aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SystemZ/SystemZInstrInfo.td
blob: b318d674f3c375886b3c9551b5bbc960cf2f514c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Stack allocation
//===----------------------------------------------------------------------===//

def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
                              [(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                              [(callseq_end timm:$amt1, timm:$amt2)]>;

let neverHasSideEffects = 1 in {
  // Takes as input the value of the stack pointer after a dynamic allocation
  // has been made.  Sets the output to the address of the dynamically-
  // allocated area itself, skipping the outgoing arguments.
  //
  // This expands to an LA or LAY instruction.  We restrict the offset
  // to the range of LA and keep the LAY range in reserve for when
  // the size of the outgoing arguments is added.
  def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
                           [(set GR64:$dst, dynalloc12only:$src)]>;
}

//===----------------------------------------------------------------------===//
// Control flow instructions
//===----------------------------------------------------------------------===//

// A return instruction.  R1 is the condition-code mask (all 1s)
// and R2 is the target address, which is always stored in %r14.
let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
    R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
  def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
}

// Unconditional branches.  R1 is the condition-code mask (all 1s).
let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
  let isIndirectBranch = 1 in
    def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
                    "br\t$R2", [(brind ADDR64:$R2)]>;

  // An assembler extended mnemonic for BRC.
  def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
                 [(br bb:$I2)]>;

  // An assembler extended mnemonic for BRCL.  (The extension is "G"
  // rather than "L" because "JL" is "Jump if Less".)
  def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
}

// Conditional branches.  It's easier for LLVM to handle these branches
// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
// the first operand.  It seems friendlier to use mnemonic forms like
// JE and JLH when writing out the assembly though.
let isBranch = 1, isTerminator = 1, Uses = [CC] in {
  let isCodeGenOnly = 1, CCMaskFirst = 1 in {
    def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
                                         brtarget16:$I2), "j$R1\t$I2",
                     [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
    def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
                                           brtarget32:$I2), "jg$R1\t$I2", []>;
  }
  def AsmBRC : InstRI<0xA74, (outs), (ins uimm8zx4:$R1, brtarget16:$I2),
                      "brc\t$R1, $I2", []>;
  def AsmBRCL : InstRIL<0xC04, (outs), (ins uimm8zx4:$R1, brtarget32:$I2),
                        "brcl\t$R1, $I2", []>;
}

// Fused compare-and-branch instructions.  As for normal branches,
// we handle these instructions internally in their raw CRJ-like form,
// but use assembly macros like CRJE when writing them out.
//
// These instructions do not use or clobber the condition codes.
// We nevertheless pretend that they clobber CC, so that we can lower
// them to separate comparisons and BRCLs if the branch ends up being
// out of range.
multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
  let isBranch = 1, isTerminator = 1, Defs = [CC] in {
    def RJ  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
                                            brtarget16:$RI4),
                       "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
    def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
                                            brtarget16:$RI4),
                       "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
    def IJ  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
                                            brtarget16:$RI4),
                       "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
    def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
                                            brtarget16:$RI4),
                       "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
  }
}
let isCodeGenOnly = 1 in
  defm C : CompareBranches<cond4, "$M3", "">;
defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;

// Define AsmParser mnemonics for each general condition-code mask
// (integer or floating-point)
multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
  let R1 = ccmask in {
    def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
                   "j"##name##"\t$I2", []>;
    def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
                     "jg"##name##"\t$I2", []>;
  }
  def LOCR  : FixedCondUnaryRRF<"locr"##name,  0xB9F2, GR32, GR32, ccmask>;
  def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
  def LOC   : FixedCondUnaryRSY<"loc"##name,   0xEBF2, GR32, ccmask, 4>;
  def LOCG  : FixedCondUnaryRSY<"locg"##name,  0xEBE2, GR64, ccmask, 8>;
  def STOC  : FixedCondStoreRSY<"stoc"##name,  0xEBF3, GR32, ccmask, 4>;
  def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
}
defm AsmO   : CondExtendedMnemonic<1,  "o">;
defm AsmH   : CondExtendedMnemonic<2,  "h">;
defm AsmNLE : CondExtendedMnemonic<3,  "nle">;
defm AsmL   : CondExtendedMnemonic<4,  "l">;
defm AsmNHE : CondExtendedMnemonic<5,  "nhe">;
defm AsmLH  : CondExtendedMnemonic<6,  "lh">;
defm AsmNE  : CondExtendedMnemonic<7,  "ne">;
defm AsmE   : CondExtendedMnemonic<8,  "e">;
defm AsmNLH : CondExtendedMnemonic<9,  "nlh">;
defm AsmHE  : CondExtendedMnemonic<10, "he">;
defm AsmNL  : CondExtendedMnemonic<11, "nl">;
defm AsmLE  : CondExtendedMnemonic<12, "le">;
defm AsmNH  : CondExtendedMnemonic<13, "nh">;
defm AsmNO  : CondExtendedMnemonic<14, "no">;

