aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SystemZ/SystemZInstrFormats.td
blob: 9f59a1c8e7e3c677517e06f19f2dc0acbe07160a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Basic SystemZ instruction definition
//===----------------------------------------------------------------------===//

class InstSystemZ<int size, dag outs, dag ins, string asmstr,
                  list<dag> pattern> : Instruction {
  let Namespace = "SystemZ";

  dag OutOperandList = outs;
  dag InOperandList = ins;
  let Size = size;
  let Pattern = pattern;
  let AsmString = asmstr;

  // Some instructions come in pairs, one having a 12-bit displacement
  // and the other having a 20-bit displacement.  Both instructions in
  // the pair have the same DispKey and their DispSizes are "12" and "20"
  // respectively.
  string DispKey = "";
  string DispSize = "none";

  // Many register-based <INSN>R instructions have a memory-based <INSN>
  // counterpart.  OpKey uniquely identifies <INSN>, while OpType is
  // "reg" for <INSN>R and "mem" for <INSN>.
  string OpKey = "";
  string OpType = "none";

  // Many distinct-operands instructions have older 2-operand equivalents.
  // NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
  // with NumOpsValue being "2" or "3" as appropriate.
  string NumOpsKey = "";
  string NumOpsValue = "none";

  // True if this instruction is a simple D(X,B) load of a register
  // (with no sign or zero extension).
  bit SimpleBDXLoad = 0;

  // True if this instruction is a simple D(X,B) store of a register
  // (with no truncation).
  bit SimpleBDXStore = 0;

  // True if this instruction has a 20-bit displacement field.
  bit Has20BitOffset = 0;

  // True if addresses in this instruction have an index register.
  bit HasIndex = 0;

  // True if this is a 128-bit pseudo instruction that combines two 64-bit
  // operations.
  bit Is128Bit = 0;

  // The access size of all memory operands in bytes, or 0 if not known.
  bits<5> AccessBytes = 0;

  // If the instruction sets CC to a useful value, this gives the mask
  // of all possible CC results.  The mask has the same form as
  // SystemZ::CCMASK_*.
  bits<4> CCValues = 0;

  // The subset of CCValues that have the same meaning as they would after
  // a comparison of the first operand against zero.
  bits<4> CompareZeroCCMask = 0;

  // True if the instruction is conditional and if the CC mask operand
  // comes first (as for BRC, etc.).
  bit CCMaskFirst = 0;

  // Similar, but true if the CC mask operand comes last (as for LOC, etc.).
  bit CCMaskLast = 0;

  // True if the instruction is the "logical" rather than "arithmetic" form,
  // in cases where a distinction exists.
  bit IsLogical = 0;

  let TSFlags{0}     = SimpleBDXLoad;
  let TSFlags{1}     = SimpleBDXStore;
  let TSFlags{2}     = Has20BitOffset;
  let TSFlags{3}     = HasIndex;
  let TSFlags{4}     = Is128Bit;
  let TSFlags{9-5}   = AccessBytes;
  let TSFlags{13-10} = CCValues;
  let TSFlags{17-14} = CompareZeroCCMask;
  let TSFlags{18}    = CCMaskFirst;
  let TSFlags{19}    = CCMaskLast;
  let TSFlags{20}    = IsLogical;
}

//===----------------------------------------------------------------------===//
// Mappings between instructions
//===----------------------------------------------------------------------===//

// Return the version of an instruction that has an unsigned 12-bit
// displacement.
def getDisp12Opcode : InstrMapping {
  let FilterClass = "InstSystemZ";
  let RowFields = ["DispKey"];
  let ColFields = ["DispSize"];
  let KeyCol = ["20"];
  let ValueCols = [["12"]];
}

// Return the version of an instruction that has a signed 20-bit displacement.
def getDisp20Opcode : InstrMapping {
  let FilterClass = "InstSystemZ";
  let RowFields = ["DispKey"];
  let ColFields = ["DispSize"];
  let KeyCol = ["12"];
  let ValueCols = [["20"]];
}

// Return the memory form of a register instruction.
def getMemOpcode : InstrMapping {
  let FilterClass = "InstSystemZ";
  let RowFields = ["OpKey"];
  let ColFields = ["OpType"];
  let KeyCol = ["reg"];
  let ValueCols = [["mem"]];
}

// Return the 3-operand form of a 2-operand instruction.
def getThreeOperandOpcode : InstrMapping {
  let FilterClass = "InstSystemZ";
  let RowFields = ["NumOpsKey"];
  let ColFields = ["NumOpsValue"];
  let KeyCol = ["2"];
  let ValueCols = [["3"]];
}

