RetValLR->getRegClass())->getID(), 
				      RetValLR->getColor() ) );
  }


  const ValueSet &LVSetAft =  PRA.LVI->getLiveVarSetAfterMInst(MInst, BB);
  ValueSet::const_iterator LIt = LVSetAft.begin();

  // for each live var in live variable set after machine inst
  for( ; LIt != LVSetAft.end(); ++LIt) {

   //  get the live range corresponding to live var
    LiveRange *const LR = PRA.LRI.getLiveRangeForValue(*LIt );    

    // LR can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    if( LR )   {  
      
      if( LR->hasColor() ) {

	unsigned RCID = (LR->getRegClass())->getID();
	unsigned Color = LR->getColor();

	if ( isRegVolatile(RCID, Color) ) {

	  // if the value is in both LV sets (i.e., live before and after 
	  // the call machine instruction)

	  unsigned Reg = getUnifiedRegNum(RCID, Color);
	  
	  if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
	    
	    // if we haven't already pushed that register

	    unsigned RegType = getRegType( LR );

	    // Now get two instructions - to push on stack and pop from stack
	    // and add them to InstrnsBefore and InstrnsAfter of the
	    // call instruction


	    int StackOff =  PRA.mcInfo.pushTempValue(target,  
					       getSpilledRegSize(RegType));

            
	    MachineInstr *AdIBefCC=NULL, *AdIAftCC=NULL, *AdICpCC;
	    MachineInstr *AdIBef=NULL, *AdIAft=NULL;

	    //---- Insert code for pushing the reg on stack ----------
		  
	    if( RegType == IntCCRegType ) {

	      // Handle IntCCRegType specially since we cannot directly 
	      // push %ccr on to the stack

	      const ValueSet &LVSetBef = 
		PRA.LVI->getLiveVarSetBeforeMInst(MInst, BB);

	      // get a free INTEGER register
	      int FreeIntReg = 
		PRA.getUsableUniRegAtMI(PRA.getRegClassByID(IntRegClassID) /*LR->getRegClass()*/,
                                        IntRegType, MInst, &LVSetBef, AdIBefCC, AdIAftCC);
              
	      // insert the instructions in reverse order since we are
	      // adding them to the front of InstrnsBefore

	      if(AdIAftCC)
		PRA.AddedInstrMap[MInst].InstrnsBefore.push_front(AdIAftCC);

	      AdICpCC = cpCCR2IntMI(FreeIntReg);
	      PRA.AddedInstrMap[MInst].InstrnsBefore.push_front(AdICpCC);

	      if(AdIBefCC)
		PRA.AddedInstrMap[MInst].InstrnsBefore.push_front(AdIBefCC);

	      if(DEBUG_RA) {
		cerr << "\n!! Inserted caller saving (push) inst for %ccr:";
		if(AdIBefCC) cerr << "\t" <<  *(AdIBefCC);
		cerr  << "\t" << *AdICpCC;
		if(AdIAftCC) cerr  << "\t" << *(AdIAftCC);
	      }

	    } else  {  
	      // for any other register type, just add the push inst
	      AdIBef = cpReg2MemMI(Reg, getFramePointer(), StackOff, RegType );
	      PRA.AddedInstrMap[MInst].InstrnsBefore.push_front(AdIBef);
	    }


	    //---- Insert code for popping the reg from the stack ----------

	    if (RegType == IntCCRegType) {

	      // Handle IntCCRegType specially since we cannot directly 
	      // pop %ccr on from the stack
	      
	      // get a free INT register
	      int FreeIntReg = 
		PRA.getUsableUniRegAtMI(PRA.getRegClassByID(IntRegClassID) /* LR->getRegClass()*/,
                                        IntRegType, MInst, &LVSetAft, AdIBefCC, AdIAftCC);
	      
	      if(AdIBefCC)
		PRA.AddedInstrMap[MInst].InstrnsAfter.push_back(AdIBefCC);