// Define AsmParser mnemonics for each integer condition-code mask.
// This is like the list above, except that condition 3 is not possible
// and that the low bit of the mask is therefore always 0.  This means
// that each condition has two names.  Conditions "o" and "no" are not used.
//
// We don't make one of the two names an alias of the other because
// we need the custom parsing routines to select the correct register class.
multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
  let M3 = ccmask in {
    def CR  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
                                            brtarget16:$RI4),
                       "crj"##name##"\t$R1, $R2, $RI4", []>;
    def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
                                            brtarget16:$RI4),
                       "cgrj"##name##"\t$R1, $R2, $RI4", []>;
    def CI  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
                                            brtarget16:$RI4),
                       "cij"##name##"\t$R1, $I2, $RI4", []>;
    def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
                                            brtarget16:$RI4),
                       "cgij"##name##"\t$R1, $I2, $RI4", []>;
  }
}
multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
  : IntCondExtendedMnemonicA<ccmask, name1> {
  let isAsmParserOnly = 1 in
    defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
}
defm AsmJH   : IntCondExtendedMnemonic<2,  "h",  "nle">;
defm AsmJL   : IntCondExtendedMnemonic<4,  "l",  "nhe">;
defm AsmJLH  : IntCondExtendedMnemonic<6,  "lh", "ne">;
defm AsmJE   : IntCondExtendedMnemonic<8,  "e",  "nlh">;
defm AsmJHE  : IntCondExtendedMnemonic<10, "he", "nl">;
defm AsmJLE  : IntCondExtendedMnemonic<12, "le", "nh">;

// Decrement a register and branch if it is nonzero.  These don't clobber CC,
// but we might need to split long branches into sequences that do.
let Defs = [CC] in {
  def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
  def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
}

//===----------------------------------------------------------------------===//
// Select instructions
//===----------------------------------------------------------------------===//

def Select32 : SelectWrapper<GR32>;
def Select64 : SelectWrapper<GR64>;

defm CondStore8_32  : CondStores<GR32, nonvolatile_truncstorei8,
                                 nonvolatile_anyextloadi8, bdxaddr20only>;
defm CondStore16_32 : CondStores<GR32, nonvolatile_truncstorei16,
                                 nonvolatile_anyextloadi16, bdxaddr20only>;
defm CondStore32_32 : CondStores<GR32, nonvolatile_store,
                                 nonvolatile_load, bdxaddr20only>;

defm CondStore8  : CondStores<GR64, nonvolatile_truncstorei8,
                              nonvolatile_anyextloadi8, bdxaddr20only>;
defm CondStore16 : CondStores<GR64, nonvolatile_truncstorei16,
                              nonvolatile_anyextloadi16, bdxaddr20only>;
defm CondStore32 : CondStores<GR64, nonvolatile_truncstorei32,
                              nonvolatile_anyextloadi32, bdxaddr20only>;
defm CondStore64 : CondStores<GR64, nonvolatile_store,
                              nonvolatile_load, bdxaddr20only>;

//===----------------------------------------------------------------------===//
// Call instructions
//===----------------------------------------------------------------------===//

// The definitions here are for the call-clobbered registers.
let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
                        F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D, CC],
    R1 = 14, isCodeGenOnly = 1 in {
  def BRAS  : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops),
                     "bras\t%r14, $I2", []>;
  def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops),
                      "brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>;
  def BASR  : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops),
                     "basr\t%r14, $R2", [(z_call ADDR64:$R2)]>;
}

// Define the general form of the call instructions for the asm parser.
// These instructions don't hard-code %r14 as the return address register.
def AsmBRAS  : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
                      "bras\t$R1, $I2", []>;
def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
                       "brasl\t$R1, $I2", []>;
def AsmBASR  : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
                      "basr\t$R1, $R2", []>;