//===----------------------------------------------------------------------===//
// Instruction formats
//===----------------------------------------------------------------------===//
//
// Formats are specified using operand field declarations of the form:
//
//   bits<4> Rn   : register input or output for operand n
//   bits<m> In   : immediate value of width m for operand n
//   bits<4> BDn  : address operand n, which has a base and a displacement
//   bits<m> XBDn : address operand n, which has an index, a base and a
//                  displacement
//   bits<4> Xn   : index register for address operand n
//   bits<4> Mn   : mode value for operand n
//
// The operand numbers ("n" in the list above) follow the architecture manual.
// Assembly operands sometimes have a different order; in particular, R3 often
// is often written between operands 1 and 2.
//
//===----------------------------------------------------------------------===//

class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<16> I2;

  let Inst{31-24} = op{11-4};
  let Inst{23-20} = R1;
  let Inst{19-16} = op{3-0};
  let Inst{15-0}  = I2;
}

class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<4> M3;
  bits<16> RI4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = R2;
  let Inst{31-16} = RI4;
  let Inst{15-12} = M3;
  let Inst{11-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<8> I2;
  bits<4> M3;
  bits<16> RI4;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = M3;
  let Inst{31-16} = RI4;
  let Inst{15-8}  = I2;
  let Inst{7-0}   = op{7-0};
}

class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<16> I2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = R3;
  let Inst{31-16} = I2;
  let Inst{15-8}  = 0;
  let Inst{7-0}   = op{7-0};
}

class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<8> I3;
  bits<8> I4;
  bits<8> I5;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = R2;
  let Inst{31-24} = I3;
  let Inst{23-16} = I4;
  let Inst{15-8}  = I5;
  let Inst{7-0}   = op{7-0};
}

class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<32> I2;

  let Inst{47-40} = op{11-4};
  let Inst{39-36} = R1;
  let Inst{35-32} = op{3-0};
  let Inst{31-0}  = I2;
}

class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<2, outs, ins, asmstr, pattern> {
  field bits<16> Inst;
  field bits<16> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;

  let Inst{15-8} = op;
  let Inst{7-4}  = R1;
  let Inst{3-0}  = R2;
}

class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<4> R2;

  let Inst{31-16} = op;
  let Inst{15-12} = R1;
  let Inst{11-8}  = 0;
  let Inst{7-4}   = R3;
  let Inst{3-0}   = R2;
}

class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;

  let Inst{31-16} = op;
  let Inst{15-8}  = 0;
  let Inst{7-4}   = R1;
  let Inst{3-0}   = R2;
}

class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R2;
  bits<4> R3;
  bits<4> R4;

  let Inst{31-16} = op;
  let Inst{15-12} = R3;
  let Inst{11-8}  = R4;
  let Inst{7-4}   = R1;
  let Inst{3-0}   = R2;
}

class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<20> XBD2;

  let Inst{31-24} = op;
  let Inst{23-20} = R1;
  let Inst{19-0}  = XBD2;

  let HasIndex = 1;
}

class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<20> XBD2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-16} = XBD2;
  let Inst{15-8}  = 0;
  let Inst{7-0}   = op{7-0};

  let HasIndex = 1;
}

class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<20> XBD2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R3;
  let Inst{35-16} = XBD2;
  let Inst{15-12} = R1;
  let Inst{11-8}  = 0;
  let Inst{7-0}   = op{7-0};

  let HasIndex = 1;
}

class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<28> XBD2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-8}  = XBD2;
  let Inst{7-0}   = op{7-0};

  let Has20BitOffset = 1;
  let HasIndex = 1;
}

class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<16> BD2;

  let Inst{31-24} = op;
  let Inst{23-20} = R1;
  let Inst{19-16} = R3;
  let Inst{15-0}  = BD2;
}

class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<4> R1;
  bits<4> R3;
  bits<24> BD2;

  let Inst{47-40} = op{15-8};
  let Inst{39-36} = R1;
  let Inst{35-32} = R3;
  let Inst{31-8}  = BD2;
  let Inst{7-0}   = op{7-0};

  let Has20BitOffset = 1;
}

class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<4, outs, ins, asmstr, pattern> {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;

  bits<16> BD1;
  bits<8> I2;

  let Inst{31-24} = op;
  let Inst{23-16} = I2;
  let Inst{15-0}  = BD1;
}

class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<16> BD1;
  bits<16> I2;

  let Inst{47-32} = op;
  let Inst{31-16} = BD1;
  let Inst{15-0}  = I2;
}

class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<24> BD1;
  bits<8> I2;

  let Inst{47-40} = op{15-8};
  let Inst{39-32} = I2;
  let Inst{31-8}  = BD1;
  let Inst{7-0}   = op{7-0};

  let Has20BitOffset = 1;
}

class InstSS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
  : InstSystemZ<6, outs, ins, asmstr, pattern> {
  field bits<48> Inst;
  field bits<48> SoftFail = 0;

  bits<24> BDL1;
  bits<16> BD2;