	      AdICpCC = cpInt2CCRMI(FreeIntReg);
	      PRA.AddedInstrMap[MInst].InstrnsAfter.push_back(AdICpCC);
	    
	      if(AdIAftCC)
		PRA.AddedInstrMap[MInst].InstrnsAfter.push_back(AdIAftCC);

	      if(DEBUG_RA) {

		cerr << "\n!! Inserted caller saving (pop) inst for %ccr:";
		if(AdIBefCC) cerr << "\t" <<  *(AdIBefCC);
		cerr  << "\t" << *AdICpCC;
		if(AdIAftCC) cerr  << "\t" << *(AdIAftCC);
	      }

	    } else {
	      // for any other register type, just add the pop inst
	      AdIAft = cpMem2RegMI(getFramePointer(), StackOff, Reg, RegType );
	      PRA.AddedInstrMap[MInst].InstrnsAfter.push_back(AdIAft);
	    }
	    
	    PushedRegSet.insert(Reg);

	    if(DEBUG_RA) {
	      cerr << "\nFor call inst:" << *MInst;
	      cerr << " -inserted caller saving instrs:\n\t ";
              if( RegType == IntCCRegType ) {
		if(AdIBefCC) cerr << *AdIBefCC << "\t";
                if(AdIAftCC) cerr << *AdIAftCC;
              }
              else {
		if(AdIBef) cerr << *AdIBef << "\t";
                if(AdIAft) cerr << *AdIAft;
              }
	    }	    
	  } // if not already pushed

	} // if LR has a volatile color
	
      } // if LR has color

    } // if there is a LR for Var
    
  } // for each value in the LV set after instruction
  
}

//---------------------------------------------------------------------------
// Copies %ccr into an integer register. IntReg is the UNIFIED register
// number.
//---------------------------------------------------------------------------

MachineInstr * UltraSparcRegInfo::cpCCR2IntMI(unsigned IntReg) const {
  MachineInstr * MI = new MachineInstr(RDCCR, 2);
  MI->SetMachineOperandReg(0, this->getUnifiedRegNum(UltraSparcRegInfo::IntCCRegClassID,
                                                     SparcIntCCRegOrder::ccr),
                           false, true);
  MI->SetMachineOperandReg(1, IntReg, true);
  return MI;
}

//---------------------------------------------------------------------------
// Copies an integer register into  %ccr. IntReg is the UNIFIED register
// number.
//---------------------------------------------------------------------------

MachineInstr *UltraSparcRegInfo::cpInt2CCRMI(unsigned IntReg) const {
  MachineInstr *MI = new MachineInstr(WRCCR, 3);
  MI->SetMachineOperandReg(0, IntReg, false);
  MI->SetMachineOperandReg(1, this->getZeroRegNum(), false);
  MI->SetMachineOperandReg(2, this->getUnifiedRegNum(UltraSparcRegInfo::IntCCRegClassID, SparcIntCCRegOrder::ccr),
                           true, true);
  return MI;
}




//---------------------------------------------------------------------------
// Print the register assigned to a LR
//---------------------------------------------------------------------------

void UltraSparcRegInfo::printReg(const LiveRange *LR) {
  unsigned RegClassID = (LR->getRegClass())->getID();
  cerr << " *Node " << (LR->getUserIGNode())->getIndex();

  if (!LR->hasColor()) {
    cerr << " - could not find a color\n";
    return;
  }
  
  // if a color is found

  cerr << " colored with color "<< LR->getColor();

  if (RegClassID == IntRegClassID) {
    cerr<< " [" << SparcIntRegOrder::getRegName(LR->getColor()) << "]\n";

  } else if (RegClassID == FloatRegClassID) {
    cerr << "[" << SparcFloatRegOrder::getRegName(LR->getColor());
    if( LR->getType() == Type::DoubleTy)
      cerr << "+" << SparcFloatRegOrder::getRegName(LR->getColor()+1);
    cerr << "]\n";
  }
}

//---------------------------------------------------------------------------
// This method examines instructions inserted by RegAlloc code before a
// machine instruction to detect invalid orders that destroy values before
// they are used. If it detects such conditions, it reorders the instructions.
//
// The unordered instructions come in the UnordVec. These instructions are
// instructions inserted by RegAlloc. All such instruction MUST have 
// their USES BEFORE THE DEFS after reordering.