//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//

// Register moves.
let neverHasSideEffects = 1 in {
  def LR  : UnaryRR <"l",  0x18,   null_frag, GR32, GR32>;
  def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  def LTR  : UnaryRR <"lt",  0x12,   null_frag, GR32, GR32>;
  def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
}

// Move on condition.
let isCodeGenOnly = 1, Uses = [CC] in {
  def LOCR  : CondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
  def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
}
let Uses = [CC] in {
  def AsmLOCR  : AsmCondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
  def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
}

// Immediate moves.
let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
    isReMaterializable = 1 in {
  // 16-bit sign-extended immediates.
  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;

  // Other 16-bit immediates.
  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;

  // 32-bit immediates.
  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
}

// Register loads.
let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
  }
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
}

let canFoldAsLoad = 1 in {
  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
}

// Load on condition.
let isCodeGenOnly = 1, Uses = [CC] in {
  def LOC  : CondUnaryRSY<"loc",  0xEBF2, nonvolatile_load, GR32, 4>;
  def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
}
let Uses = [CC] in {
  def AsmLOC  : AsmCondUnaryRSY<"loc",  0xEBF2, GR32, 4>;
  def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
}

// Register stores.
let SimpleBDXStore = 1 in {
  let isCodeGenOnly = 1 in
    defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
  }
}
let isCodeGenOnly = 1 in
  def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;

// Store on condition.
let isCodeGenOnly = 1, Uses = [CC] in {
  def STOC32 : CondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
  def STOC   : CondStoreRSY<"stoc",  0xEBF3, GR64, 4>;
  def STOCG  : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
}
let Uses = [CC] in {
  def AsmSTOC  : AsmCondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
  def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
}

// 8-bit immediate stores to 8-bit fields.
defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;

// 16-bit immediate stores to 16-, 32- or 64-bit fields.
def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;

// Memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
  def MVC : InstSS<0xD2, (outs), (ins bdladdr12onlylen8:$BDL1,
                                      bdaddr12only:$BD2),
                   "mvc\t$BDL1, $BD2", []>;

let mayLoad = 1, mayStore = 1, usesCustomInserter = 1 in
  def MVCWrapper : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
                                       imm32len8:$length),
                          [(z_mvc bdaddr12only:$dest, bdaddr12only:$src,
                                  imm32len8:$length)]>;

defm LoadStore8_32  : MVCLoadStore<anyextloadi8, truncstorei8, i32,
                                   MVCWrapper, 1>;
defm LoadStore16_32 : MVCLoadStore<anyextloadi16, truncstorei16, i32,
                                   MVCWrapper, 2>;
defm LoadStore32_32 : MVCLoadStore<load, store, i32, MVCWrapper, 4>;

defm LoadStore8  : MVCLoadStore<anyextloadi8, truncstorei8, i64,
                                MVCWrapper, 1>;
defm LoadStore16 : MVCLoadStore<anyextloadi16, truncstorei16, i64,
                                MVCWrapper, 2>;
defm LoadStore32 : MVCLoadStore<anyextloadi32, truncstorei32, i64,
                                MVCWrapper, 4>;
defm LoadStore64 : MVCLoadStore<load, store, i64, MVCWrapper, 8>;

//===----------------------------------------------------------------------===//
// Sign extensions
//===----------------------------------------------------------------------===//

// 32-bit extensions from registers.
let neverHasSideEffects = 1 in {
  def LBR : UnaryRRE<"lb", 0xB926, sext8,  GR32, GR32>;
  def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
}

// 64-bit extensions from registers.
let neverHasSideEffects = 1 in {
  def LGBR : UnaryRRE<"lgb", 0xB906, sext8,  GR64, GR64>;
  def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
  def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
  def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR64>;

// Match 32-to-64-bit sign extensions in which the source is already
// in a 64-bit register.
def : Pat<(sext_inreg GR64:$src, i32),
          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;

// 32-bit extensions from memory.
def  LB   : UnaryRXY<"lb", 0xE376, sextloadi8, GR32, 1>;
defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32, 2>;
def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;

// 64-bit extensions from memory.
def LGB   : UnaryRXY<"lgb", 0xE377, sextloadi8,  GR64, 1>;
def LGH   : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64, 2>;
def LGF   : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64, 4>;
def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
  def LTGF : UnaryRXY<"ltgf", 0xE332, sextloadi32, GR64, 4>;