  let Inst{47-40} = op;
  let Inst{39-16} = BDL1;
  let Inst{15-0}  = BD2;
}

//===----------------------------------------------------------------------===//
// Instruction definitions with semantics
//===----------------------------------------------------------------------===//
//
// These classes have the form [Cond]<Category><Format>, where <Format> is one
// of the formats defined above and where <Category> describes the inputs
// and outputs.  "Cond" is used if the instruction is conditional,
// in which case the 4-bit condition-code mask is added as a final operand.
// <Category> can be one of:
//
//   Inherent:
//     One register output operand and no input operands.
//
//   BranchUnary:
//     One register output operand, one register input operand and
//     one branch displacement.  The instructions stores a modified
//     form of the source register in the destination register and
//     branches on the result.
//
//   Store:
//     One register or immediate input operand and one address input operand.
//     The instruction stores the first operand to the address.
//
//     This category is used for both pure and truncating stores.
//
//   LoadMultiple:
//     One address input operand and two explicit output operands.
//     The instruction loads a range of registers from the address,
//     with the explicit operands giving the first and last register
//     to load.  Other loaded registers are added as implicit definitions.
//
//   StoreMultiple:
//     Two explicit input register operands and an address operand.
//     The instruction stores a range of registers to the address,
//     with the explicit operands giving the first and last register
//     to store.  Other stored registers are added as implicit uses.
//
//   Unary:
//     One register output operand and one input operand.
//
//   Binary:
//     One register output operand and two input operands.
//
//   Compare:
//     Two input operands and an implicit CC output operand.
//
//   Ternary:
//     One register output operand and three input operands.
//
//   LoadAndOp:
//     One output operand and two input operands, one of which is an address.
//     The instruction both reads from and writes to the address.
//
//   CmpSwap:
//     One output operand and three input operands, one of which is an address.
//     The instruction both reads from and writes to the address.
//
//   RotateSelect:
//     One output operand and five input operands.  The first two operands
//     are registers and the other three are immediates.
//
//   Prefetch:
//     One 4-bit immediate operand and one address operand.  The immediate
//     operand is 1 for a load prefetch and 2 for a store prefetch.
//
// The format determines which input operands are tied to output operands,
// and also determines the shape of any address operand.
//
// Multiclasses of the form <Category><Format>Pair define two instructions,
// one with <Category><Format> and one with <Category><Format>Y.  The name
// of the first instruction has no suffix, the name of the second has
// an extra "y".
//
//===----------------------------------------------------------------------===//

class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
                  dag src>
  : InstRRE<opcode, (outs cls:$R1), (ins),
            mnemonic#"\t$R1",
            [(set cls:$R1, src)]> {
  let R2 = 0;
}

class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
  : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$I2),
           mnemonic##"\t$R1, $I2", []> {
  let isBranch = 1;
  let isTerminator = 1;
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstRSY<opcode, (outs cls:$R1, cls:$R3), (ins bdaddr20only:$BD2),
            mnemonic#"\t$R1, $R3, $BD2", []> {
  let mayLoad = 1;
}

class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                 RegisterOperand cls>
  : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
            mnemonic#"\t$R1, $I2",
            [(operator cls:$R1, pcrel32:$I2)]> {
  let mayStore = 1;
  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
  // However, BDXs have two extra operands and are therefore 6 units more
  // complex.
  let AddedComplexity = 7;
}

class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
              RegisterOperand cls, bits<5> bytes,
              AddressingMode mode = bdxaddr12only>
  : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
           mnemonic#"\t$R1, $XBD2",
           [(operator cls:$R1, mode:$XBD2)]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let mayStore = 1;
  let AccessBytes = bytes;
}

class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               RegisterOperand cls, bits<5> bytes,
               AddressingMode mode = bdxaddr20only>
  : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(operator cls:$R1, mode:$XBD2)]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let mayStore = 1;
  let AccessBytes = bytes;
}

multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
                       SDPatternOperator operator, RegisterOperand cls,
                       bits<5> bytes> {
  let DispKey = mnemonic ## #cls in {
    let DispSize = "12" in
      def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
    let DispSize = "20" in
      def Y  : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
                        bdxaddr20pair>;
  }
}

class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
  : InstRSY<opcode, (outs), (ins cls:$R1, cls:$R3, bdaddr20only:$BD2),
            mnemonic#"\t$R1, $R3, $BD2", []> {
  let mayStore = 1;
}

// StoreSI* instructions are used to store an integer to memory, but the
// addresses are more restricted than for normal stores.  If we are in the
// situation of having to force either the address into a register or the
// constant into a register, it's usually better to do the latter.
// We therefore match the address in the same way as a normal store and
// only use the StoreSI* instruction if the matched address is suitable.
class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
              Immediate imm>
  : InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
           mnemonic#"\t$BD1, $I2",
           [(operator imm:$I2, mviaddr12pair:$BD1)]> {
  let mayStore = 1;
}

class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               Immediate imm>
  : InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(operator imm:$I2, mviaddr20pair:$BD1)]> {
  let mayStore = 1;
}

class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               Immediate imm>
  : InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(operator imm:$I2, mviaddr12pair:$BD1)]> {
  let mayStore = 1;
}

multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
                       SDPatternOperator operator, Immediate imm> {
  let DispKey = mnemonic in {
    let DispSize = "12" in
      def "" : StoreSI<mnemonic, siOpcode, operator, imm>;
    let DispSize = "20" in
      def Y  : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>;
  }
}

class CondStoreRSY<string mnemonic, bits<16> opcode,
                   RegisterOperand cls, bits<5> bytes,
                   AddressingMode mode = bdaddr20only>
  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3),
            mnemonic#"$R3\t$R1, $BD2", []>,
    Requires<[FeatureLoadStoreOnCond]> {
  let mayStore = 1;
  let AccessBytes = bytes;
  let CCMaskLast = 1;
}

