aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/AsmParser/X86AsmParser.cpp
blob: f0765ed50d71befce6005eb6f481b2efd5c427ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "X86AsmInstrumentation.h"
#include "X86AsmParserCommon.h"
#include "X86Operand.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>

using namespace llvm;

namespace {

static const char OpPrecedence[] = {
  0, // IC_OR
  1, // IC_AND
  2, // IC_LSHIFT
  2, // IC_RSHIFT
  3, // IC_PLUS
  3, // IC_MINUS
  4, // IC_MULTIPLY
  4, // IC_DIVIDE
  5, // IC_RPAREN
  6, // IC_LPAREN
  0, // IC_IMM
  0  // IC_REGISTER
};

class X86AsmParser : public MCTargetAsmParser {
  MCSubtargetInfo &STI;
  MCAsmParser &Parser;
  const MCInstrInfo &MII;
  ParseInstructionInfo *InstInfo;
  std::unique_ptr<X86AsmInstrumentation> Instrumentation;
private:
  SMLoc consumeToken() {
    SMLoc Result = Parser.getTok().getLoc();
    Parser.Lex();
    return Result;
  }

  enum InfixCalculatorTok {
    IC_OR = 0,
    IC_AND,
    IC_LSHIFT,
    IC_RSHIFT,
    IC_PLUS,
    IC_MINUS,
    IC_MULTIPLY,
    IC_DIVIDE,
    IC_RPAREN,
    IC_LPAREN,
    IC_IMM,
    IC_REGISTER
  };

  class InfixCalculator {
    typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
    SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
    SmallVector<ICToken, 4> PostfixStack;
    
  public:
    int64_t popOperand() {
      assert (!PostfixStack.empty() && "Poped an empty stack!");
      ICToken Op = PostfixStack.pop_back_val();
      assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
              && "Expected and immediate or register!");
      return Op.second;
    }
    void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
      assert ((Op == IC_IMM || Op == IC_REGISTER) &&
              "Unexpected operand!");
      PostfixStack.push_back(std::make_pair(Op, Val));
    }
    
    void popOperator() { InfixOperatorStack.pop_back(); }
    void pushOperator(InfixCalculatorTok Op) {
      // Push the new operator if the stack is empty.
      if (InfixOperatorStack.empty()) {
        InfixOperatorStack.push_back(Op);
        return;
      }
      
      // Push the new operator if it has a higher precedence than the operator
      // on the top of the stack or the operator on the top of the stack is a
      // left parentheses.
      unsigned Idx = InfixOperatorStack.size() - 1;
      InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
      if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
        InfixOperatorStack.push_back(Op);
        return;
      }
      
      // The operator on the top of the stack has higher precedence than the
      // new operator.
      unsigned ParenCount = 0;
      while (1) {
        // Nothing to process.
        if (InfixOperatorStack.empty())
          break;
        
        Idx = InfixOperatorStack.size() - 1;
        StackOp = InfixOperatorStack[Idx];
        if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
          break;
        
        // If we have an even parentheses count and we see a left parentheses,
        // then stop processing.
        if (!ParenCount && StackOp == IC_LPAREN)
          break;
        
        if (StackOp == IC_RPAREN) {
          ++ParenCount;
          InfixOperatorStack.pop_back();
        } else if (StackOp == IC_LPAREN) {
          --ParenCount;
          InfixOperatorStack.pop_back();
        } else {
          InfixOperatorStack.pop_back();
          PostfixStack.push_back(std::make_pair(StackOp, 0));
        }
      }
      // Push the new operator.
      InfixOperatorStack.push_back(Op);
    }
    int64_t execute() {
      // Push any remaining operators onto the postfix stack.
      while (!InfixOperatorStack.empty()) {
        InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
        if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
          PostfixStack.push_back(std::make_pair(StackOp, 0));
      }
      
      if (PostfixStack.empty())
        return 0;
      
      SmallVector<ICToken, 16> OperandStack;
      for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
        ICToken Op = PostfixStack[i];
        if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
          OperandStack.push_back(Op);
        } else {
          assert (OperandStack.size() > 1 && "Too few operands.");
          int64_t Val;
          ICToken Op2 = OperandStack.pop_back_val();
          ICToken Op1 = OperandStack.pop_back_val();
          switch (Op.first) {
          default:
            report_fatal_error("Unexpected operator!");
            break;
          case IC_PLUS:
            Val = Op1.second + Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_MINUS:
            Val = Op1.second - Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_MULTIPLY:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Multiply operation with an immediate and a register!");
            Val = Op1.second * Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_DIVIDE:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Divide operation with an immediate and a register!");
            assert (Op2.second != 0 && "Division by zero!");
            Val = Op1.second / Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_OR:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Or operation with an immediate and a register!");
            Val = Op1.second | Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_AND:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "And operation with an immediate and a register!");
            Val = Op1.second & Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_LSHIFT:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Left shift operation with an immediate and a register!");
            Val = Op1.second << Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          case IC_RSHIFT:
            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
                    "Right shift operation with an immediate and a register!");
            Val = Op1.second >> Op2.second;
            OperandStack.push_back(std::make_pair(IC_IMM, Val));
            break;
          }
        }
      }
      assert (OperandStack.size() == 1 && "Expected a single result.");
      return OperandStack.pop_back_val().second;
    }
  };

  enum IntelExprState {
    IES_OR,
    IES_AND,
    IES_LSHIFT,
    IES_RSHIFT,
    IES_PLUS,
    IES_MINUS,
    IES_NOT,
    IES_MULTIPLY,
    IES_DIVIDE,
    IES_LBRAC,
    IES_RBRAC,
    IES_LPAREN,
    IES_RPAREN,
    IES_REGISTER,
    IES_INTEGER,
    IES_IDENTIFIER,
    IES_ERROR
  };

  class IntelExprStateMachine {
    IntelExprState State, PrevState;
    unsigned BaseReg, IndexReg, TmpReg, Scale;
    int64_t Imm;
    const MCExpr *Sym;
    StringRef SymName;
    bool StopOnLBrac, AddImmPrefix;
    InfixCalculator IC;
    InlineAsmIdentifierInfo Info;
  public:
    IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
      State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
      Scale(1), Imm(imm), Sym(nullptr), StopOnLBrac(stoponlbrac),
      AddImmPrefix(addimmprefix) { Info.clear(); }
    
    unsigned getBaseReg() { return BaseReg; }
    unsigned getIndexReg() { return IndexReg; }
    unsigned getScale() { return Scale; }
    const MCExpr *getSym() { return Sym; }
    StringRef getSymName() { return SymName; }
    int64_t getImm() { return Imm + IC.execute(); }
    bool isValidEndState() {
      return State == IES_RBRAC || State == IES_INTEGER;
    }
    bool getStopOnLBrac() { return StopOnLBrac; }
    bool getAddImmPrefix() { return AddImmPrefix; }
    bool hadError() { return State == IES_ERROR; }