// If the sign of a load-extend operation doesn't matter, use the signed ones.
// There's not really much to choose between the sign and zero extensions,
// but LH is more compact than LLH for small offsets.
def : Pat<(i32 (extloadi8  bdxaddr20only:$src)), (LB  bdxaddr20only:$src)>;
def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH  bdxaddr12pair:$src)>;
def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;

def : Pat<(i64 (extloadi8  bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;

// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7 in {
  def : Pat<(i32 (extloadi16 pcrel32:$src)), (LHRL  pcrel32:$src)>;
  def : Pat<(i64 (extloadi16 pcrel32:$src)), (LGHRL pcrel32:$src)>;
}

//===----------------------------------------------------------------------===//
// Zero extensions
//===----------------------------------------------------------------------===//

// 32-bit extensions from registers.
let neverHasSideEffects = 1 in {
  def LLCR : UnaryRRE<"llc", 0xB994, zext8,  GR32, GR32>;
  def LLHR : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
}

// 64-bit extensions from registers.
let neverHasSideEffects = 1 in {
  def LLGCR : UnaryRRE<"llgc", 0xB984, zext8,  GR64, GR64>;
  def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
  def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
}

// Match 32-to-64-bit zero extensions in which the source is already
// in a 64-bit register.
def : Pat<(and GR64:$src, 0xffffffff),
          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;

// 32-bit extensions from memory.
def LLC   : UnaryRXY<"llc", 0xE394, zextloadi8,  GR32, 1>;
def LLH   : UnaryRXY<"llh", 0xE395, zextloadi16, GR32, 2>;
def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;

// 64-bit extensions from memory.
def LLGC   : UnaryRXY<"llgc", 0xE390, zextloadi8,  GR64, 1>;
def LLGH   : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64, 2>;
def LLGF   : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64, 4>;
def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;

//===----------------------------------------------------------------------===//
// Truncations
//===----------------------------------------------------------------------===//

// Truncations of 64-bit registers to 32-bit registers.
def : Pat<(i32 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;

// Truncations of 32-bit registers to memory.
let isCodeGenOnly = 1 in {
  defm STC32   : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8,  GR32, 1>;
  defm STH32   : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
  def  STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
}

// Truncations of 64-bit registers to memory.
defm STC   : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8,  GR64, 1>;
defm STH   : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64, 2>;
def  STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
defm ST    : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64, 4>;
def  STRL  : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;

//===----------------------------------------------------------------------===//
// Multi-register moves
//===----------------------------------------------------------------------===//

// Multi-register loads.
def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;

// Multi-register stores.
def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;

//===----------------------------------------------------------------------===//
// Byte swaps
//===----------------------------------------------------------------------===//

// Byte-swapping register moves.
let neverHasSideEffects = 1 in {
  def LRVR  : UnaryRRE<"lrv",  0xB91F, bswap, GR32, GR32>;
  def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
}

// Byte-swapping loads.  Unlike normal loads, these instructions are
// allowed to access storage more than once.
def LRV  : UnaryRXY<"lrv",  0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;

// Likewise byte-swapping stores.
def STRV  : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
                     GR64, 8>;

//===----------------------------------------------------------------------===//
// Load address instructions
//===----------------------------------------------------------------------===//

// Load BDX-style addresses.
let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
    DispKey = "la" in {
  let DispSize = "12" in
    def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
                    "la\t$R1, $XBD2",
                    [(set GR64:$R1, laaddr12pair:$XBD2)]>;
  let DispSize = "20" in
    def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
                      "lay\t$R1, $XBD2",
                      [(set GR64:$R1, laaddr20pair:$XBD2)]>;
}

// Load a PC-relative address.  There's no version of this instruction
// with a 16-bit offset, so there's no relaxation.
let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
    isReMaterializable = 1 in {
  def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
                     "larl\t$R1, $I2",
                     [(set GR64:$R1, pcrel32:$I2)]>;
}

//===----------------------------------------------------------------------===//
// Negation
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    def LCR  : UnaryRR <"lc",  0x13,   ineg, GR32, GR32>;
    def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
  }
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
}
defm : SXU<ineg, LCGFR>;

//===----------------------------------------------------------------------===//
// Insertion
//===----------------------------------------------------------------------===//

let isCodeGenOnly = 1 in
  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8, 1>;
defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8, 1>;

defm : InsertMem<"inserti8", IC32,  GR32, zextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;

defm : InsertMem<"inserti8", IC,  GR64, zextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;