// Like CondStoreRSY, but used for the raw assembly form.  The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
                      RegisterOperand cls, bits<5> bytes,
                      AddressingMode mode = bdaddr20only>
  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, imm32zx4:$R3),
            mnemonic#"\t$R1, $BD2, $R3", []>,
    Requires<[FeatureLoadStoreOnCond]> {
  let mayStore = 1;
  let AccessBytes = bytes;
}

// Like CondStoreRSY, but with a fixed CC mask.
class FixedCondStoreRSY<string mnemonic, bits<16> opcode,
                        RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
                        AddressingMode mode = bdaddr20only>
  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2),
            mnemonic#"\t$R1, $BD2", []>,
    Requires<[FeatureLoadStoreOnCond]> {
  let mayStore = 1;
  let AccessBytes = bytes;
  let R3 = ccmask;
}

class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
              RegisterOperand cls1, RegisterOperand cls2>
  : InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
           mnemonic#"r\t$R1, $R2",
           [(set cls1:$R1, (operator cls2:$R2))]> {
  let OpKey = mnemonic ## cls1;
  let OpType = "reg";
}

class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               RegisterOperand cls1, RegisterOperand cls2>
  : InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
            mnemonic#"r\t$R1, $R2",
            [(set cls1:$R1, (operator cls2:$R2))]> {
  let OpKey = mnemonic ## cls1;
  let OpType = "reg";
}

class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
               RegisterOperand cls2>
  : InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2),
            mnemonic#"r\t$R1, $R3, $R2", []> {
  let OpKey = mnemonic ## cls1;
  let OpType = "reg";
  let R4 = 0;
}

class UnaryRRF4<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                RegisterOperand cls2>
  : InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2, imm32zx4:$R4),
            mnemonic#"\t$R1, $R3, $R2, $R4", []>;

// These instructions are generated by if conversion.  The old value of R1
// is added as an implicit use.
class CondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                   RegisterOperand cls2>
  : InstRRF<opcode, (outs cls1:$R1), (ins cls2:$R2, cond4:$valid, cond4:$R3),
            mnemonic#"r$R3\t$R1, $R2", []>,
    Requires<[FeatureLoadStoreOnCond]> {
  let CCMaskLast = 1;
  let R4 = 0;
}

// Like CondUnaryRRF, but used for the raw assembly form.  The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                      RegisterOperand cls2>
  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2, imm32zx4:$R3),
            mnemonic#"r\t$R1, $R2, $R3", []>,
    Requires<[FeatureLoadStoreOnCond]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let R4 = 0;
}

// Like CondUnaryRRF, but with a fixed CC mask.
class FixedCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                        RegisterOperand cls2, bits<4> ccmask>
  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
            mnemonic#"\t$R1, $R2", []>,
    Requires<[FeatureLoadStoreOnCond]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let R3 = ccmask;
  let R4 = 0;
}

class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
              RegisterOperand cls, Immediate imm>
  : InstRI<opcode, (outs cls:$R1), (ins imm:$I2),
           mnemonic#"\t$R1, $I2",
           [(set cls:$R1, (operator imm:$I2))]>;

class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
               RegisterOperand cls, Immediate imm>
  : InstRIL<opcode, (outs cls:$R1), (ins imm:$I2),
            mnemonic#"\t$R1, $I2",
            [(set cls:$R1, (operator imm:$I2))]>;

class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                 RegisterOperand cls>
  : InstRIL<opcode, (outs cls:$R1), (ins pcrel32:$I2),
            mnemonic#"\t$R1, $I2",
            [(set cls:$R1, (operator pcrel32:$I2))]> {
  let mayLoad = 1;
  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
  // However, BDXs have two extra operands and are therefore 6 units more
  // complex.
  let AddedComplexity = 7;
}

class CondUnaryRSY<string mnemonic, bits<16> opcode,
                   SDPatternOperator operator, RegisterOperand cls,
                   bits<5> bytes, AddressingMode mode = bdaddr20only>
  : InstRSY<opcode, (outs cls:$R1),
            (ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3),
            mnemonic#"$R3\t$R1, $BD2",
            [(set cls:$R1,
                  (z_select_ccmask (load bdaddr20only:$BD2), cls:$R1src,
                                   cond4:$valid, cond4:$R3))]>,
    Requires<[FeatureLoadStoreOnCond]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
  let CCMaskLast = 1;
}

// Like CondUnaryRSY, but used for the raw assembly form.  The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
                      RegisterOperand cls, bits<5> bytes,
                      AddressingMode mode = bdaddr20only>
  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, imm32zx4:$R3),
            mnemonic#"\t$R1, $BD2, $R3", []>,
    Requires<[FeatureLoadStoreOnCond]> {
  let mayLoad = 1;
  let AccessBytes = bytes;
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