    InlineAsmIdentifierInfo &getIdentifierInfo() {
      return Info;
    }

    void onOr() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
        State = IES_OR;
        IC.pushOperator(IC_OR);
        break;
      }
      PrevState = CurrState;
    }
    void onAnd() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
        State = IES_AND;
        IC.pushOperator(IC_AND);
        break;
      }
      PrevState = CurrState;
    }
    void onLShift() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
        State = IES_LSHIFT;
        IC.pushOperator(IC_LSHIFT);
        break;
      }
      PrevState = CurrState;
    }
    void onRShift() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
        State = IES_RSHIFT;
        IC.pushOperator(IC_RSHIFT);
        break;
      }
      PrevState = CurrState;
    }
    void onPlus() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
      case IES_REGISTER:
        State = IES_PLUS;
        IC.pushOperator(IC_PLUS);
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
          // If we already have a BaseReg, then assume this is the IndexReg with
          // a scale of 1.
          if (!BaseReg) {
            BaseReg = TmpReg;
          } else {
            assert (!IndexReg && "BaseReg/IndexReg already set!");
            IndexReg = TmpReg;
            Scale = 1;
          }
        }
        break;
      }
      PrevState = CurrState;
    }
    void onMinus() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_PLUS:
      case IES_NOT:
      case IES_MULTIPLY:
      case IES_DIVIDE:
      case IES_LPAREN:
      case IES_RPAREN:
      case IES_LBRAC:
      case IES_RBRAC:
      case IES_INTEGER:
      case IES_REGISTER:
        State = IES_MINUS;
        // Only push the minus operator if it is not a unary operator.
        if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
              CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
              CurrState == IES_LPAREN || CurrState == IES_LBRAC))
          IC.pushOperator(IC_MINUS);
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
          // If we already have a BaseReg, then assume this is the IndexReg with
          // a scale of 1.
          if (!BaseReg) {
            BaseReg = TmpReg;
          } else {
            assert (!IndexReg && "BaseReg/IndexReg already set!");
            IndexReg = TmpReg;
            Scale = 1;
          }
        }
        break;
      }
      PrevState = CurrState;
    }
    void onNot() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_PLUS:
      case IES_NOT:
        State = IES_NOT;
        break;
      }
      PrevState = CurrState;
    }
    void onRegister(unsigned Reg) {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_PLUS:
      case IES_LPAREN:
        State = IES_REGISTER;
        TmpReg = Reg;
        IC.pushOperand(IC_REGISTER);
        break;
      case IES_MULTIPLY:
        // Index Register - Scale * Register
        if (PrevState == IES_INTEGER) {
          assert (!IndexReg && "IndexReg already set!");
          State = IES_REGISTER;
          IndexReg = Reg;
          // Get the scale and replace the 'Scale * Register' with '0'.
          Scale = IC.popOperand();
          IC.pushOperand(IC_IMM);
          IC.popOperator();
        } else {
          State = IES_ERROR;
        }
        break;
      }
      PrevState = CurrState;
    }
    void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_PLUS:
      case IES_MINUS:
      case IES_NOT:
        State = IES_INTEGER;
        Sym = SymRef;
        SymName = SymRefName;
        IC.pushOperand(IC_IMM);
        break;
      }
    }
    bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_PLUS:
      case IES_MINUS:
      case IES_NOT:
      case IES_OR:
      case IES_AND:
      case IES_LSHIFT:
      case IES_RSHIFT:
      case IES_DIVIDE:
      case IES_MULTIPLY:
      case IES_LPAREN:
        State = IES_INTEGER;
        if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
          // Index Register - Register * Scale
          assert (!IndexReg && "IndexReg already set!");
          IndexReg = TmpReg;
          Scale = TmpInt;
          if(Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
            ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
            return true;
          }
          // Get the scale and replace the 'Register * Scale' with '0'.
          IC.popOperator();
        } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
                    PrevState == IES_OR || PrevState == IES_AND ||
                    PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
                    PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
                    PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
                    PrevState == IES_NOT) &&
                   CurrState == IES_MINUS) {
          // Unary minus.  No need to pop the minus operand because it was never
          // pushed.
          IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
        } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
                    PrevState == IES_OR || PrevState == IES_AND ||
                    PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
                    PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
                    PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
                    PrevState == IES_NOT) &&
                   CurrState == IES_NOT) {
          // Unary not.  No need to pop the not operand because it was never
          // pushed.
          IC.pushOperand(IC_IMM, ~TmpInt); // Push ~Imm.
        } else {
          IC.pushOperand(IC_IMM, TmpInt);
        }
        break;
      }
      PrevState = CurrState;
      return false;
    }
    void onStar() {
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_REGISTER:
      case IES_RPAREN:
        State = IES_MULTIPLY;
        IC.pushOperator(IC_MULTIPLY);
        break;
      }
    }
    void onDivide() {
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_RPAREN:
        State = IES_DIVIDE;
        IC.pushOperator(IC_DIVIDE);
        break;
      }
    }
    void onLBrac() {
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_RBRAC:
        State = IES_PLUS;
        IC.pushOperator(IC_PLUS);
        break;
      }
    }
    void onRBrac() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_REGISTER:
      case IES_RPAREN:
        State = IES_RBRAC;
        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
          // If we already have a BaseReg, then assume this is the IndexReg with
          // a scale of 1.
          if (!BaseReg) {
            BaseReg = TmpReg;
          } else {
            assert (!IndexReg && "BaseReg/IndexReg already set!");
            IndexReg = TmpReg;
            Scale = 1;
          }
        }
        break;
      }
      PrevState = CurrState;
    }
    void onLParen() {
      IntelExprState CurrState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_PLUS:
      case IES_MINUS:
      case IES_NOT:
      case IES_OR:
      case IES_AND:
      case IES_LSHIFT:
      case IES_RSHIFT:
      case IES_MULTIPLY:
      case IES_DIVIDE:
      case IES_LPAREN:
        // FIXME: We don't handle this type of unary minus or not, yet.
        if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
            PrevState == IES_OR || PrevState == IES_AND ||
            PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
            PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
            PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
            PrevState == IES_NOT) &&
            (CurrState == IES_MINUS || CurrState == IES_NOT)) {
          State = IES_ERROR;
          break;
        }
        State = IES_LPAREN;
        IC.pushOperator(IC_LPAREN);
        break;
      }
      PrevState = CurrState;
    }
    void onRParen() {
      PrevState = State;
      switch (State) {
      default:
        State = IES_ERROR;
        break;
      case IES_INTEGER:
      case IES_REGISTER:
      case IES_RPAREN:
        State = IES_RPAREN;
        IC.pushOperator(IC_RPAREN);
        break;
      }
    }
  };

  MCAsmParser &getParser() const { return Parser; }

  MCAsmLexer &getLexer() const { return Parser.getLexer(); }

  bool Error(SMLoc L, const Twine &Msg,
             ArrayRef<SMRange> Ranges = None,
             bool MatchingInlineAsm = false) {
    if (MatchingInlineAsm) return true;
    return Parser.Error(L, Msg, Ranges);
  }

  bool ErrorAndEatStatement(SMLoc L, const Twine &Msg,
          ArrayRef<SMRange> Ranges = None,
          bool MatchingInlineAsm = false) {
      Parser.eatToEndOfStatement();
      return Error(L, Msg, Ranges, MatchingInlineAsm);
  }

  std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg) {
    Error(Loc, Msg);
    return nullptr;
  }

  std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
  std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
  std::unique_ptr<X86Operand> ParseOperand();
  std::unique_ptr<X86Operand> ParseATTOperand();
  std::unique_ptr<X86Operand> ParseIntelOperand();
  std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator();
  bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
  std::unique_ptr<X86Operand> ParseIntelOperator(unsigned OpKind);
  std::unique_ptr<X86Operand>
  ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size);
  std::unique_ptr<X86Operand>
  ParseIntelMemOperand(int64_t ImmDisp, SMLoc StartLoc, unsigned Size);
  bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
  std::unique_ptr<X86Operand> ParseIntelBracExpression(unsigned SegReg,
                                                       SMLoc Start,
                                                       int64_t ImmDisp,
                                                       unsigned Size);
  bool ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
                            InlineAsmIdentifierInfo &Info,
                            bool IsUnevaluatedOperand, SMLoc &End);

  std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg, SMLoc StartLoc);

  std::unique_ptr<X86Operand>
  CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
                        unsigned IndexReg, unsigned Scale, SMLoc Start,
                        SMLoc End, unsigned Size, StringRef Identifier,
                        InlineAsmIdentifierInfo &Info);

  bool ParseDirectiveWord(unsigned Size, SMLoc L);
  bool ParseDirectiveCode(StringRef IDVal, SMLoc L);

  bool processInstruction(MCInst &Inst, const OperandVector &Ops);

  /// Wrapper around MCStreamer::EmitInstruction(). Possibly adds
  /// instrumentation around Inst.
  void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);

  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                               OperandVector &Operands, MCStreamer &Out,
                               unsigned &ErrorInfo,
                               bool MatchingInlineAsm) override;

  /// doSrcDstMatch - Returns true if operands are matching in their
  /// word size (%si and %di, %esi and %edi, etc.). Order depends on
  /// the parsing mode (Intel vs. AT&T).
  bool doSrcDstMatch(X86Operand &Op1, X86Operand &Op2);

  /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
  /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
  /// \return \c true if no parsing errors occurred, \c false otherwise.
  bool HandleAVX512Operand(OperandVector &Operands,
                           const MCParsedAsmOperand &Op);

  bool is64BitMode() const {
    // FIXME: Can tablegen auto-generate this?
    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
  }
  bool is32BitMode() const {
    // FIXME: Can tablegen auto-generate this?
    return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
  }
  bool is16BitMode() const {
    // FIXME: Can tablegen auto-generate this?
    return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
  }
  void SwitchMode(uint64_t mode) {
    uint64_t oldMode = STI.getFeatureBits() &
        (X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit);
    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(oldMode | mode));
    setAvailableFeatures(FB);
    assert(mode == (STI.getFeatureBits() &
                    (X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit)));
  }

  bool isParsingIntelSyntax() {
    return getParser().getAssemblerDialect();
  }

  /// @name Auto-generated Matcher Functions
  /// {

#define GET_ASSEMBLER_HEADER
#include "X86GenAsmMatcher.inc"

  /// }

public:
  X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
               const MCInstrInfo &mii,
               const MCTargetOptions &Options)
      : MCTargetAsmParser(), STI(sti), Parser(parser), MII(mii),
        InstInfo(nullptr) {

    // Initialize the set of available features.
    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
    Instrumentation.reset(
        CreateX86AsmInstrumentation(Options, Parser.getContext(), STI));
  }

  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;

  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                        SMLoc NameLoc, OperandVector &Operands) override;

  bool ParseDirective(AsmToken DirectiveID) override;
};
} // end anonymous namespace

/// @name Auto-generated Match Functions
/// {

static unsigned MatchRegisterName(StringRef Name);

/// }

static bool CheckBaseRegAndIndexReg(unsigned BaseReg, unsigned IndexReg,
                                    StringRef &ErrMsg) {
  // If we have both a base register and an index register make sure they are
  // both 64-bit or 32-bit registers.
  // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
  if (BaseReg != 0 && IndexReg != 0) {
    if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
         X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
        IndexReg != X86::RIZ) {
      ErrMsg = "base register is 64-bit, but index register is not";
      return true;
    }
    if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
         X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
        IndexReg != X86::EIZ){
      ErrMsg = "base register is 32-bit, but index register is not";
      return true;
    }
    if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
      if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
          X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
        ErrMsg = "base register is 16-bit, but index register is not";
        return true;
      }
      if (((BaseReg == X86::BX || BaseReg == X86::BP) &&
           IndexReg != X86::SI && IndexReg != X86::DI) ||
          ((BaseReg == X86::SI || BaseReg == X86::DI) &&
           IndexReg != X86::BX && IndexReg != X86::BP)) {
        ErrMsg = "invalid 16-bit base/index register combination";
        return true;
      }
    }
  }
  return false;
}

bool X86AsmParser::doSrcDstMatch(X86Operand &Op1, X86Operand &Op2)
{
  // Return true and let a normal complaint about bogus operands happen.
  if (!Op1.isMem() || !Op2.isMem())
    return true;