// Insertions of a 16-bit immediate, leaving other bits unaffected.
// We don't have or_as_insert equivalents of these operations because
// OI is available instead.
let isCodeGenOnly = 1 in {
  def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
  def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
}
def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;

// ...likewise for 32-bit immediates.  For GR32s this is a general
// full-width move.  (We use IILF rather than something like LLILF
// for 32-bit moves because IILF leaves the upper 32 bits of the
// GR64 unchanged.)
let isCodeGenOnly = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
    isReMaterializable = 1 in {
  def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
}
def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;

// An alternative model of inserthf, with the first operand being
// a zero-extended value.
def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
          (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
                imm64hf32:$imm)>;

//===----------------------------------------------------------------------===//
// Addition
//===----------------------------------------------------------------------===//

// Plain addition.
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
  // Addition of a register.
  let isCommutable = 1 in {
    defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
    defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
  }
  def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;

  // Addition of signed 16-bit immediates.
  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, add, GR32, imm32sx16>;
  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;

  // Addition of signed 32-bit immediates.
  def AFI  : BinaryRIL<"afi",  0xC29, add, GR32, simm32>;
  def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;

  // Addition of memory.
  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16, 2>;
  defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, add, GR32, load, 4>;
  def  AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32, 4>;
  def  AG  : BinaryRXY<"ag",  0xE308, add, GR64, load, 8>;

  // Addition to memory.
  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
}
defm : SXB<add, GR64, AGFR>;

// Addition producing a carry.
let Defs = [CC] in {
  // Addition of a register.
  let isCommutable = 1 in {
    defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
    defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
  }
  def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;

  // Addition of signed 16-bit immediates.
  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, addc, GR32, imm32sx16>,
                Requires<[FeatureDistinctOps]>;
  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
                Requires<[FeatureDistinctOps]>;

  // Addition of unsigned 32-bit immediates.
  def ALFI  : BinaryRIL<"alfi",  0xC2B, addc, GR32, uimm32>;
  def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;

  // Addition of memory.
  defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
  def  ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32, 4>;
  def  ALG  : BinaryRXY<"alg",  0xE30A, addc, GR64, load, 8>;
}
defm : ZXB<addc, GR64, ALGFR>;

// Addition producing and using a carry.
let Defs = [CC], Uses = [CC] in {
  // Addition of a register.
  def ALCR  : BinaryRRE<"alc",  0xB998, adde, GR32, GR32>;
  def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;

  // Addition of memory.
  def ALC  : BinaryRXY<"alc",  0xE398, adde, GR32, load, 4>;
  def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
}

//===----------------------------------------------------------------------===//
// Subtraction
//===----------------------------------------------------------------------===//

// Plain substraction.  Although immediate forms exist, we use the
// add-immediate instruction instead.
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
  // Subtraction of a register.
  defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
  def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
  defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;

  // Subtraction of memory.
  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, sextloadi16, 2>;
  defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
  def  SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32, 4>;
  def  SG  : BinaryRXY<"sg",  0xE309, sub, GR64, load, 8>;
}
defm : SXB<sub, GR64, SGFR>;

// Subtraction producing a carry.
let Defs = [CC] in {
  // Subtraction of a register.
  defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
  def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
  defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;

  // Subtraction of unsigned 32-bit immediates.  These don't match
  // subc because we prefer addc for constants.
  def SLFI  : BinaryRIL<"slfi",  0xC25, null_frag, GR32, uimm32>;
  def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;

  // Subtraction of memory.
  defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
  def  SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32, 4>;
  def  SLG  : BinaryRXY<"slg",  0xE30B, subc, GR64, load, 8>;
}
defm : ZXB<subc, GR64, SLGFR>;

// Subtraction producing and using a carry.
let Defs = [CC], Uses = [CC] in {
  // Subtraction of a register.
  def SLBR  : BinaryRRE<"slb",  0xB999, sube, GR32, GR32>;
  def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;

  // Subtraction of memory.
  def SLB  : BinaryRXY<"slb",  0xE399, sube, GR32, load, 4>;
  def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
}

//===----------------------------------------------------------------------===//
// AND
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // ANDs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
    defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
  }

  let isConvertibleToThreeAddress = 1 in {
    // ANDs of a 16-bit immediate, leaving other bits unaffected.
    // The CC result only reflects the 16-bit field, not the full register.
    let isCodeGenOnly = 1 in {
      def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
      def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
    }
    def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
    def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
    def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
    def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;