// Like CondUnaryRSY, but with a fixed CC mask.
class FixedCondUnaryRSY<string mnemonic, bits<16> opcode,
                        RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
                        AddressingMode mode = bdaddr20only>
  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
            mnemonic#"\t$R1, $BD2", []>,
    Requires<[FeatureLoadStoreOnCond]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let R3 = ccmask;
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
              RegisterOperand cls, bits<5> bytes,
              AddressingMode mode = bdxaddr12only>
  : InstRX<opcode, (outs cls:$R1), (ins mode:$XBD2),
           mnemonic#"\t$R1, $XBD2",
           [(set cls:$R1, (operator mode:$XBD2))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               RegisterOperand cls, bits<5> bytes>
  : InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
               RegisterOperand cls, bits<5> bytes,
               AddressingMode mode = bdxaddr20only>
  : InstRXY<opcode, (outs cls:$R1), (ins mode:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set cls:$R1, (operator mode:$XBD2))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
                       SDPatternOperator operator, RegisterOperand cls,
                       bits<5> bytes> {
  let DispKey = mnemonic ## #cls in {
    let DispSize = "12" in
      def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
    let DispSize = "20" in
      def Y  : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
                        bdxaddr20pair>;
  }
}

class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
               RegisterOperand cls1, RegisterOperand cls2>
  : InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
           mnemonic#"r\t$R1, $R2",
           [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
  let OpKey = mnemonic ## cls1;
  let OpType = "reg";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls1, RegisterOperand cls2>
  : InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
            mnemonic#"r\t$R1, $R2",
            [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
  let OpKey = mnemonic ## cls1;
  let OpType = "reg";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BinaryRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls1, RegisterOperand cls2>
  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R3, cls2:$R2),
            mnemonic#"r\t$R1, $R3, $R2",
            [(set cls1:$R1, (operator cls1:$R3, cls2:$R2))]> {
  let OpKey = mnemonic ## cls1;
  let OpType = "reg";
  let R4 = 0;
}

class BinaryRRFK<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls1, RegisterOperand cls2>
  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R2, cls2:$R3),
            mnemonic#"rk\t$R1, $R2, $R3",
            [(set cls1:$R1, (operator cls1:$R2, cls2:$R3))]> {
  let R4 = 0;
}

multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
                        SDPatternOperator operator, RegisterOperand cls1,
                        RegisterOperand cls2> {
  let NumOpsKey = mnemonic in {
    let NumOpsValue = "3" in
      def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
              Requires<[FeatureDistinctOps]>;
    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
      def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
  }
}

multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
                         SDPatternOperator operator, RegisterOperand cls1,
                         RegisterOperand cls2> {
  let NumOpsKey = mnemonic in {
    let NumOpsValue = "3" in
      def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
              Requires<[FeatureDistinctOps]>;
    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
      def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
  }
}

class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
               RegisterOperand cls, Immediate imm>
  : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
           mnemonic#"\t$R1, $I2",
           [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls, Immediate imm>
  : InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
             mnemonic#"\t$R1, $R3, $I2",
             [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;

multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
                        SDPatternOperator operator, RegisterOperand cls,
                        Immediate imm> {
  let NumOpsKey = mnemonic in {
    let NumOpsValue = "3" in
      def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>,
              Requires<[FeatureDistinctOps]>;
    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
      def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
  }
}

class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                RegisterOperand cls, Immediate imm>
  : InstRIL<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
            mnemonic#"\t$R1, $I2",
            [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BinaryRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
               RegisterOperand cls>
  : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
           mnemonic#"\t$R1, $BD2",
           [(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
  let R3 = 0;
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class BinaryRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls>
  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
            mnemonic#"\t$R1, $R3, $BD2",
            [(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;

multiclass BinaryRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
                        SDPatternOperator operator, RegisterOperand cls> {
  let NumOpsKey = mnemonic in {
    let NumOpsValue = "3" in
      def K  : BinaryRSY<mnemonic##"k", opcode2, null_frag, cls>,
               Requires<[FeatureDistinctOps]>;
    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
      def "" : BinaryRS<mnemonic, opcode1, operator, cls>;
  }
}

class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
               RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
               AddressingMode mode = bdxaddr12only>
  : InstRX<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
           mnemonic#"\t$R1, $XBD2",
           [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
  : InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set cls:$R1, (operator cls:$R1src,
                                     (load bdxaddr12only:$XBD2)))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
                AddressingMode mode = bdxaddr20only>
  : InstRXY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
                        SDPatternOperator operator, RegisterOperand cls,
                        SDPatternOperator load, bits<5> bytes> {
  let DispKey = mnemonic ## #cls in {
    let DispSize = "12" in
      def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
                        bdxaddr12pair>;
    let DispSize = "20" in
      def Y  : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
                         bdxaddr20pair>;
  }
}

class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
               Operand imm, AddressingMode mode = bdaddr12only>
  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
           mnemonic#"\t$BD1, $I2",
           [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
  let mayLoad = 1;
  let mayStore = 1;
}

class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                Operand imm, AddressingMode mode = bdaddr20only>
  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
  let mayLoad = 1;
  let mayStore = 1;
}

multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
                        bits<16> siyOpcode, SDPatternOperator operator,
                        Operand imm> {
  let DispKey = mnemonic ## #cls in {
    let DispSize = "12" in
      def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
  }
}

class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
                RegisterOperand cls1, RegisterOperand cls2>
  : InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
           mnemonic#"r\t$R1, $R2",
           [(operator cls1:$R1, cls2:$R2)]> {
  let OpKey = mnemonic ## cls1;
  let OpType = "reg";
  let isCompare = 1;
}

class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls1, RegisterOperand cls2>
  : InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
            mnemonic#"r\t$R1, $R2",
            [(operator cls1:$R1, cls2:$R2)]> {
  let OpKey = mnemonic ## cls1;
  let OpType = "reg";
  let isCompare = 1;
}

class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                RegisterOperand cls, Immediate imm>
  : InstRI<opcode, (outs), (ins cls:$R1, imm:$I2),
           mnemonic#"\t$R1, $I2",
           [(operator cls:$R1, imm:$I2)]> {
  let isCompare = 1;
}

class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                 RegisterOperand cls, Immediate imm>
  : InstRIL<opcode, (outs), (ins cls:$R1, imm:$I2),
            mnemonic#"\t$R1, $I2",
            [(operator cls:$R1, imm:$I2)]> {
  let isCompare = 1;
}

class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
                   RegisterOperand cls, SDPatternOperator load>
  : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
            mnemonic#"\t$R1, $I2",
            [(operator cls:$R1, (load pcrel32:$I2))]> {
  let isCompare = 1;
  let mayLoad = 1;
  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
  // However, BDXs have two extra operands and are therefore 6 units more
  // complex.
  let AddedComplexity = 7;
}

class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
                AddressingMode mode = bdxaddr12only>
  : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
           mnemonic#"\t$R1, $XBD2",
           [(operator cls:$R1, (load mode:$XBD2))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let isCompare = 1;
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
  : InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let isCompare = 1;
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
                 AddressingMode mode = bdxaddr20only>
  : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
            mnemonic#"\t$R1, $XBD2",
            [(operator cls:$R1, (load mode:$XBD2))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let isCompare = 1;
  let mayLoad = 1;
  let AccessBytes = bytes;
}

multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
                         SDPatternOperator operator, RegisterOperand cls,
                         SDPatternOperator load, bits<5> bytes> {
  let DispKey = mnemonic ## #cls in {
    let DispSize = "12" in
      def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
                         load, bytes, bdxaddr12pair>;
    let DispSize = "20" in
      def Y  : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
                          load, bytes, bdxaddr20pair>;
  }
}

class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
                SDPatternOperator load, Immediate imm,
                AddressingMode mode = bdaddr12only>
  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
           mnemonic#"\t$BD1, $I2",
           [(operator (load mode:$BD1), imm:$I2)]> {
  let isCompare = 1;
  let mayLoad = 1;
}

class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 SDPatternOperator load, Immediate imm>
  : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(operator (load bdaddr12only:$BD1), imm:$I2)]> {
  let isCompare = 1;
  let mayLoad = 1;
}

class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 SDPatternOperator load, Immediate imm,
                 AddressingMode mode = bdaddr20only>
  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
            mnemonic#"\t$BD1, $I2",
            [(operator (load mode:$BD1), imm:$I2)]> {
  let isCompare = 1;
  let mayLoad = 1;
}

multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
                         SDPatternOperator operator, SDPatternOperator load,
                         Immediate imm> {
  let DispKey = mnemonic in {
    let DispSize = "12" in
      def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
                          bdaddr20pair>;
  }
}

class TernaryRRD<string mnemonic, bits<16> opcode,
                 SDPatternOperator operator, RegisterOperand cls>
  : InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2),
            mnemonic#"r\t$R1, $R3, $R2",
            [(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "reg";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
  : InstRXF<opcode, (outs cls:$R1),
            (ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2),
            mnemonic#"\t$R1, $R3, $XBD2",
            [(set cls:$R1, (operator cls:$R1src, cls:$R3,
                                     (load bdxaddr12only:$XBD2)))]> {
  let OpKey = mnemonic ## cls;
  let OpType = "mem";
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let AccessBytes = bytes;
}

class LoadAndOpRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                  RegisterOperand cls, AddressingMode mode = bdaddr20only>
  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, mode:$BD2),
            mnemonic#"\t$R1, $R3, $BD2",
            [(set cls:$R1, (operator mode:$BD2, cls:$R3))]> {
  let mayLoad = 1;
  let mayStore = 1;
}

class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
                RegisterOperand cls, AddressingMode mode = bdaddr12only>
  : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
           mnemonic#"\t$R1, $R3, $BD2",
           [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let mayStore = 1;
}

class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
                 RegisterOperand cls, AddressingMode mode = bdaddr20only>
  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
            mnemonic#"\t$R1, $R3, $BD2",
            [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
  let mayLoad = 1;
  let mayStore = 1;
}

multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
                         SDPatternOperator operator, RegisterOperand cls> {
  let DispKey = mnemonic ## #cls in {
    let DispSize = "12" in
      def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
    let DispSize = "20" in
      def Y  : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
  }
}