  // Actually these might be the other way round if Intel syntax is
  // being used. It doesn't matter.
  unsigned diReg = Op1.Mem.BaseReg;
  unsigned siReg = Op2.Mem.BaseReg;

  if (X86MCRegisterClasses[X86::GR16RegClassID].contains(siReg))
    return X86MCRegisterClasses[X86::GR16RegClassID].contains(diReg);
  if (X86MCRegisterClasses[X86::GR32RegClassID].contains(siReg))
    return X86MCRegisterClasses[X86::GR32RegClassID].contains(diReg);
  if (X86MCRegisterClasses[X86::GR64RegClassID].contains(siReg))
    return X86MCRegisterClasses[X86::GR64RegClassID].contains(diReg);
  // Again, return true and let another error happen.
  return true;
}

bool X86AsmParser::ParseRegister(unsigned &RegNo,
                                 SMLoc &StartLoc, SMLoc &EndLoc) {
  RegNo = 0;
  const AsmToken &PercentTok = Parser.getTok();
  StartLoc = PercentTok.getLoc();

  // If we encounter a %, ignore it. This code handles registers with and
  // without the prefix, unprefixed registers can occur in cfi directives.
  if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
    Parser.Lex(); // Eat percent token.

  const AsmToken &Tok = Parser.getTok();
  EndLoc = Tok.getEndLoc();

  if (Tok.isNot(AsmToken::Identifier)) {
    if (isParsingIntelSyntax()) return true;
    return Error(StartLoc, "invalid register name",
                 SMRange(StartLoc, EndLoc));
  }

  RegNo = MatchRegisterName(Tok.getString());

  // If the match failed, try the register name as lowercase.
  if (RegNo == 0)
    RegNo = MatchRegisterName(Tok.getString().lower());

  if (!is64BitMode()) {
    // FIXME: This should be done using Requires<Not64BitMode> and
    // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
    // checked.
    // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
    // REX prefix.
    if (RegNo == X86::RIZ ||
        X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
        X86II::isX86_64NonExtLowByteReg(RegNo) ||
        X86II::isX86_64ExtendedReg(RegNo))
      return Error(StartLoc, "register %"
                   + Tok.getString() + " is only available in 64-bit mode",
                   SMRange(StartLoc, EndLoc));
  }

  // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
  if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
    RegNo = X86::ST0;
    Parser.Lex(); // Eat 'st'

    // Check to see if we have '(4)' after %st.
    if (getLexer().isNot(AsmToken::LParen))
      return false;
    // Lex the paren.
    getParser().Lex();

    const AsmToken &IntTok = Parser.getTok();
    if (IntTok.isNot(AsmToken::Integer))
      return Error(IntTok.getLoc(), "expected stack index");
    switch (IntTok.getIntVal()) {
    case 0: RegNo = X86::ST0; break;
    case 1: RegNo = X86::ST1; break;
    case 2: RegNo = X86::ST2; break;
    case 3: RegNo = X86::ST3; break;
    case 4: RegNo = X86::ST4; break;
    case 5: RegNo = X86::ST5; break;
    case 6: RegNo = X86::ST6; break;
    case 7: RegNo = X86::ST7; break;
    default: return Error(IntTok.getLoc(), "invalid stack index");
    }

    if (getParser().Lex().isNot(AsmToken::RParen))
      return Error(Parser.getTok().getLoc(), "expected ')'");

    EndLoc = Parser.getTok().getEndLoc();
    Parser.Lex(); // Eat ')'
    return false;
  }

  EndLoc = Parser.getTok().getEndLoc();

  // If this is "db[0-7]", match it as an alias
  // for dr[0-7].
  if (RegNo == 0 && Tok.getString().size() == 3 &&
      Tok.getString().startswith("db")) {
    switch (Tok.getString()[2]) {
    case '0': RegNo = X86::DR0; break;
    case '1': RegNo = X86::DR1; break;
    case '2': RegNo = X86::DR2; break;
    case '3': RegNo = X86::DR3; break;
    case '4': RegNo = X86::DR4; break;
    case '5': RegNo = X86::DR5; break;
    case '6': RegNo = X86::DR6; break;
    case '7': RegNo = X86::DR7; break;
    }

    if (RegNo != 0) {
      EndLoc = Parser.getTok().getEndLoc();
      Parser.Lex(); // Eat it.
      return false;
    }
  }

  if (RegNo == 0) {
    if (isParsingIntelSyntax()) return true;
    return Error(StartLoc, "invalid register name",
                 SMRange(StartLoc, EndLoc));
  }

  Parser.Lex(); // Eat identifier token.
  return false;
}

std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
  unsigned basereg =
    is64BitMode() ? X86::RSI : (is32BitMode() ? X86::ESI : X86::SI);
  const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
  return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/basereg,
                               /*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0);
}

std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
  unsigned basereg =
    is64BitMode() ? X86::RDI : (is32BitMode() ? X86::EDI : X86::DI);
  const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
  return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/basereg,
                               /*IndexReg=*/0, /*Scale=*/1, Loc, Loc, 0);
}

std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
  if (isParsingIntelSyntax())
    return ParseIntelOperand();
  return ParseATTOperand();
}

/// getIntelMemOperandSize - Return intel memory operand size.
static unsigned getIntelMemOperandSize(StringRef OpStr) {
  unsigned Size = StringSwitch<unsigned>(OpStr)
    .Cases("BYTE", "byte", 8)
    .Cases("WORD", "word", 16)
    .Cases("DWORD", "dword", 32)
    .Cases("QWORD", "qword", 64)
    .Cases("XWORD", "xword", 80)
    .Cases("XMMWORD", "xmmword", 128)
    .Cases("YMMWORD", "ymmword", 256)
    .Cases("ZMMWORD", "zmmword", 512)
    .Cases("OPAQUE", "opaque", -1U) // needs to be non-zero, but doesn't matter
    .Default(0);
  return Size;
}

std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
    unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
    unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
    InlineAsmIdentifierInfo &Info) {
  // If this is not a VarDecl then assume it is a FuncDecl or some other label
  // reference.  We need an 'r' constraint here, so we need to create register
  // operand to ensure proper matching.  Just pick a GPR based on the size of
  // a pointer.
  if (isa<MCSymbolRefExpr>(Disp) && !Info.IsVarDecl) {
    unsigned RegNo =
        is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
    return X86Operand::CreateReg(RegNo, Start, End, /*AddressOf=*/true,
                                 SMLoc(), Identifier, Info.OpDecl);
  }

  // We either have a direct symbol reference, or an offset from a symbol.  The
  // parser always puts the symbol on the LHS, so look there for size
  // calculation purposes.
  const MCBinaryExpr *BinOp = dyn_cast<MCBinaryExpr>(Disp);
  bool IsSymRef =
      isa<MCSymbolRefExpr>(BinOp ? BinOp->getLHS() : Disp);
  if (IsSymRef) {
    if (!Size) {
      Size = Info.Type * 8; // Size is in terms of bits in this context.
      if (Size)
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
                                                    /*Len=*/0, Size));
    }
  }

  // When parsing inline assembly we set the base register to a non-zero value
  // if we don't know the actual value at this time.  This is necessary to
  // get the matching correct in some cases.
  BaseReg = BaseReg ? BaseReg : 1;
  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
                               End, Size, Identifier, Info.OpDecl);
}

static void
RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
                           StringRef SymName, int64_t ImmDisp,
                           int64_t FinalImmDisp, SMLoc &BracLoc,
                           SMLoc &StartInBrac, SMLoc &End) {
  // Remove the '[' and ']' from the IR string.
  AsmRewrites->push_back(AsmRewrite(AOK_Skip, BracLoc, 1));
  AsmRewrites->push_back(AsmRewrite(AOK_Skip, End, 1));

  // If ImmDisp is non-zero, then we parsed a displacement before the
  // bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
  // If ImmDisp doesn't match the displacement computed by the state machine
  // then we have an additional displacement in the bracketed expression.
  if (ImmDisp != FinalImmDisp) {
    if (ImmDisp) {
      // We have an immediate displacement before the bracketed expression.
      // Adjust this to match the final immediate displacement.
      bool Found = false;
      for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
             E = AsmRewrites->end(); I != E; ++I) {
        if ((*I).Loc.getPointer() > BracLoc.getPointer())
          continue;
        if ((*I).Kind == AOK_ImmPrefix || (*I).Kind == AOK_Imm) {
          assert (!Found && "ImmDisp already rewritten.");
          (*I).Kind = AOK_Imm;
          (*I).Len = BracLoc.getPointer() - (*I).Loc.getPointer();
          (*I).Val = FinalImmDisp;
          Found = true;
          break;
        }
      }
      assert (Found && "Unable to rewrite ImmDisp.");
      (void)Found;
    } else {
      // We have a symbolic and an immediate displacement, but no displacement
      // before the bracketed expression.  Put the immediate displacement
      // before the bracketed expression.
      AsmRewrites->push_back(AsmRewrite(AOK_Imm, BracLoc, 0, FinalImmDisp));
    }
  }
  // Remove all the ImmPrefix rewrites within the brackets.
  for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
         E = AsmRewrites->end(); I != E; ++I) {
    if ((*I).Loc.getPointer() < StartInBrac.getPointer())
      continue;
    if ((*I).Kind == AOK_ImmPrefix)
      (*I).Kind = AOK_Delete;
  }
  const char *SymLocPtr = SymName.data();
  // Skip everything before the symbol.        
  if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
    assert(Len > 0 && "Expected a non-negative length.");
    AsmRewrites->push_back(AsmRewrite(AOK_Skip, StartInBrac, Len));
  }
  // Skip everything after the symbol.
  if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
    SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
    assert(Len > 0 && "Expected a non-negative length.");
    AsmRewrites->push_back(AsmRewrite(AOK_Skip, Loc, Len));
  }
}

bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
  const AsmToken &Tok = Parser.getTok();

  bool Done = false;
  while (!Done) {
    bool UpdateLocLex = true;

    // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
    // identifier.  Don't try an parse it as a register.
    if (Tok.getString().startswith("."))
      break;
    
    // If we're parsing an immediate expression, we don't expect a '['.
    if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
      break;

    AsmToken::TokenKind TK = getLexer().getKind();
    switch (TK) {
    default: {
      if (SM.isValidEndState()) {
        Done = true;
        break;
      }
      return Error(Tok.getLoc(), "unknown token in expression");
    }
    case AsmToken::EndOfStatement: {
      Done = true;
      break;
    }
    case AsmToken::String:
    case AsmToken::Identifier: {
      // This could be a register or a symbolic displacement.
      unsigned TmpReg;
      const MCExpr *Val;
      SMLoc IdentLoc = Tok.getLoc();
      StringRef Identifier = Tok.getString();
      if (TK != AsmToken::String && !ParseRegister(TmpReg, IdentLoc, End)) {
        SM.onRegister(TmpReg);
        UpdateLocLex = false;
        break;
      } else {
        if (!isParsingInlineAsm()) {
          if (getParser().parsePrimaryExpr(Val, End))
            return Error(Tok.getLoc(), "Unexpected identifier!");
        } else {
          // This is a dot operator, not an adjacent identifier.
          if (Identifier.find('.') != StringRef::npos) {
            return false;
          } else {
            InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
            if (ParseIntelIdentifier(Val, Identifier, Info,
                                     /*Unevaluated=*/false, End))
              return true;
          }
        }
        SM.onIdentifierExpr(Val, Identifier);
        UpdateLocLex = false;
        break;
      }
      return Error(Tok.getLoc(), "Unexpected identifier!");
    }
    case AsmToken::Integer: {
      StringRef ErrMsg;
      if (isParsingInlineAsm() && SM.getAddImmPrefix())
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix,
                                                    Tok.getLoc()));
      // Look for 'b' or 'f' following an Integer as a directional label
      SMLoc Loc = getTok().getLoc();
      int64_t IntVal = getTok().getIntVal();
      End = consumeToken();
      UpdateLocLex = false;
      if (getLexer().getKind() == AsmToken::Identifier) {
        StringRef IDVal = getTok().getString();
        if (IDVal == "f" || IDVal == "b") {
          MCSymbol *Sym =
              getContext().GetDirectionalLocalSymbol(IntVal, IDVal == "b");
          MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
          const MCExpr *Val = 
	    MCSymbolRefExpr::Create(Sym, Variant, getContext());
          if (IDVal == "b" && Sym->isUndefined())
            return Error(Loc, "invalid reference to undefined symbol");
          StringRef Identifier = Sym->getName();
          SM.onIdentifierExpr(Val, Identifier);
          End = consumeToken();
        } else {
          if (SM.onInteger(IntVal, ErrMsg))
            return Error(Loc, ErrMsg);
        }
      } else {
        if (SM.onInteger(IntVal, ErrMsg))
          return Error(Loc, ErrMsg);
      }
      break;
    }
    case AsmToken::Plus:    SM.onPlus(); break;
    case AsmToken::Minus:   SM.onMinus(); break;
    case AsmToken::Tilde:   SM.onNot(); break;
    case AsmToken::Star:    SM.onStar(); break;
    case AsmToken::Slash:   SM.onDivide(); break;
    case AsmToken::Pipe:    SM.onOr(); break;
    case AsmToken::Amp:     SM.onAnd(); break;
    case AsmToken::LessLess:
                            SM.onLShift(); break;
    case AsmToken::GreaterGreater:
                            SM.onRShift(); break;
    case AsmToken::LBrac:   SM.onLBrac(); break;
    case AsmToken::RBrac:   SM.onRBrac(); break;
    case AsmToken::LParen:  SM.onLParen(); break;
    case AsmToken::RParen:  SM.onRParen(); break;
    }
    if (SM.hadError())
      return Error(Tok.getLoc(), "unknown token in expression");

    if (!Done && UpdateLocLex)
      End = consumeToken();
  }
  return false;
}

std::unique_ptr<X86Operand>
X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
                                       int64_t ImmDisp, unsigned Size) {
  const AsmToken &Tok = Parser.getTok();
  SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
  if (getLexer().isNot(AsmToken::LBrac))
    return ErrorOperand(BracLoc, "Expected '[' token!");
  Parser.Lex(); // Eat '['

  SMLoc StartInBrac = Tok.getLoc();
  // Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ].  We
  // may have already parsed an immediate displacement before the bracketed
  // expression.
  IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
  if (ParseIntelExpression(SM, End))
    return nullptr;

  const MCExpr *Disp = nullptr;
  if (const MCExpr *Sym = SM.getSym()) {
    // A symbolic displacement.
    Disp = Sym;
    if (isParsingInlineAsm())
      RewriteIntelBracExpression(InstInfo->AsmRewrites, SM.getSymName(),
                                 ImmDisp, SM.getImm(), BracLoc, StartInBrac,
                                 End);
  }

  if (SM.getImm() || !Disp) {
    const MCExpr *Imm = MCConstantExpr::Create(SM.getImm(), getContext());
    if (Disp)
      Disp = MCBinaryExpr::CreateAdd(Disp, Imm, getContext());
    else
      Disp = Imm;  // An immediate displacement only.
  }

  // Parse struct field access.  Intel requires a dot, but MSVC doesn't.  MSVC
  // will in fact do global lookup the field name inside all global typedefs,
  // but we don't emulate that.
  if (Tok.getString().find('.') != StringRef::npos) {
    const MCExpr *NewDisp;
    if (ParseIntelDotOperator(Disp, NewDisp))
      return nullptr;
    
    End = Tok.getEndLoc();
    Parser.Lex();  // Eat the field.
    Disp = NewDisp;
  }

  int BaseReg = SM.getBaseReg();
  int IndexReg = SM.getIndexReg();
  int Scale = SM.getScale();
  if (!isParsingInlineAsm()) {
    // handle [-42]
    if (!BaseReg && !IndexReg) {
      if (!SegReg)
        return X86Operand::CreateMem(Disp, Start, End, Size);
      else
        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size);
    }
    StringRef ErrMsg;
    if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
      Error(StartInBrac, ErrMsg);
      return nullptr;
    }
    return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
                                 End, Size);
  }

  InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
  return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
                               End, Size, SM.getSymName(), Info);
}

// Inline assembly may use variable names with namespace alias qualifiers.
bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
                                        StringRef &Identifier,
                                        InlineAsmIdentifierInfo &Info,
                                        bool IsUnevaluatedOperand, SMLoc &End) {
  assert (isParsingInlineAsm() && "Expected to be parsing inline assembly.");
  Val = nullptr;

  StringRef LineBuf(Identifier.data());
  SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);

  const AsmToken &Tok = Parser.getTok();

  // Advance the token stream until the end of the current token is
  // after the end of what the frontend claimed.
  const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
  while (true) {
    End = Tok.getEndLoc();
    getLexer().Lex();

    assert(End.getPointer() <= EndPtr && "frontend claimed part of a token?");
    if (End.getPointer() == EndPtr) break;
  }

  // Create the symbol reference.
  Identifier = LineBuf;
  MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
  MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
  Val = MCSymbolRefExpr::Create(Sym, Variant, getParser().getContext());
  return false;
}

/// \brief Parse intel style segment override.
std::unique_ptr<X86Operand>
X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
                                        unsigned Size) {
  assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
  const AsmToken &Tok = Parser.getTok(); // Eat colon.
  if (Tok.isNot(AsmToken::Colon))
    return ErrorOperand(Tok.getLoc(), "Expected ':' token!");
  Parser.Lex(); // Eat ':'

  int64_t ImmDisp = 0;
  if (getLexer().is(AsmToken::Integer)) {
    ImmDisp = Tok.getIntVal();
    AsmToken ImmDispToken = Parser.Lex(); // Eat the integer.

    if (isParsingInlineAsm())
      InstInfo->AsmRewrites->push_back(
          AsmRewrite(AOK_ImmPrefix, ImmDispToken.getLoc()));

    if (getLexer().isNot(AsmToken::LBrac)) {
      // An immediate following a 'segment register', 'colon' token sequence can
      // be followed by a bracketed expression.  If it isn't we know we have our
      // final segment override.
      const MCExpr *Disp = MCConstantExpr::Create(ImmDisp, getContext());
      return X86Operand::CreateMem(SegReg, Disp, /*BaseReg=*/0, /*IndexReg=*/0,
                                   /*Scale=*/1, Start, ImmDispToken.getEndLoc(),
                                   Size);
    }
  }

  if (getLexer().is(AsmToken::LBrac))
    return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);

  const MCExpr *Val;
  SMLoc End;
  if (!isParsingInlineAsm()) {
    if (getParser().parsePrimaryExpr(Val, End))
      return ErrorOperand(Tok.getLoc(), "unknown token in expression");

    return X86Operand::CreateMem(Val, Start, End, Size);
  }

  InlineAsmIdentifierInfo Info;
  StringRef Identifier = Tok.getString();
  if (ParseIntelIdentifier(Val, Identifier, Info,
                           /*Unevaluated=*/false, End))
    return nullptr;
  return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
                               /*Scale=*/1, Start, End, Size, Identifier, Info);
}