    // ANDs of a 32-bit immediate, leaving other bits unaffected.
    // The CC result only reflects the 32-bit field, which means we can
    // use it as a zero indicator for i32 operations but not otherwise.
    let isCodeGenOnly = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in
      def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
    def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
    def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
  }

  // ANDs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
    def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; 
  }

  // AND to memory
  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
}
defm : RMWIByte<and, bdaddr12pair, NI>;
defm : RMWIByte<and, bdaddr20pair, NIY>;

//===----------------------------------------------------------------------===//
// OR
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // ORs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
    defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
  }

  // ORs of a 16-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 16-bit field, not the full register.
  let isCodeGenOnly = 1 in {
    def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
    def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
  }
  def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
  def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
  def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
  def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;

  // ORs of a 32-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 32-bit field, which means we can
  // use it as a zero indicator for i32 operations but not otherwise.
  let isCodeGenOnly = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in
    def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
  def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
  def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;

  // ORs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
    def  OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
  }

  // OR to memory
  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
}
defm : RMWIByte<or, bdaddr12pair, OI>;
defm : RMWIByte<or, bdaddr20pair, OIY>;

//===----------------------------------------------------------------------===//
// XOR
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // XORs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
    defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
  }

  // XORs of a 32-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 32-bit field, which means we can
  // use it as a zero indicator for i32 operations but not otherwise.
  let isCodeGenOnly = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in
    def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
  def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
  def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;

  // XORs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
    def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
  }

  // XOR to memory
  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
}
defm : RMWIByte<xor, bdaddr12pair, XI>;
defm : RMWIByte<xor, bdaddr20pair, XIY>;

//===----------------------------------------------------------------------===//
// Multiplication
//===----------------------------------------------------------------------===//

// Multiplication of a register.
let isCommutable = 1 in {
  def MSR  : BinaryRRE<"ms",  0xB252, mul, GR32, GR32>;
  def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
}
def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
defm : SXB<mul, GR64, MSGFR>;

// Multiplication of a signed 16-bit immediate.
def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;

// Multiplication of a signed 32-bit immediate.
def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;

// Multiplication of memory.
defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16, 2>;
defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32, 4>;
def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;

// Multiplication of a register, producing two results.
def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;

// Multiplication of memory, producing two results.
def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;

//===----------------------------------------------------------------------===//
// Division and remainder
//===----------------------------------------------------------------------===//

// Division and remainder, from registers.
def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
def DSGR  : BinaryRRE<"dsg",  0xB90D, z_sdivrem64, GR128, GR64>;
def DLR   : BinaryRRE<"dl",   0xB997, z_udivrem32, GR128, GR32>;
def DLGR  : BinaryRRE<"dlg",  0xB987, z_udivrem64, GR128, GR64>;

// Division and remainder, from memory.
def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
def DSG  : BinaryRXY<"dsg",  0xE30D, z_sdivrem64, GR128, load, 8>;
def DL   : BinaryRXY<"dl",   0xE397, z_udivrem32, GR128, load, 4>;
def DLG  : BinaryRXY<"dlg",  0xE387, z_udivrem64, GR128, load, 8>;

//===----------------------------------------------------------------------===//
// Shifts
//===----------------------------------------------------------------------===//

// Shift left.
let neverHasSideEffects = 1 in {
  defm SLL : ShiftRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
  def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64>;
}

// Logical shift right.
let neverHasSideEffects = 1 in {
  defm SRL : ShiftRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
  def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64>;
}

// Arithmetic shift right.
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  defm SRA : ShiftRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
  def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64>;
}

// Rotate left.
let neverHasSideEffects = 1 in {
  def RLL  : ShiftRSY<"rll",  0xEB1D, rotl, GR32>;
  def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64>;
}

// Rotate second operand left and inserted selected bits into first operand.
// These can act like 32-bit operands provided that the constant start and
// end bits (operands 2 and 3) are in the range [32, 64).
let Defs = [CC] in {
  let isCodeGenOnly = 1 in
    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
}

// Forms of RISBG that only affect one word of the destination register.
// They do not set CC.
let isCodeGenOnly = 1 in
  def RISBLG32 : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR32>,
                 Requires<[FeatureHighWord]>;
def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GR64, GR64>,
             Requires<[FeatureHighWord]>;
def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR64, GR64>,
             Requires<[FeatureHighWord]>;

// Rotate second operand left and perform a logical operation with selected
// bits of the first operand.  The CC result only describes the selected bits,
// so isn't useful for a full comparison against zero.
let Defs = [CC] in {
  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
}