class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
                       RegisterOperand cls2>
  : InstRIEf<opcode, (outs cls1:$R1),
             (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
                  imm32zx6:$I5),
             mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator>
  : InstRXY<opcode, (outs), (ins imm32zx4:$R1, bdxaddr20only:$XBD2),
            mnemonic##"\t$R1, $XBD2",
            [(operator imm32zx4:$R1, bdxaddr20only:$XBD2)]>;

class PrefetchRILPC<string mnemonic, bits<12> opcode,
                    SDPatternOperator operator>
  : InstRIL<opcode, (outs), (ins imm32zx4:$R1, pcrel32:$I2),
            mnemonic##"\t$R1, $I2",
            [(operator imm32zx4:$R1, pcrel32:$I2)]> {
  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
  // However, BDXs have two extra operands and are therefore 6 units more
  // complex.
  let AddedComplexity = 7;
}

// A floating-point load-and test operation.  Create both a normal unary
// operation and one that acts as a comparison against zero.
multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
                          RegisterOperand cls> {
  def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
  let isCodeGenOnly = 1 in
    def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
}

//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
//
// Convenience instructions that get lowered to real instructions
// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
// or SystemZInstrInfo::expandPostRAPseudo().
//
//===----------------------------------------------------------------------===//

class Pseudo<dag outs, dag ins, list<dag> pattern>
  : InstSystemZ<0, outs, ins, "", pattern> {
  let isPseudo = 1;
  let isCodeGenOnly = 1;
}

// Like UnaryRI, but expanded after RA depending on the choice of register.
class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
                    Immediate imm>
  : Pseudo<(outs cls:$R1), (ins imm:$I2),
           [(set cls:$R1, (operator imm:$I2))]>;

// Like UnaryRXY, but expanded after RA depending on the choice of register.
class UnaryRXYPseudo<string key, SDPatternOperator operator,
                     RegisterOperand cls, bits<5> bytes,
                     AddressingMode mode = bdxaddr20only>
  : Pseudo<(outs cls:$R1), (ins mode:$XBD2),
           [(set cls:$R1, (operator mode:$XBD2))]> {
  let OpKey = key ## cls;
  let OpType = "mem";
  let mayLoad = 1;
  let Has20BitOffset = 1;
  let HasIndex = 1;
  let AccessBytes = bytes;
}

// Like UnaryRR, but expanded after RA depending on the choice of registers.
class UnaryRRPseudo<string key, SDPatternOperator operator,
                    RegisterOperand cls1, RegisterOperand cls2>
  : Pseudo<(outs cls1:$R1), (ins cls2:$R2),
           [(set cls1:$R1, (operator cls2:$R2))]> {
  let OpKey = key ## cls1;
  let OpType = "reg";
}

// Like BinaryRI, but expanded after RA depending on the choice of register.
class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
                     Immediate imm>
  : Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2),
           [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
  let Constraints = "$R1 = $R1src";
}

// Like BinaryRIE, but expanded after RA depending on the choice of register.
class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls,
                      Immediate imm>
  : Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2),
           [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;

// Like BinaryRIAndK, but expanded after RA depending on the choice of register.
multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator,
                              RegisterOperand cls, Immediate imm> {
  let NumOpsKey = key in {
    let NumOpsValue = "3" in
      def K : BinaryRIEPseudo<null_frag, cls, imm>,
              Requires<[FeatureHighWord, FeatureDistinctOps]>;
    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
      def "" : BinaryRIPseudo<operator, cls, imm>,
               Requires<[FeatureHighWord]>;
  }
}

// Like CompareRI, but expanded after RA depending on the choice of register.
class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls,
                      Immediate imm>
  : Pseudo<(outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]>;

// Like CompareRXY, but expanded after RA depending on the choice of register.
class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
                       SDPatternOperator load, bits<5> bytes,
                       AddressingMode mode = bdxaddr20only>
  : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
           [(operator cls:$R1, (load mode:$XBD2))]> {
  let mayLoad = 1;
  let Has20BitOffset = 1;
  let HasIndex = 1;
  let AccessBytes = bytes;
}

// Like StoreRXY, but expanded after RA depending on the choice of register.
class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
                     bits<5> bytes, AddressingMode mode = bdxaddr20only>
  : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
           [(operator cls:$R1, mode:$XBD2)]> {
  let mayStore = 1;
  let Has20BitOffset = 1;
  let HasIndex = 1;
  let AccessBytes = bytes;
}

// Like RotateSelectRIEf, but expanded after RA depending on the choice
// of registers.
class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2>
  : Pseudo<(outs cls1:$R1),
           (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
                imm32zx6:$I5),
           []> {
  let Constraints = "$R1 = $R1src";
  let DisableEncoding = "$R1src";
}

// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
// the value of the PSW's 2-bit condition code field.
class SelectWrapper<RegisterOperand cls>
  : Pseudo<(outs cls:$dst),
           (ins cls:$src1, cls:$src2, imm32zx4:$valid, imm32zx4:$cc),
           [(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2,
                                            imm32zx4:$valid, imm32zx4:$cc))]> {
  let usesCustomInserter = 1;
  // Although the instructions used by these nodes do not in themselves
  // change CC, the insertion requires new blocks, and CC cannot be live
  // across them.
  let Defs = [CC];
  let Uses = [CC];
}