/// ParseIntelMemOperand - Parse intel style memory operand.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp,
                                                               SMLoc Start,
                                                               unsigned Size) {
  const AsmToken &Tok = Parser.getTok();
  SMLoc End;

  // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
  if (getLexer().is(AsmToken::LBrac))
    return ParseIntelBracExpression(/*SegReg=*/0, Start, ImmDisp, Size);
  assert(ImmDisp == 0);

  const MCExpr *Val;
  if (!isParsingInlineAsm()) {
    if (getParser().parsePrimaryExpr(Val, End))
      return ErrorOperand(Tok.getLoc(), "unknown token in expression");

    return X86Operand::CreateMem(Val, Start, End, Size);
  }

  InlineAsmIdentifierInfo Info;
  StringRef Identifier = Tok.getString();
  if (ParseIntelIdentifier(Val, Identifier, Info,
                           /*Unevaluated=*/false, End))
    return nullptr;

  if (!getLexer().is(AsmToken::LBrac))
    return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0, /*IndexReg=*/0,
                                 /*Scale=*/1, Start, End, Size, Identifier, Info);

  Parser.Lex(); // Eat '['

  // Parse Identifier [ ImmDisp ]
  IntelExprStateMachine SM(/*ImmDisp=*/0, /*StopOnLBrac=*/true,
                           /*AddImmPrefix=*/false);
  if (ParseIntelExpression(SM, End))
    return nullptr;

  if (SM.getSym()) {
    Error(Start, "cannot use more than one symbol in memory operand");
    return nullptr;
  }
  if (SM.getBaseReg()) {
    Error(Start, "cannot use base register with variable reference");
    return nullptr;
  }
  if (SM.getIndexReg()) {
    Error(Start, "cannot use index register with variable reference");
    return nullptr;
  }

  const MCExpr *Disp = MCConstantExpr::Create(SM.getImm(), getContext());
  // BaseReg is non-zero to avoid assertions.  In the context of inline asm,
  // we're pointing to a local variable in memory, so the base register is
  // really the frame or stack pointer.
  return X86Operand::CreateMem(/*SegReg=*/0, Disp, /*BaseReg=*/1, /*IndexReg=*/0,
                               /*Scale=*/1, Start, End, Size, Identifier,
                               Info.OpDecl);
}

/// Parse the '.' operator.
bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
                                                const MCExpr *&NewDisp) {
  const AsmToken &Tok = Parser.getTok();
  int64_t OrigDispVal, DotDispVal;

  // FIXME: Handle non-constant expressions.
  if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
    OrigDispVal = OrigDisp->getValue();
  else
    return Error(Tok.getLoc(), "Non-constant offsets are not supported!");

  // Drop the optional '.'.
  StringRef DotDispStr = Tok.getString();
  if (DotDispStr.startswith("."))
    DotDispStr = DotDispStr.drop_front(1);

  // .Imm gets lexed as a real.
  if (Tok.is(AsmToken::Real)) {
    APInt DotDisp;
    DotDispStr.getAsInteger(10, DotDisp);
    DotDispVal = DotDisp.getZExtValue();
  } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
    unsigned DotDisp;
    std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
    if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
                                           DotDisp))
      return Error(Tok.getLoc(), "Unable to lookup field reference!");
    DotDispVal = DotDisp;
  } else
    return Error(Tok.getLoc(), "Unexpected token type!");

  if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
    SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
    unsigned Len = DotDispStr.size();
    unsigned Val = OrigDispVal + DotDispVal;
    InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len,
                                                Val));
  }

  NewDisp = MCConstantExpr::Create(OrigDispVal + DotDispVal, getContext());
  return false;
}

/// Parse the 'offset' operator.  This operator is used to specify the
/// location rather then the content of a variable.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() {
  const AsmToken &Tok = Parser.getTok();
  SMLoc OffsetOfLoc = Tok.getLoc();
  Parser.Lex(); // Eat offset.

  const MCExpr *Val;
  InlineAsmIdentifierInfo Info;
  SMLoc Start = Tok.getLoc(), End;
  StringRef Identifier = Tok.getString();
  if (ParseIntelIdentifier(Val, Identifier, Info,
                           /*Unevaluated=*/false, End))
    return nullptr;

  // Don't emit the offset operator.
  InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7));

  // The offset operator will have an 'r' constraint, thus we need to create
  // register operand to ensure proper matching.  Just pick a GPR based on
  // the size of a pointer.
  unsigned RegNo =
      is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
  return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
                               OffsetOfLoc, Identifier, Info.OpDecl);
}

enum IntelOperatorKind {
  IOK_LENGTH,
  IOK_SIZE,
  IOK_TYPE
};

/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators.  The LENGTH operator
/// returns the number of elements in an array.  It returns the value 1 for
/// non-array variables.  The SIZE operator returns the size of a C or C++
/// variable.  A variable's size is the product of its LENGTH and TYPE.  The
/// TYPE operator returns the size of a C or C++ type or variable. If the
/// variable is an array, TYPE returns the size of a single element.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperator(unsigned OpKind) {
  const AsmToken &Tok = Parser.getTok();
  SMLoc TypeLoc = Tok.getLoc();
  Parser.Lex(); // Eat operator.

  const MCExpr *Val = nullptr;
  InlineAsmIdentifierInfo Info;
  SMLoc Start = Tok.getLoc(), End;
  StringRef Identifier = Tok.getString();
  if (ParseIntelIdentifier(Val, Identifier, Info,
                           /*Unevaluated=*/true, End))
    return nullptr;

  if (!Info.OpDecl)
    return ErrorOperand(Start, "unable to lookup expression");

  unsigned CVal = 0;
  switch(OpKind) {
  default: llvm_unreachable("Unexpected operand kind!");
  case IOK_LENGTH: CVal = Info.Length; break;
  case IOK_SIZE: CVal = Info.Size; break;
  case IOK_TYPE: CVal = Info.Type; break;
  }

  // Rewrite the type operator and the C or C++ type or variable in terms of an
  // immediate.  E.g. TYPE foo -> $$4
  unsigned Len = End.getPointer() - TypeLoc.getPointer();
  InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal));

  const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext());
  return X86Operand::CreateImm(Imm, Start, End);
}

std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
  const AsmToken &Tok = Parser.getTok();
  SMLoc Start, End;

  // Offset, length, type and size operators.
  if (isParsingInlineAsm()) {
    StringRef AsmTokStr = Tok.getString();
    if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
      return ParseIntelOffsetOfOperator();
    if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
      return ParseIntelOperator(IOK_LENGTH);
    if (AsmTokStr == "size" || AsmTokStr == "SIZE")
      return ParseIntelOperator(IOK_SIZE);
    if (AsmTokStr == "type" || AsmTokStr == "TYPE")
      return ParseIntelOperator(IOK_TYPE);
  }

  unsigned Size = getIntelMemOperandSize(Tok.getString());
  if (Size) {
    Parser.Lex(); // Eat operand size (e.g., byte, word).
    if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
      return ErrorOperand(Start, "Expected 'PTR' or 'ptr' token!");
    Parser.Lex(); // Eat ptr.
  }
  Start = Tok.getLoc();

  // Immediate.
  if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) ||
      getLexer().is(AsmToken::Tilde) || getLexer().is(AsmToken::LParen)) {
    AsmToken StartTok = Tok;
    IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
                             /*AddImmPrefix=*/false);
    if (ParseIntelExpression(SM, End))
      return nullptr;

    int64_t Imm = SM.getImm();
    if (isParsingInlineAsm()) {
      unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
      if (StartTok.getString().size() == Len)
        // Just add a prefix if this wasn't a complex immediate expression.
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, Start));
      else
        // Otherwise, rewrite the complex expression as a single immediate.
        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, Start, Len, Imm));
    }

    if (getLexer().isNot(AsmToken::LBrac)) {
      // If a directional label (ie. 1f or 2b) was parsed above from
      // ParseIntelExpression() then SM.getSym() was set to a pointer to
      // to the MCExpr with the directional local symbol and this is a
      // memory operand not an immediate operand.
      if (SM.getSym())
        return X86Operand::CreateMem(SM.getSym(), Start, End, Size);

      const MCExpr *ImmExpr = MCConstantExpr::Create(Imm, getContext());
      return X86Operand::CreateImm(ImmExpr, Start, End);
    }

    // Only positive immediates are valid.
    if (Imm < 0)
      return ErrorOperand(Start, "expected a positive immediate displacement "
                          "before bracketed expr.");

    // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
    return ParseIntelMemOperand(Imm, Start, Size);
  }