//===----------------------------------------------------------------------===//
// Comparison
//===----------------------------------------------------------------------===//

// Signed comparisons.
let Defs = [CC], CCValues = 0xE in {
  // Comparison with a register.
  def CR   : CompareRR <"c",   0x19,   z_cmp,     GR32, GR32>;
  def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
  def CGR  : CompareRRE<"cg",  0xB920, z_cmp,     GR64, GR64>;

  // Comparison with a signed 16-bit immediate.
  def CHI  : CompareRI<"chi",  0xA7E, z_cmp, GR32, imm32sx16>;
  def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;

  // Comparison with a signed 32-bit immediate.
  def CFI  : CompareRIL<"cfi",  0xC2D, z_cmp, GR32, simm32>;
  def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;

  // Comparison with memory.
  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16, 2>;
  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_cmp, GR32, load, 4>;
  def  CGH   : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16, 2>;
  def  CGF   : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32, 4>;
  def  CG    : CompareRXY<"cg",  0xE320, z_cmp, GR64, load, 8>;
  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_cmp, GR32, aligned_sextloadi16>;
  def  CRL   : CompareRILPC<"crl",   0xC6D, z_cmp, GR32, aligned_load>;
  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_cmp, GR64, aligned_load>;

  // Comparison between memory and a signed 16-bit immediate.
  def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
  def CHSI  : CompareSIL<"chsi",  0xE55C, z_cmp, load,        imm32sx16>;
  def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load,        imm64sx16>;
}
defm : SXB<z_cmp, GR64, CGFR>;

// Unsigned comparisons.
let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
  // Comparison with a register.
  def CLR   : CompareRR <"cl",   0x15,   z_ucmp,    GR32, GR32>;
  def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
  def CLGR  : CompareRRE<"clg",  0xB921, z_ucmp,    GR64, GR64>;

  // Comparison with a signed 32-bit immediate.
  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;

  // Comparison with memory.
  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32, 4>;
  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
                             aligned_zextloadi16>;
  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
                             aligned_load>;
  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
                             aligned_zextloadi16>;
  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
                             aligned_zextloadi32>;
  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
                             aligned_load>;

  // Comparison between memory and an unsigned 8-bit immediate.
  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;

  // Comparison between memory and an unsigned 16-bit immediate.
  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load,        imm32zx16>;
  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load,        imm64zx16>;
}
defm : ZXB<z_ucmp, GR64, CLGFR>;

//===----------------------------------------------------------------------===//
// Atomic operations
//===----------------------------------------------------------------------===//

def ATOMIC_SWAPW        : AtomicLoadWBinaryReg<z_atomic_swapw>;
def ATOMIC_SWAP_32      : AtomicLoadBinaryReg32<atomic_swap_32>;
def ATOMIC_SWAP_64      : AtomicLoadBinaryReg64<atomic_swap_64>;

def ATOMIC_LOADW_AR     : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
def ATOMIC_LOADW_AFI    : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
def ATOMIC_LOAD_AR      : AtomicLoadBinaryReg32<atomic_load_add_32>;
def ATOMIC_LOAD_AHI     : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
def ATOMIC_LOAD_AFI     : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
def ATOMIC_LOAD_AGR     : AtomicLoadBinaryReg64<atomic_load_add_64>;
def ATOMIC_LOAD_AGHI    : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
def ATOMIC_LOAD_AGFI    : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;

def ATOMIC_LOADW_SR     : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
def ATOMIC_LOAD_SR      : AtomicLoadBinaryReg32<atomic_load_sub_32>;
def ATOMIC_LOAD_SGR     : AtomicLoadBinaryReg64<atomic_load_sub_64>;

def ATOMIC_LOADW_NR     : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
def ATOMIC_LOADW_NILH   : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
def ATOMIC_LOAD_NR      : AtomicLoadBinaryReg32<atomic_load_and_32>;
def ATOMIC_LOAD_NILL32  : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
def ATOMIC_LOAD_NILH32  : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
def ATOMIC_LOAD_NILF32  : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
def ATOMIC_LOAD_NGR     : AtomicLoadBinaryReg64<atomic_load_and_64>;
def ATOMIC_LOAD_NILL    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
def ATOMIC_LOAD_NILH    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
def ATOMIC_LOAD_NIHL    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
def ATOMIC_LOAD_NIHH    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
def ATOMIC_LOAD_NILF    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
def ATOMIC_LOAD_NIHF    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;