// The UnordVec & OrdVec must be DISTINCT. The OrdVec must be empty when
// this method is called.

// This method uses two vectors for efficiency in accessing

// Since instructions are inserted in RegAlloc, this assumes that the 
// first operand is the source reg and the last operand is the dest reg.

// All the uses are before THE def to a register


//---------------------------------------------------------------------------
void UltraSparcRegInfo::OrderAddedInstrns(std::vector<MachineInstr *> &UnordVec,
					  std::vector<MachineInstr *> &OrdVec,
                                          PhyRegAlloc &PRA) const{

  /*
    Problem: We can have instructions inserted by RegAlloc like
    1. add %ox %g0 %oy
    2. add %oy %g0 %oz, where z!=x or z==x

    This is wrong since %oy used by 2 is overwritten by 1
  
    Solution:
    We re-order the instructions so that the uses are before the defs

    Algorithm:
    
    do
      for each instruction 'DefInst' in the UnOrdVec
         for each instruction 'UseInst' that follows the DefInst
           if the reg defined by DefInst is used by UseInst
	     mark DefInst as not movable in this iteration
	 If DefInst is not marked as not-movable, move DefInst to OrdVec
    while all instructions in DefInst are moved to OrdVec
    
    For moving, we call the move2OrdVec(). It checks whether there is a def
    in it for the uses in the instruction to be added to OrdVec. If there
    are no preceding defs, it just appends the instruction. If there is a
    preceding def, it puts two instructions to save the reg on stack before
    the load and puts a restore at use.

  */

  bool CouldMoveAll;
  bool DebugPrint = false;

  do {
    CouldMoveAll = true;
    std::vector<MachineInstr *>::iterator DefIt = UnordVec.begin();

    for( ; DefIt !=  UnordVec.end(); ++DefIt ) {

      // for each instruction in the UnordVec do ...

      MachineInstr *DefInst = *DefIt;

      if( DefInst == NULL) continue;

      //cerr << "\nInst in UnordVec = " <<  *DefInst;
      
      // last operand is the def (unless for a store which has no def reg)
      MachineOperand& DefOp = DefInst->getOperand(DefInst->getNumOperands()-1);
      
      if( DefOp.opIsDef() &&  
	  DefOp.getOperandType() ==  MachineOperand::MO_MachineRegister) {
	
	// If the operand in DefInst is a def ...
	
	bool DefEqUse = false;
	
	std::vector<MachineInstr *>::iterator UseIt = DefIt;
	UseIt++;
	
	for( ; UseIt !=  UnordVec.end(); ++UseIt ) {

	  MachineInstr *UseInst = *UseIt;
	  if( UseInst == NULL) continue;
	  
	  // for each inst (UseInst) that is below the DefInst do ...
	  MachineOperand& UseOp = UseInst->getOperand(0);
	  
	  if( ! UseOp.opIsDef() &&  
	      UseOp.getOperandType() == MachineOperand::MO_MachineRegister) {
	    
	    // if use is a register ...
	    
	    if( DefOp.getMachineRegNum() == UseOp.getMachineRegNum() ) {
	      
	      // if Def and this use are the same, it means that this use
	      // is destroyed by a def before it is used
	      
	      // cerr << "\nCouldn't move " << *DefInst;

	      DefEqUse = true;
	      CouldMoveAll = false;	
	      DebugPrint = true;
	      break;
	    } // if two registers are equal
	    
	  } // if use is a register
	  
	}// for all use instructions
	
	if( ! DefEqUse ) {
	  
	  // after examining all the instructions that follow the DefInst
	  // if there are no dependencies, we can move it to the OrdVec

	  // cerr << "Moved to Ord: " << *DefInst;

	  moveInst2OrdVec(OrdVec, DefInst, PRA);

	  //OrdVec.push_back(DefInst);