  // Register.
  unsigned RegNo = 0;
  if (!ParseRegister(RegNo, Start, End)) {
    // If this is a segment register followed by a ':', then this is the start
    // of a segment override, otherwise this is a normal register reference.
    if (getLexer().isNot(AsmToken::Colon))
      return X86Operand::CreateReg(RegNo, Start, End);

    return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size);
  }

  // Memory operand.
  return ParseIntelMemOperand(/*Disp=*/0, Start, Size);
}

std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
  switch (getLexer().getKind()) {
  default:
    // Parse a memory operand with no segment register.
    return ParseMemOperand(0, Parser.getTok().getLoc());
  case AsmToken::Percent: {
    // Read the register.
    unsigned RegNo;
    SMLoc Start, End;
    if (ParseRegister(RegNo, Start, End)) return nullptr;
    if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
      Error(Start, "%eiz and %riz can only be used as index registers",
            SMRange(Start, End));
      return nullptr;
    }

    // If this is a segment register followed by a ':', then this is the start
    // of a memory reference, otherwise this is a normal register reference.
    if (getLexer().isNot(AsmToken::Colon))
      return X86Operand::CreateReg(RegNo, Start, End);

    getParser().Lex(); // Eat the colon.
    return ParseMemOperand(RegNo, Start);
  }
  case AsmToken::Dollar: {
    // $42 -> immediate.
    SMLoc Start = Parser.getTok().getLoc(), End;
    Parser.Lex();
    const MCExpr *Val;
    if (getParser().parseExpression(Val, End))
      return nullptr;
    return X86Operand::CreateImm(Val, Start, End);
  }
  }
}

bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
                                       const MCParsedAsmOperand &Op) {
  if(STI.getFeatureBits() & X86::FeatureAVX512) {
    if (getLexer().is(AsmToken::LCurly)) {
      // Eat "{" and mark the current place.
      const SMLoc consumedToken = consumeToken();
      // Distinguish {1to<NUM>} from {%k<NUM>}.
      if(getLexer().is(AsmToken::Integer)) {
        // Parse memory broadcasting ({1to<NUM>}).
        if (getLexer().getTok().getIntVal() != 1)
          return !ErrorAndEatStatement(getLexer().getLoc(),
                                       "Expected 1to<NUM> at this point");
        Parser.Lex();  // Eat "1" of 1to8
        if (!getLexer().is(AsmToken::Identifier) ||
            !getLexer().getTok().getIdentifier().startswith("to"))
          return !ErrorAndEatStatement(getLexer().getLoc(),
                                       "Expected 1to<NUM> at this point");
        // Recognize only reasonable suffixes.
        const char *BroadcastPrimitive =
          StringSwitch<const char*>(getLexer().getTok().getIdentifier())
            .Case("to8",  "{1to8}")
            .Case("to16", "{1to16}")
            .Default(nullptr);
        if (!BroadcastPrimitive)
          return !ErrorAndEatStatement(getLexer().getLoc(),
                                       "Invalid memory broadcast primitive.");
        Parser.Lex();  // Eat "toN" of 1toN
        if (!getLexer().is(AsmToken::RCurly))
          return !ErrorAndEatStatement(getLexer().getLoc(),
                                       "Expected } at this point");
        Parser.Lex();  // Eat "}"
        Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
                                                   consumedToken));
        // No AVX512 specific primitives can pass
        // after memory broadcasting, so return.
        return true;
      } else {
        // Parse mask register {%k1}
        Operands.push_back(X86Operand::CreateToken("{", consumedToken));
        if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
          Operands.push_back(std::move(Op));
          if (!getLexer().is(AsmToken::RCurly))
            return !ErrorAndEatStatement(getLexer().getLoc(),
                                         "Expected } at this point");
          Operands.push_back(X86Operand::CreateToken("}", consumeToken()));

          // Parse "zeroing non-masked" semantic {z}
          if (getLexer().is(AsmToken::LCurly)) {
            Operands.push_back(X86Operand::CreateToken("{z}", consumeToken()));
            if (!getLexer().is(AsmToken::Identifier) ||
                getLexer().getTok().getIdentifier() != "z")
              return !ErrorAndEatStatement(getLexer().getLoc(),
                                           "Expected z at this point");
            Parser.Lex();  // Eat the z
            if (!getLexer().is(AsmToken::RCurly))
              return !ErrorAndEatStatement(getLexer().getLoc(),
                                           "Expected } at this point");
            Parser.Lex();  // Eat the }
          }
        }
      }
    }
  }
  return true;
}

/// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
/// has already been parsed if present.
std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
                                                          SMLoc MemStart) {

  // We have to disambiguate a parenthesized expression "(4+5)" from the start
  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
  // only way to do this without lookahead is to eat the '(' and see what is
  // after it.
  const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
  if (getLexer().isNot(AsmToken::LParen)) {
    SMLoc ExprEnd;
    if (getParser().parseExpression(Disp, ExprEnd)) return nullptr;

    // After parsing the base expression we could either have a parenthesized
    // memory address or not.  If not, return now.  If so, eat the (.
    if (getLexer().isNot(AsmToken::LParen)) {
      // Unless we have a segment register, treat this as an immediate.
      if (SegReg == 0)
        return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
      return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
    }

    // Eat the '('.
    Parser.Lex();
  } else {
    // Okay, we have a '('.  We don't know if this is an expression or not, but
    // so we have to eat the ( to see beyond it.
    SMLoc LParenLoc = Parser.getTok().getLoc();
    Parser.Lex(); // Eat the '('.

    if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
      // Nothing to do here, fall into the code below with the '(' part of the
      // memory operand consumed.
    } else {
      SMLoc ExprEnd;

      // It must be an parenthesized expression, parse it now.
      if (getParser().parseParenExpression(Disp, ExprEnd))
        return nullptr;

      // After parsing the base expression we could either have a parenthesized
      // memory address or not.  If not, return now.  If so, eat the (.
      if (getLexer().isNot(AsmToken::LParen)) {
        // Unless we have a segment register, treat this as an immediate.
        if (SegReg == 0)
          return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
      }

      // Eat the '('.
      Parser.Lex();
    }
  }

  // If we reached here, then we just ate the ( of the memory operand.  Process
  // the rest of the memory operand.
  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
  SMLoc IndexLoc, BaseLoc;

  if (getLexer().is(AsmToken::Percent)) {
    SMLoc StartLoc, EndLoc;
    BaseLoc = Parser.getTok().getLoc();
    if (ParseRegister(BaseReg, StartLoc, EndLoc)) return nullptr;
    if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
      Error(StartLoc, "eiz and riz can only be used as index registers",
            SMRange(StartLoc, EndLoc));
      return nullptr;
    }
  }

  if (getLexer().is(AsmToken::Comma)) {
    Parser.Lex(); // Eat the comma.
    IndexLoc = Parser.getTok().getLoc();

    // Following the comma we should have either an index register, or a scale
    // value. We don't support the later form, but we want to parse it
    // correctly.
    //
    // Not that even though it would be completely consistent to support syntax
    // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
    if (getLexer().is(AsmToken::Percent)) {
      SMLoc L;
      if (ParseRegister(IndexReg, L, L)) return nullptr;

      if (getLexer().isNot(AsmToken::RParen)) {
        // Parse the scale amount:
        //  ::= ',' [scale-expression]
        if (getLexer().isNot(AsmToken::Comma)) {
          Error(Parser.getTok().getLoc(),
                "expected comma in scale expression");
          return nullptr;
        }
        Parser.Lex(); // Eat the comma.

        if (getLexer().isNot(AsmToken::RParen)) {
          SMLoc Loc = Parser.getTok().getLoc();

          int64_t ScaleVal;
          if (getParser().parseAbsoluteExpression(ScaleVal)){
            Error(Loc, "expected scale expression");
            return nullptr;
          }

          // Validate the scale amount.
	  if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
              ScaleVal != 1) {
            Error(Loc, "scale factor in 16-bit address must be 1");
            return nullptr;
	  }
          if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
            Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
            return nullptr;
          }
          Scale = (unsigned)ScaleVal;
        }
      }
    } else if (getLexer().isNot(AsmToken::RParen)) {
      // A scale amount without an index is ignored.
      // index.
      SMLoc Loc = Parser.getTok().getLoc();

      int64_t Value;
      if (getParser().parseAbsoluteExpression(Value))
        return nullptr;

      if (Value != 1)
        Warning(Loc, "scale factor without index register is ignored");
      Scale = 1;
    }
  }

  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
  if (getLexer().isNot(AsmToken::RParen)) {
    Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
    return nullptr;
  }
  SMLoc MemEnd = Parser.getTok().getEndLoc();
  Parser.Lex(); // Eat the ')'.

  // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
  // and then only in non-64-bit modes. Except for DX, which is a special case
  // because an unofficial form of in/out instructions uses it.
  if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
      (is64BitMode() || (BaseReg != X86::BX && BaseReg != X86::BP &&
                         BaseReg != X86::SI && BaseReg != X86::DI)) &&
      BaseReg != X86::DX) {
    Error(BaseLoc, "invalid 16-bit base register");
    return nullptr;
  }
  if (BaseReg == 0 &&
      X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
    Error(IndexLoc, "16-bit memory operand may not include only index register");
    return nullptr;
  }

  StringRef ErrMsg;
  if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
    Error(BaseLoc, ErrMsg);
    return nullptr;
  }

  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
                               MemStart, MemEnd);
}

bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                                    SMLoc NameLoc, OperandVector &Operands) {
  InstInfo = &Info;
  StringRef PatchedName = Name;

  // FIXME: Hack to recognize setneb as setne.
  if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
      PatchedName != "setb" && PatchedName != "setnb")
    PatchedName = PatchedName.substr(0, Name.size()-1);

  // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
  const MCExpr *ExtraImmOp = nullptr;
  if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
      (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
       PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
    bool IsVCMP = PatchedName[0] == 'v';
    unsigned SSECCIdx = IsVCMP ? 4 : 3;
    unsigned SSEComparisonCode = StringSwitch<unsigned>(
      PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
      .Case("eq",       0x00)
      .Case("lt",       0x01)
      .Case("le",       0x02)
      .Case("unord",    0x03)
      .Case("neq",      0x04)
      .Case("nlt",      0x05)
      .Case("nle",      0x06)
      .Case("ord",      0x07)
      /* AVX only from here */
      .Case("eq_uq",    0x08)
      .Case("nge",      0x09)
      .Case("ngt",      0x0A)
      .Case("false",    0x0B)
      .Case("neq_oq",   0x0C)
      .Case("ge",       0x0D)
      .Case("gt",       0x0E)
      .Case("true",     0x0F)
      .Case("eq_os",    0x10)
      .Case("lt_oq",    0x11)
      .Case("le_oq",    0x12)
      .Case("unord_s",  0x13)
      .Case("neq_us",   0x14)
      .Case("nlt_uq",   0x15)
      .Case("nle_uq",   0x16)
      .Case("ord_s",    0x17)
      .Case("eq_us",    0x18)
      .Case("nge_uq",   0x19)
      .Case("ngt_uq",   0x1A)
      .Case("false_os", 0x1B)
      .Case("neq_os",   0x1C)
      .Case("ge_oq",    0x1D)
      .Case("gt_oq",    0x1E)
      .Case("true_us",  0x1F)
      .Default(~0U);
    if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) {
      ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
                                          getParser().getContext());
      if (PatchedName.endswith("ss")) {
        PatchedName = IsVCMP ? "vcmpss" : "cmpss";
      } else if (PatchedName.endswith("sd")) {
        PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
      } else if (PatchedName.endswith("ps")) {
        PatchedName = IsVCMP ? "vcmpps" : "cmpps";
      } else {
        assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
        PatchedName = IsVCMP ? "vcmppd" : "cmppd";
      }
    }
  }

  Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));

  if (ExtraImmOp && !isParsingIntelSyntax())
    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));

  // Determine whether this is an instruction prefix.
  bool isPrefix =
    Name == "lock" || Name == "rep" ||
    Name == "repe" || Name == "repz" ||
    Name == "repne" || Name == "repnz" ||
    Name == "rex64" || Name == "data16";


  // This does the actual operand parsing.  Don't parse any more if we have a
  // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
  // just want to parse the "lock" as the first instruction and the "incl" as
  // the next one.
  if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {

    // Parse '*' modifier.
    if (getLexer().is(AsmToken::Star))
      Operands.push_back(X86Operand::CreateToken("*", consumeToken()));

    // Read the operands.
    while(1) {
      if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
        Operands.push_back(std::move(Op));
        if (!HandleAVX512Operand(Operands, *Operands.back()))
          return true;
      } else {
         Parser.eatToEndOfStatement();
         return true;
      }
      // check for comma and eat it
      if (getLexer().is(AsmToken::Comma))
        Parser.Lex();
      else
        break;
     }

    if (getLexer().isNot(AsmToken::EndOfStatement))
      return ErrorAndEatStatement(getLexer().getLoc(),
                                  "unexpected token in argument list");
   }

  // Consume the EndOfStatement or the prefix separator Slash
  if (getLexer().is(AsmToken::EndOfStatement) ||
      (isPrefix && getLexer().is(AsmToken::Slash)))
    Parser.Lex();

  if (ExtraImmOp && isParsingIntelSyntax())
    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));

  // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
  // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
  // documented form in various unofficial manuals, so a lot of code uses it.
  if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
      Operands.size() == 3) {
    X86Operand &Op = (X86Operand &)*Operands.back();
    if (Op.isMem() && Op.Mem.SegReg == 0 &&
        isa<MCConstantExpr>(Op.Mem.Disp) &&
        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
      SMLoc Loc = Op.getEndLoc();
      Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
    }
  }
  // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
  if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
      Operands.size() == 3) {
    X86Operand &Op = (X86Operand &)*Operands[1];
    if (Op.isMem() && Op.Mem.SegReg == 0 &&
        isa<MCConstantExpr>(Op.Mem.Disp) &&
        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
      SMLoc Loc = Op.getEndLoc();
      Operands[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
    }
  }

  // Append default arguments to "ins[bwld]"
  if (Name.startswith("ins") && Operands.size() == 1 &&
      (Name == "insb" || Name == "insw" || Name == "insl" ||
       Name == "insd" )) {
    if (isParsingIntelSyntax()) {
      Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
      Operands.push_back(DefaultMemDIOperand(NameLoc));
    } else {
      Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
      Operands.push_back(DefaultMemDIOperand(NameLoc));
    }
  }

  // Append default arguments to "outs[bwld]"
  if (Name.startswith("outs") && Operands.size() == 1 &&
      (Name == "outsb" || Name == "outsw" || Name == "outsl" ||
       Name == "outsd" )) {
    if (isParsingIntelSyntax()) {
      Operands.push_back(DefaultMemSIOperand(NameLoc));
      Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
    } else {
      Operands.push_back(DefaultMemSIOperand(NameLoc));
      Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
    }
  }

  // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
  // values of $SIREG according to the mode. It would be nice if this
  // could be achieved with InstAlias in the tables.
  if (Name.startswith("lods") && Operands.size() == 1 &&
      (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
       Name == "lodsl" || Name == "lodsd" || Name == "lodsq"))
    Operands.push_back(DefaultMemSIOperand(NameLoc));

  // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
  // values of $DIREG according to the mode. It would be nice if this
  // could be achieved with InstAlias in the tables.
  if (Name.startswith("stos") && Operands.size() == 1 &&
      (Name == "stos" || Name == "stosb" || Name == "stosw" ||
       Name == "stosl" || Name == "stosd" || Name == "stosq"))
    Operands.push_back(DefaultMemDIOperand(NameLoc));

  // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
  // values of $DIREG according to the mode. It would be nice if this
  // could be achieved with InstAlias in the tables.
  if (Name.startswith("scas") && Operands.size() == 1 &&
      (Name == "scas" || Name == "scasb" || Name == "scasw" ||
       Name == "scasl" || Name == "scasd" || Name == "scasq"))
    Operands.push_back(DefaultMemDIOperand(NameLoc));

  // Add default SI and DI operands to "cmps[bwlq]".
  if (Name.startswith("cmps") &&
      (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
       Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
    if (Operands.size() == 1) {
      if (isParsingIntelSyntax()) {
        Operands.push_back(DefaultMemSIOperand(NameLoc));
        Operands.push_back(DefaultMemDIOperand(NameLoc));
      } else {
        Operands.push_back(DefaultMemDIOperand(NameLoc));
        Operands.push_back(DefaultMemSIOperand(NameLoc));
      }
    } else if (Operands.size() == 3) {
      X86Operand &Op = (X86Operand &)*Operands[1];
      X86Operand &Op2 = (X86Operand &)*Operands[2];
      if (!doSrcDstMatch(Op, Op2))
        return Error(Op.getStartLoc(),
                     "mismatching source and destination index registers");
    }
  }

  // Add default SI and DI operands to "movs[bwlq]".
  if ((Name.startswith("movs") &&
      (Name == "movs" || Name == "movsb" || Name == "movsw" ||
       Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
      (Name.startswith("smov") &&
      (Name == "smov" || Name == "smovb" || Name == "smovw" ||
       Name == "smovl" || Name == "smovd" || Name == "smovq"))) {
    if (Operands.size() == 1) {
      if (Name == "movsd")
        Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
      if (isParsingIntelSyntax()) {
        Operands.push_back(DefaultMemDIOperand(NameLoc));
        Operands.push_back(DefaultMemSIOperand(NameLoc));
      } else {
        Operands.push_back(DefaultMemSIOperand(NameLoc));
        Operands.push_back(DefaultMemDIOperand(NameLoc));
      }
    } else if (Operands.size() == 3) {
      X86Operand &Op = (X86Operand &)*Operands[1];
      X86Operand &Op2 = (X86Operand &)*Operands[2];
      if (!doSrcDstMatch(Op, Op2))
        return Error(Op.getStartLoc(),
                     "mismatching source and destination index registers");
    }
  }

  // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
  // "shift <op>".
  if ((Name.startswith("shr") || Name.startswith("sar") ||
       Name.startswith("shl") || Name.startswith("sal") ||
       Name.startswith("rcl") || Name.startswith("rcr") ||
       Name.startswith("rol") || Name.startswith("ror")) &&
      Operands.size() == 3) {
    if (isParsingIntelSyntax()) {
      // Intel syntax
      X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
      if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
          cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
        Operands.pop_back();
    } else {
      X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
      if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
          cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
        Operands.erase(Operands.begin() + 1);
    }
  }