def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
def ATOMIC_LOAD_OR      : AtomicLoadBinaryReg32<atomic_load_or_32>;
def ATOMIC_LOAD_OILL32  : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
def ATOMIC_LOAD_OILH32  : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
def ATOMIC_LOAD_OILF32  : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
def ATOMIC_LOAD_OGR     : AtomicLoadBinaryReg64<atomic_load_or_64>;
def ATOMIC_LOAD_OILL    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
def ATOMIC_LOAD_OILH    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
def ATOMIC_LOAD_OIHL    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
def ATOMIC_LOAD_OIHH    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
def ATOMIC_LOAD_OILF    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
def ATOMIC_LOAD_OIHF    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;

def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
def ATOMIC_LOAD_XR      : AtomicLoadBinaryReg32<atomic_load_xor_32>;
def ATOMIC_LOAD_XILF32  : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
def ATOMIC_LOAD_XGR     : AtomicLoadBinaryReg64<atomic_load_xor_64>;
def ATOMIC_LOAD_XILF    : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
def ATOMIC_LOAD_XIHF    : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;

def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
                                               imm32lh16c>;
def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
                                                imm32ll16c>;
def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
                                                imm32lh16c>;
def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64ll16c>;
def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64lh16c>;
def ATOMIC_LOAD_NIHLi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hl16c>;
def ATOMIC_LOAD_NIHHi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hh16c>;
def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64lf32c>;
def ATOMIC_LOAD_NIHFi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hf32c>;

def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;

def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;

def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;

def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;

def ATOMIC_CMP_SWAPW
  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
                                  ADDR32:$bitshift, ADDR32:$negbitshift,
                                  uimm32:$bitsize),
           [(set GR32:$dst,
                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
                                     ADDR32:$bitshift, ADDR32:$negbitshift,
                                     uimm32:$bitsize))]> {
  let Defs = [CC];
  let mayLoad = 1;
  let mayStore = 1;
  let usesCustomInserter = 1;
}

let Defs = [CC] in {
  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
  def  CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
}

//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//===----------------------------------------------------------------------===//

// Read a 32-bit access register into a GR32.  As with all GR32 operations,
// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
// when a 64-bit address is stored in a pair of access registers.
def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
                  "ear\t$R1, $R2",
                  [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;

// Find leftmost one, AKA count leading zeros.  The instruction actually
// returns a pair of GR64s, the first giving the number of leading zeros
// and the second giving a copy of the source with the leftmost one bit
// cleared.  We only use the first result here.
let Defs = [CC] in {
  def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
}
def : Pat<(ctlz GR64:$src),
          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;

// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
def : Pat<(i64 (anyext GR32:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;

// There are no 32-bit equivalents of LLILL and LLILH, so use a full
// 64-bit move followed by a subreg.  This preserves the invariant that
// all GR32 operations only modify the low 32 bits.
def : Pat<(i32 imm32ll16:$src),
          (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
def : Pat<(i32 imm32lh16:$src),
          (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;

// Extend GR32s and GR64s to GR128s.
let usesCustomInserter = 1 in {
  def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
  def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
  def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
}

//===----------------------------------------------------------------------===//
// Peepholes.
//===----------------------------------------------------------------------===//

// Use AL* for GR64 additions of unsigned 32-bit values.
defm : ZXB<add, GR64, ALGFR>;
def  : Pat<(add GR64:$src1, imm64zx32:$src2),
           (ALGFI GR64:$src1, imm64zx32:$src2)>;
def  : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
           (ALGF GR64:$src1, bdxaddr20only:$addr)>;

// Use SL* for GR64 subtractions of unsigned 32-bit values.
defm : ZXB<sub, GR64, SLGFR>;
def  : Pat<(add GR64:$src1, imm64zx32n:$src2),
           (SLGFI GR64:$src1, imm64zx32n:$src2)>;
def  : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
           (SLGF GR64:$src1, bdxaddr20only:$addr)>;

// Optimize sign-extended 1/0 selects to -1/0 selects.  This is important
// for vector legalization.
def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid, uimm8zx4:$cc)),
                         (i32 31)),
                    (i32 31)),
          (Select32 (LHI -1), (LHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>;
def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid,
                                                       uimm8zx4:$cc)))),
                    (i32 63)),
               (i32 63)),
          (Select64 (LGHI -1), (LGHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>;