aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/TargetSchedInfo.cpp
blob: 6a3c9c717b23c918495822add67aa8461a324732 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
//===-- SchedInfo.cpp - Generic code to support target schedulers ----------==//
//
// This file implements the generic part of a Scheduler description for a
// target.  This functionality is defined in the llvm/Target/SchedInfo.h file.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/MachineSchedInfo.h"
#include "llvm/Target/TargetMachine.h"

// External object describing the machine instructions
// Initialized only when the TargetMachine class is created
// and reset when that class is destroyed.
// 
const MachineInstrDescriptor* TargetInstrDescriptors = 0;

resourceId_t MachineResource::nextId = 0;

// Check if fromRVec and toRVec have *any* common entries.
// Assume the vectors are sorted in increasing order.
// Algorithm copied from function set_intersection() for sorted ranges
// (stl_algo.h).
//
inline static bool
RUConflict(const std::vector<resourceId_t>& fromRVec,
	   const std::vector<resourceId_t>& toRVec)
{
  
  unsigned fN = fromRVec.size(), tN = toRVec.size(); 
  unsigned fi = 0, ti = 0;

  while (fi < fN && ti < tN)
    {
      if (fromRVec[fi] < toRVec[ti])
	++fi;
      else if (toRVec[ti] < fromRVec[fi])
	++ti;
      else
	return true;
    }
  return false;
}


static cycles_t
ComputeMinGap(const InstrRUsage &fromRU, 
	      const InstrRUsage &toRU)
{
  cycles_t minGap = 0;
  
  if (fromRU.numBubbles > 0)
    minGap = fromRU.numBubbles;
  
  if (minGap < fromRU.numCycles)
    {
      // only need to check from cycle `minGap' onwards
      for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++)
	{
	  // check if instr. #2 can start executing `gap' cycles after #1
	  // by checking for resource conflicts in each overlapping cycle
	  cycles_t numOverlap =std::min(fromRU.numCycles - gap, toRU.numCycles);
	  for (cycles_t c = 0; c <= numOverlap-1; c++)
	    if (RUConflict(fromRU.resourcesByCycle[gap + c],
			   toRU.resourcesByCycle[c]))
	      {
		// conflict found so minGap must be more than `gap'
		minGap = gap+1;
		break;
	      }
	}
    }
  
  return minGap;
}


//---------------------------------------------------------------------------
// class MachineSchedInfo
//	Interface to machine description for instruction scheduling
//---------------------------------------------------------------------------

MachineSchedInfo::MachineSchedInfo(const TargetMachine&    tgt,
                                   int                     NumSchedClasses,
                                   const InstrClassRUsage* ClassRUsages,
                                   const InstrRUsageDelta* UsageDeltas,
                                   const InstrIssueDelta*  IssueDeltas,
                                   unsigned int		   NumUsageDeltas,
                                   unsigned int		   NumIssueDeltas)
  : target(tgt),
    numSchedClasses(NumSchedClasses), mii(& tgt.getInstrInfo()),
    classRUsages(ClassRUsages), usageDeltas(UsageDeltas),
    issueDeltas(IssueDeltas), numUsageDeltas(NumUsageDeltas),
    numIssueDeltas(NumIssueDeltas)
{}

void
MachineSchedInfo::initializeResources()
{
  assert(MAX_NUM_SLOTS >= (int)getMaxNumIssueTotal()
	 && "Insufficient slots for static data! Increase MAX_NUM_SLOTS");
  
  // First, compute common resource usage info for each class because
  // most instructions will probably behave the same as their class.
  // Cannot allocate a vector of InstrRUsage so new each one.
  // 
  std::vector<InstrRUsage> instrRUForClasses;
  instrRUForClasses.resize(numSchedClasses);
  for (InstrSchedClass sc = 0; sc < numSchedClasses; sc++) {
    // instrRUForClasses.push_back(new InstrRUsage);
    instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal());
    instrRUForClasses[sc].setTo(classRUsages[sc]);
  }
  
  computeInstrResources(instrRUForClasses);
  computeIssueGaps(instrRUForClasses);
}


void
MachineSchedInfo::computeInstrResources(const std::vector<InstrRUsage>&
					instrRUForClasses)
{
  int numOpCodes =  mii->getNumRealOpCodes();
  instrRUsages.resize(numOpCodes);
  
  // First get the resource usage information from the class resource usages.
  for (MachineOpCode op = 0; op < numOpCodes; ++op) {
    InstrSchedClass sc = getSchedClass(op);
    assert(sc >= 0 && sc < numSchedClasses);
    instrRUsages[op] = instrRUForClasses[sc];
  }
  