	  // mark the pos of DefInst with NULL to indicate that it is
	  // empty
	  *DefIt = NULL;
	}
    
      } // if Def is a machine register
      
    } // for all instructions in the UnordVec
    

  } while(!CouldMoveAll);

  if (DebugPrint) {
    cerr << "\nAdded instructions were reordered to:\n";
    for(unsigned int i=0; i < OrdVec.size(); i++)
      cerr << *(OrdVec[i]);
  }
}





void UltraSparcRegInfo::moveInst2OrdVec(std::vector<MachineInstr *> &OrdVec,
					MachineInstr *UnordInst,
					PhyRegAlloc &PRA) const {
  MachineOperand& UseOp = UnordInst->getOperand(0);

  if( ! UseOp.opIsDef() &&  
      UseOp.getOperandType() ==  MachineOperand::MO_MachineRegister) {

    // for the use of UnordInst, see whether there is a defining instr
    // before in the OrdVec
    bool DefEqUse = false;

    std::vector<MachineInstr *>::iterator OrdIt = OrdVec.begin();
  
    for( ; OrdIt !=  OrdVec.end(); ++OrdIt ) {

      MachineInstr *OrdInst = *OrdIt ;

      MachineOperand& DefOp = 
	OrdInst->getOperand(OrdInst->getNumOperands()-1);

      if( DefOp.opIsDef() &&  
	  DefOp.getOperandType() == MachineOperand::MO_MachineRegister) {

	//cerr << "\nDefining Ord Inst: " <<  *OrdInst;
	  
	if( DefOp.getMachineRegNum() == UseOp.getMachineRegNum() ) {

	  // we are here because there is a preceding def in the OrdVec 
	  // for the use in this intr we are going to insert. This
	  // happened because the original code was like:
	  // 1. add %ox %g0 %oy
	  // 2. add %oy %g0 %ox
	  // In Round1, we added 2 to OrdVec but 1 remained in UnordVec
	  // Now we are processing %ox of 1.
	  // We have to 
	      
	  const int UReg = DefOp.getMachineRegNum();
	  const int RegType = getRegType(UReg);
	  MachineInstr *AdIBef, *AdIAft;
	      
	  const int StackOff =  PRA.mcInfo.pushTempValue(target,
					 getSpilledRegSize(RegType));
	  
	  // Save the UReg (%ox) on stack before it's destroyed
	  AdIBef=cpReg2MemMI(UReg, getFramePointer(), StackOff, RegType);
	  OrdIt = OrdVec.insert( OrdIt, AdIBef);
	  OrdIt++;  // points to current instr we processed
	  
	  // Load directly into DReg (%oy)
	  MachineOperand&  DOp=
	    (UnordInst->getOperand(UnordInst->getNumOperands()-1));
	  assert(DOp.opIsDef() && "Last operand is not the def");
	  const int DReg = DOp.getMachineRegNum();
	  
	  AdIAft=cpMem2RegMI(getFramePointer(), StackOff, DReg, RegType);
	  OrdVec.push_back(AdIAft);
	    
	  cerr << "\nFixed CIRCULAR references by reordering";

	  if( DEBUG_RA ) {
	    cerr << "\nBefore CIRCULAR Reordering:\n";
	    cerr << *UnordInst;
	    cerr << *OrdInst;
	  
	    cerr << "\nAfter CIRCULAR Reordering - All Inst so far:\n";
	    for(unsigned i=0; i < OrdVec.size(); i++)
	      cerr << *(OrdVec[i]);
	  }
	  
	  // Do not copy the UseInst to OrdVec
	  DefEqUse = true;
	  break;  
	  
	}// if two registers are equal

      } // if Def is a register

    } // for each instr in OrdVec

    if(!DefEqUse) {  

      // We didn't find a def in the OrdVec, so just append this inst
      OrdVec.push_back( UnordInst );  
      //cerr << "Reordered Inst (Moved Dn): " <<  *UnordInst;
    }
    
  }// if the operand in UnordInst is a use
}