aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/TargetInstrInfo.cpp
blob: ae38732065c780b128a49299827826c992e155ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/ErrorHandling.h"
#include <cctype>
using namespace llvm;

//===----------------------------------------------------------------------===//
//  TargetInstrInfo
//===----------------------------------------------------------------------===//

TargetInstrInfo::~TargetInstrInfo() {
}

const TargetRegisterClass*
TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
                             const TargetRegisterInfo *TRI,
                             const MachineFunction &MF) const {
  if (OpNum >= MCID.getNumOperands())
    return 0;

  short RegClass = MCID.OpInfo[OpNum].RegClass;
  if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
    return TRI->getPointerRegClass(MF, RegClass);

  // Instructions like INSERT_SUBREG do not have fixed register classes.
  if (RegClass < 0)
    return 0;

  // Otherwise just look it up normally.
  return TRI->getRegClass(RegClass);
}

unsigned
TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
                                const MachineInstr *MI) const {
  if (!ItinData || ItinData->isEmpty())
    return 1;

  unsigned Class = MI->getDesc().getSchedClass();
  unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
  if (UOps)
    return UOps;

  // The # of u-ops is dynamically determined. The specific target should
  // override this function to return the right number.
  return 1;
}

/// Return the default expected latency for a def based on it's opcode.
unsigned TargetInstrInfo::defaultDefLatency(const InstrItineraryData *ItinData,
                                            const MachineInstr *DefMI) const {
  if (DefMI->mayLoad())
    return ItinData->Props.LoadLatency;
  if (isHighLatencyDef(DefMI->getOpcode()))
    return ItinData->Props.HighLatency;
  return 1;
}

/// Both DefMI and UseMI must be valid.  By default, call directly to the
/// itinerary. This may be overriden by the target.
int
TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
                                   const MachineInstr *DefMI, unsigned DefIdx,
                                   const MachineInstr *UseMI,
                                   unsigned UseIdx) const {
  unsigned DefClass = DefMI->getDesc().getSchedClass();
  unsigned UseClass = UseMI->getDesc().getSchedClass();
  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}

/// computeOperandLatency - Compute and return the latency of the given data
/// dependent def and use. DefMI must be a valid def. UseMI may be NULL for an
/// unknown use. Depending on the subtarget's itinerary properties, this may or
/// may not need to call getOperandLatency().
///
/// FindMin may be set to get the minimum vs. expected latency. Minimum
/// latency is used for scheduling groups, while expected latency is for
/// instruction cost and critical path.
///
/// For most subtargets, we don't need DefIdx or UseIdx to compute min latency.
/// DefMI must be a valid definition, but UseMI may be NULL for an unknown use.
unsigned TargetInstrInfo::
computeOperandLatency(const InstrItineraryData *ItinData,
                      const TargetRegisterInfo *TRI,
                      const MachineInstr *DefMI, const MachineInstr *UseMI,
                      unsigned Reg, bool FindMin) const {

  // Default to one cycle for missing itinerary. Empty itineraries still have
  // a properties. We have one hard-coded exception for loads, to preserve
  // existing behavior.
  if (!ItinData)
    return DefMI->mayLoad() ? 2 : 1;

  // Return a latency based on the itinerary properties and defining instruction
  // if possible. Some common subtargets don't require per-operand latency,
  // especially for minimum latencies.
  if (FindMin) {
    // If MinLatency is valid, call getInstrLatency. This uses Stage latency if
    // it exists before defaulting to MinLatency.
    if (ItinData->Props.MinLatency >= 0)
      return getInstrLatency(ItinData, DefMI);

    // If MinLatency is invalid, OperandLatency is interpreted as MinLatency.
    // For empty itineraries, short-cirtuit the check and default to one cycle.
    if (ItinData->isEmpty())
      return 1;
  }
  else if(ItinData->isEmpty())
    return defaultDefLatency(ItinData, DefMI);

  // ...operand lookup required

  // Find the definition of the register in the defining instruction.
  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
  if (DefIdx != -1) {
    const MachineOperand &MO = DefMI->getOperand(DefIdx);
    if (MO.isReg() && MO.isImplicit() &&
        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
      // This is an implicit def, getOperandLatency() won't return the correct
      // latency. e.g.
      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
      // What we want is to compute latency between def of %D6/%D7 and use of
      // %Q3 instead.
      unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
      if (DefMI->getOperand(Op2).isReg())
        DefIdx = Op2;
    }
    // For all uses of the register, calculate the maxmimum latency
    int OperLatency = -1;

    // UseMI is null, then it must be a scheduling barrier.
    if (!UseMI) {
      unsigned DefClass = DefMI->getDesc().getSchedClass();
      OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
    }
    else {
      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
        const MachineOperand &MO = UseMI->getOperand(i);
        if (!MO.isReg() || !MO.isUse())
          continue;
        unsigned MOReg = MO.getReg();
        if (MOReg != Reg)
          continue;

        int UseCycle = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, i);
        OperLatency = std::max(OperLatency, UseCycle);
      }
    }
    // If we found an operand latency, we're done.
    if (OperLatency >= 0)
      return OperLatency;
  }
  // No operand latency was found.
  unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
  // Expected latency is the max of the stage latency and itinerary props.
  if (!FindMin)
    InstrLatency = std::max(InstrLatency, defaultDefLatency(ItinData, DefMI));
  return InstrLatency;
}

unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
                                          const MachineInstr *MI,
                                          unsigned *PredCost) const {
  // Default to one cycle for no itinerary. However, an "empty" itinerary may
  // still have a MinLatency property, which getStageLatency checks.
  if (!ItinData)
    return 1;

  return ItinData->getStageLatency(MI->getDesc().getSchedClass());
}

bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
                                       const MachineInstr *DefMI,
                                       unsigned DefIdx) const {
  if (!ItinData || ItinData->isEmpty())
    return false;

  unsigned DefClass = DefMI->getDesc().getSchedClass();
  int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
  return (DefCycle != -1 && DefCycle <= 1);
}

/// insertNoop - Insert a noop into the instruction stream at the specified
/// point.
void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator MI) const {
  llvm_unreachable("Target didn't implement insertNoop!");
}


/// Measure the specified inline asm to determine an approximation of its
/// length.
/// Comments (which run till the next SeparatorString or newline) do not
/// count as an instruction.
/// Any other non-whitespace text is considered an instruction, with
/// multiple instructions separated by SeparatorString or newlines.
/// Variable-length instructions are not handled here; this function
/// may be overloaded in the target code to do that.
unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
                                             const MCAsmInfo &MAI) const {


  // Count the number of instructions in the asm.
  bool atInsnStart = true;
  unsigned Length = 0;
  for (; *Str; ++Str) {
    if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
                                strlen(MAI.getSeparatorString())) == 0)
      atInsnStart = true;
    if (atInsnStart && !std::isspace(*Str)) {
      Length += MAI.getMaxInstLength();
      atInsnStart = false;
    }
    if (atInsnStart && strncmp(Str, MAI.getCommentString(),
                               strlen(MAI.getCommentString())) == 0)
      atInsnStart = false;
  }

  return Length;
}