// Stores $new to $addr if $cc is true ("" case) or false (Inv case).
multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
                      SDPatternOperator load, AddressingMode mode> {
  let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
    def "" : Pseudo<(outs),
                    (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
                    [(store (z_select_ccmask cls:$new, (load mode:$addr),
                                             imm32zx4:$valid, imm32zx4:$cc),
                            mode:$addr)]>;
    def Inv : Pseudo<(outs),
                     (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
                     [(store (z_select_ccmask (load mode:$addr), cls:$new,
                                              imm32zx4:$valid, imm32zx4:$cc),
                              mode:$addr)]>;
  }
}

// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation.  PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
                       dag pat, DAGOperand operand>
  : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
           [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
  let Defs = [CC];
  let Has20BitOffset = 1;
  let mayLoad = 1;
  let mayStore = 1;
  let usesCustomInserter = 1;
}

// Specializations of AtomicLoadWBinary.
class AtomicLoadBinaryReg32<SDPatternOperator operator>
  : AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
  : AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
class AtomicLoadBinaryReg64<SDPatternOperator operator>
  : AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
  : AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;

// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation.  PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
                        DAGOperand operand>
  : Pseudo<(outs GR32:$dst),
           (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
                ADDR32:$negbitshift, uimm32:$bitsize),
           [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
                                      ADDR32:$negbitshift, uimm32:$bitsize))]> {
  let Defs = [CC];
  let Has20BitOffset = 1;
  let mayLoad = 1;
  let mayStore = 1;
  let usesCustomInserter = 1;
}

// Specializations of AtomicLoadWBinary.
class AtomicLoadWBinaryReg<SDPatternOperator operator>
  : AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
  : AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;

// Define an instruction that operates on two fixed-length blocks of memory,
// and associated pseudo instructions for operating on blocks of any size.
// The Sequence form uses a straight-line sequence of instructions and
// the Loop form uses a loop of length-256 instructions followed by
// another instruction to handle the excess.
multiclass MemorySS<string mnemonic, bits<8> opcode,
                    SDPatternOperator sequence, SDPatternOperator loop> {
  def "" : InstSS<opcode, (outs), (ins bdladdr12onlylen8:$BDL1,
                                       bdaddr12only:$BD2),
                  mnemonic##"\t$BDL1, $BD2", []>;
  let usesCustomInserter = 1 in {
    def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
                                       imm64:$length),
                           [(sequence bdaddr12only:$dest, bdaddr12only:$src,
                                      imm64:$length)]>;
    def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
                                   imm64:$length, GR64:$count256),
                      [(loop bdaddr12only:$dest, bdaddr12only:$src,
                             imm64:$length, GR64:$count256)]>;
  }
}

// Define an instruction that operates on two strings, both terminated
// by the character in R0.  The instruction processes a CPU-determinated
// number of bytes at a time and sets CC to 3 if the instruction needs
// to be repeated.  Also define a pseudo instruction that represents
// the full loop (the main instruction plus the branch on CC==3).
multiclass StringRRE<string mnemonic, bits<16> opcode,
                     SDPatternOperator operator> {
  def "" : InstRRE<opcode, (outs GR64:$R1, GR64:$R2),
                   (ins GR64:$R1src, GR64:$R2src),
                   mnemonic#"\t$R1, $R2", []> {
    let Constraints = "$R1 = $R1src, $R2 = $R2src";
    let DisableEncoding = "$R1src, $R2src";
  }
  let usesCustomInserter = 1 in
    def Loop : Pseudo<(outs GR64:$end),
                      (ins GR64:$start1, GR64:$start2, GR32:$char),
                      [(set GR64:$end, (operator GR64:$start1, GR64:$start2,
                                                 GR32:$char))]>;
}

// A pseudo instruction that is a direct alias of a real instruction.
// These aliases are used in cases where a particular register operand is
// fixed or where the same instruction is used with different register sizes.
// The size parameter is the size in bytes of the associated real instruction.
class Alias<int size, dag outs, dag ins, list<dag> pattern>
  : InstSystemZ<size, outs, ins, "", pattern> {
  let isPseudo = 1;
  let isCodeGenOnly = 1;
}

// An alias of a BinaryRI, but with different register sizes.
class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls,
                    Immediate imm>
  : Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
          [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
  let Constraints = "$R1 = $R1src";
}

// An alias of a BinaryRIL, but with different register sizes.
class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls,
                     Immediate imm>
  : Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
          [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
  let Constraints = "$R1 = $R1src";
}

// An alias of a CompareRI, but with different register sizes.
class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls,
                     Immediate imm>
  : Alias<4, (outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> {
  let isCompare = 1;
}

// An alias of a RotateSelectRIEf, but with different register sizes.
class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2>
  : Alias<6, (outs cls1:$R1),
          (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
               imm32zx6:$I5), []> {
  let Constraints = "$R1 = $R1src";
}