  // Now, modify the resource usages as specified in the deltas.
  for (unsigned i = 0; i < numUsageDeltas; ++i) {
    MachineOpCode op = usageDeltas[i].opCode;
    assert(op < numOpCodes);
    instrRUsages[op].addUsageDelta(usageDeltas[i]);
  }
  
  // Then modify the issue restrictions as specified in the deltas.
  for (unsigned i = 0; i < numIssueDeltas; ++i) {
    MachineOpCode op = issueDeltas[i].opCode;
    assert(op < numOpCodes);
    instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]);
  }
}


void
MachineSchedInfo::computeIssueGaps(const std::vector<InstrRUsage>&
				   instrRUForClasses)
{
  int numOpCodes =  mii->getNumRealOpCodes();
  instrRUsages.resize(numOpCodes);
  
  assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1
         && "numOpCodes invalid for implementation of class OpCodePair!");
  
  // First, compute issue gaps between pairs of classes based on common
  // resources usages for each class, because most instruction pairs will
  // usually behave the same as their class.
  // 
  int classPairGaps[numSchedClasses][numSchedClasses];
  for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++)
    for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++)
      {
	int classPairGap = ComputeMinGap(instrRUForClasses[fromSC],
					 instrRUForClasses[toSC]);
	classPairGaps[fromSC][toSC] = classPairGap; 
      }
  
  // Now, for each pair of instructions, use the class pair gap if both
  // instructions have identical resource usage as their respective classes.
  // If not, recompute the gap for the pair from scratch.
  
  longestIssueConflict = 0;
  
  for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++)
    for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++)
      {
	int instrPairGap = 
	  (instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass)
	  ? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)]
	  : ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]);
      
	if (instrPairGap > 0)
	  {
	    issueGaps[OpCodePair(fromOp,toOp)] = instrPairGap;
	    conflictLists[fromOp].push_back(toOp);
	    longestIssueConflict = std::max(longestIssueConflict, instrPairGap);
	  }
      }
}


void InstrRUsage::setTo(const InstrClassRUsage& classRU) {
  sameAsClass	= true;
  isSingleIssue = classRU.isSingleIssue;
  breaksGroup   = classRU.breaksGroup; 
  numBubbles    = classRU.numBubbles;
  
  for (unsigned i=0; i < classRU.numSlots; i++)
    {
      unsigned slot = classRU.feasibleSlots[i];
      assert(slot < feasibleSlots.size() && "Invalid slot specified!");
      this->feasibleSlots[slot] = true;
    }
  
  numCycles   = classRU.totCycles;
  resourcesByCycle.resize(this->numCycles);
  
  for (unsigned i=0; i < classRU.numRUEntries; i++)
    for (unsigned c=classRU.V[i].startCycle, NC = c + classRU.V[i].numCycles;
	 c < NC; c++)
      this->resourcesByCycle[c].push_back(classRU.V[i].resourceId);
  
  // Sort each resource usage vector by resourceId_t to speed up conflict checking
  for (unsigned i=0; i < this->resourcesByCycle.size(); i++)
    sort(resourcesByCycle[i].begin(), resourcesByCycle[i].end());
  
}

// Add the extra resource usage requirements specified in the delta.
// Note that a negative value of `numCycles' means one entry for that
// resource should be deleted for each cycle.
// 
void InstrRUsage::addUsageDelta(const InstrRUsageDelta &delta) {
  int NC = delta.numCycles;
  sameAsClass = false;
  
  // resize the resources vector if more cycles are specified
  unsigned maxCycles = this->numCycles;
  maxCycles = std::max(maxCycles, delta.startCycle + abs(NC) - 1);
  if (maxCycles > this->numCycles)
    {
      this->resourcesByCycle.resize(maxCycles);
      this->numCycles = maxCycles;
    }
    
  if (NC >= 0)
    for (unsigned c=delta.startCycle, last=c+NC-1; c <= last; c++)
      this->resourcesByCycle[c].push_back(delta.resourceId);
  else
    // Remove the resource from all NC cycles.
    for (unsigned c=delta.startCycle, last=(c-NC)-1; c <= last; c++)
      {
	// Look for the resource backwards so we remove the last entry
	// for that resource in each cycle.
	std::vector<resourceId_t>& rvec = this->resourcesByCycle[c];
	int r;
	for (r = (int) rvec.size(); r >= 0; r--)
	  if (rvec[r] == delta.resourceId)
	    {// found last entry for the resource
	      rvec.erase(rvec.begin() + r);
	      break;
	    }
	assert(r >= 0 && "Resource to remove was unused in cycle c!");
      }
}