  // Transforms "int $3" into "int3" as a size optimization.  We can't write an
  // instalias with an immediate operand yet.
  if (Name == "int" && Operands.size() == 2) {
    X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
    if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
        cast<MCConstantExpr>(Op1.getImm())->getValue() == 3) {
      Operands.erase(Operands.begin() + 1);
      static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
    }
  }

  return false;
}

static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg,
                            bool isCmp) {
  MCInst TmpInst;
  TmpInst.setOpcode(Opcode);
  if (!isCmp)
    TmpInst.addOperand(MCOperand::CreateReg(Reg));
  TmpInst.addOperand(MCOperand::CreateReg(Reg));
  TmpInst.addOperand(Inst.getOperand(0));
  Inst = TmpInst;
  return true;
}

static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode,
                                bool isCmp = false) {
  if (!Inst.getOperand(0).isImm() ||
      !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
    return false;

  return convertToSExti8(Inst, Opcode, X86::AX, isCmp);
}

static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode,
                                bool isCmp = false) {
  if (!Inst.getOperand(0).isImm() ||
      !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
    return false;

  return convertToSExti8(Inst, Opcode, X86::EAX, isCmp);
}

static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
                                bool isCmp = false) {
  if (!Inst.getOperand(0).isImm() ||
      !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
    return false;

  return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
}

bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
  switch (Inst.getOpcode()) {
  default: return false;
  case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8);
  case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8);
  case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8);
  case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8);
  case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8);
  case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8);
  case X86::OR16i16:  return convert16i16to16ri8(Inst, X86::OR16ri8);
  case X86::OR32i32:  return convert32i32to32ri8(Inst, X86::OR32ri8);
  case X86::OR64i32:  return convert64i32to64ri8(Inst, X86::OR64ri8);
  case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true);
  case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true);
  case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true);
  case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8);
  case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8);
  case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8);
  case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8);
  case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8);
  case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8);
  case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8);
  case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8);
  case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8);
  case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8);
  case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8);
  case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8);
  case X86::VMOVAPDrr:
  case X86::VMOVAPDYrr:
  case X86::VMOVAPSrr:
  case X86::VMOVAPSYrr:
  case X86::VMOVDQArr:
  case X86::VMOVDQAYrr:
  case X86::VMOVDQUrr:
  case X86::VMOVDQUYrr:
  case X86::VMOVUPDrr:
  case X86::VMOVUPDYrr:
  case X86::VMOVUPSrr:
  case X86::VMOVUPSYrr: {
    if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
        !X86II::isX86_64ExtendedReg(Inst.getOperand(1).getReg()))
      return false;

    unsigned NewOpc;
    switch (Inst.getOpcode()) {
    default: llvm_unreachable("Invalid opcode");
    case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
    case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
    case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
    case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
    case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
    case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
    case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
    case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
    case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
    case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
    case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
    case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
    }
    Inst.setOpcode(NewOpc);
    return true;
  }
  case X86::VMOVSDrr:
  case X86::VMOVSSrr: {
    if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
        !X86II::isX86_64ExtendedReg(Inst.getOperand(2).getReg()))
      return false;
    unsigned NewOpc;
    switch (Inst.getOpcode()) {
    default: llvm_unreachable("Invalid opcode");
    case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV;   break;
    case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV;   break;
    }
    Inst.setOpcode(NewOpc);
    return true;
  }
  }
}

static const char *getSubtargetFeatureName(unsigned Val);

void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands,
                                   MCStreamer &Out) {
  Instrumentation->InstrumentInstruction(Inst, Operands, getContext(), MII,
                                         Out);
  Out.EmitInstruction(Inst, STI);
}

bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                                           OperandVector &Operands,
                                           MCStreamer &Out, unsigned &ErrorInfo,
                                           bool MatchingInlineAsm) {
  assert(!Operands.empty() && "Unexpect empty operand list!");
  X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
  assert(Op.isToken() && "Leading operand should always be a mnemonic!");
  ArrayRef<SMRange> EmptyRanges = None;

  // First, handle aliases that expand to multiple instructions.
  // FIXME: This should be replaced with a real .td file alias mechanism.
  // Also, MatchInstructionImpl should actually *do* the EmitInstruction
  // call.
  if (Op.getToken() == "fstsw" || Op.getToken() == "fstcw" ||
      Op.getToken() == "fstsww" || Op.getToken() == "fstcww" ||
      Op.getToken() == "finit" || Op.getToken() == "fsave" ||
      Op.getToken() == "fstenv" || Op.getToken() == "fclex") {
    MCInst Inst;
    Inst.setOpcode(X86::WAIT);
    Inst.setLoc(IDLoc);
    if (!MatchingInlineAsm)
      EmitInstruction(Inst, Operands, Out);

    const char *Repl = StringSwitch<const char *>(Op.getToken())
                           .Case("finit", "fninit")
                           .Case("fsave", "fnsave")
                           .Case("fstcw", "fnstcw")
                           .Case("fstcww", "fnstcw")
                           .Case("fstenv", "fnstenv")
                           .Case("fstsw", "fnstsw")
                           .Case("fstsww", "fnstsw")
                           .Case("fclex", "fnclex")
                           .Default(nullptr);
    assert(Repl && "Unknown wait-prefixed instruction");
    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
  }

  bool WasOriginallyInvalidOperand = false;
  MCInst Inst;

  // First, try a direct match.
  switch (MatchInstructionImpl(Operands, Inst,
                               ErrorInfo, MatchingInlineAsm,
                               isParsingIntelSyntax())) {
  default: break;
  case Match_Success:
    // Some instructions need post-processing to, for example, tweak which
    // encoding is selected. Loop on it while changes happen so the
    // individual transformations can chain off each other.
    if (!MatchingInlineAsm)
      while (processInstruction(Inst, Operands))
        ;

    Inst.setLoc(IDLoc);
    if (!MatchingInlineAsm)
      EmitInstruction(Inst, Operands, Out);
    Opcode = Inst.getOpcode();
    return false;
  case Match_MissingFeature: {
    assert(ErrorInfo && "Unknown missing feature!");
    // Special case the error message for the very common case where only
    // a single subtarget feature is missing.
    std::string Msg = "instruction requires:";
    unsigned Mask = 1;
    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
      if (ErrorInfo & Mask) {
        Msg += " ";
        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
      }
      Mask <<= 1;
    }
    return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
  }
  case Match_InvalidOperand:
    WasOriginallyInvalidOperand = true;
    break;
  case Match_MnemonicFail:
    break;
  }

  // FIXME: Ideally, we would only attempt suffix matches for things which are
  // valid prefixes, and we could just infer the right unambiguous
  // type. However, that requires substantially more matcher support than the
  // following hack.

  // Change the operand to point to a temporary token.
  StringRef Base = Op.getToken();
  SmallString<16> Tmp;
  Tmp += Base;
  Tmp += ' ';
  Op.setTokenValue(Tmp.str());

  // If this instruction starts with an 'f', then it is a floating point stack
  // instruction.  These come in up to three forms for 32-bit, 64-bit, and
  // 80-bit floating point, which use the suffixes s,l,t respectively.
  //
  // Otherwise, we assume that this may be an integer instruction, which comes
  // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
  const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";

  // Check for the various suffix matches.
  Tmp[Base.size()] = Suffixes[0];
  unsigned ErrorInfoIgnore;
  unsigned ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
  unsigned Match1, Match2, Match3, Match4;

  Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
                                MatchingInlineAsm, isParsingIntelSyntax());
  // If this returned as a missing feature failure, remember that.
  if (Match1 == Match_MissingFeature)
    ErrorInfoMissingFeature = ErrorInfoIgnore;
  Tmp[Base.size()] = Suffixes[1];
  Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
                                MatchingInlineAsm, isParsingIntelSyntax());
  // If this returned as a missing feature failure, remember that.
  if (Match2 == Match_MissingFeature)
    ErrorInfoMissingFeature = ErrorInfoIgnore;
  Tmp[Base.size()] = Suffixes[2];
  Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
                                MatchingInlineAsm, isParsingIntelSyntax());
  // If this returned as a missing feature failure, remember that.
  if (Match3 == Match_MissingFeature)
    ErrorInfoMissingFeature = ErrorInfoIgnore;
  Tmp[Base.size()] = Suffixes[3];
  Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
                                MatchingInlineAsm, isParsingIntelSyntax());
  // If this returned as a missing feature failure, remember that.
  if (Match4 == Match_MissingFeature)
    ErrorInfoMissingFeature = ErrorInfoIgnore;

  // Restore the old token.
  Op.setTokenValue(Base);

  // If exactly one matched, then we treat that as a successful match (and the
  // instruction will already have been filled in correctly, since the failing
  // matches won't have modified it).
  unsigned NumSuccessfulMatches =
    (Match1 == Match_Success) + (Match2 == Match_Success) +
    (Match3 == Match_Success) + (Match4 == Match_Success);
  if (NumSuccessfulMatches == 1) {
    Inst.setLoc(IDLoc);
    if (!MatchingInlineAsm)
      EmitInstruction(Inst, Operands, Out);
    Opcode = Inst.getOpcode();
    return false;
  }

  // Otherwise, the match failed, try to produce a decent error message.

  // If we had multiple suffix matches, then identify this as an ambiguous
  // match.
  if (NumSuccessfulMatches > 1) {
    char MatchChars[4];
    unsigned NumMatches = 0;
    if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
    if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
    if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
    if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];

    SmallString<126> Msg;
    raw_svector_ostream OS(Msg);
    OS << "ambiguous instructions require an explicit suffix (could be ";
    for (unsigned i = 0; i != NumMatches; ++i) {
      if (i != 0)
        OS << ", ";
      if (i + 1 == NumMatches)
        OS << "or ";
      OS << "'" << Base << MatchChars[i] << "'";
    }
    OS << ")";
    Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
    return true;
  }

  // Okay, we know that none of the variants matched successfully.

  // If all of the instructions reported an invalid mnemonic, then the original
  // mnemonic was invalid.
  if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
      (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
    if (!WasOriginallyInvalidOperand) {
      ArrayRef<SMRange> Ranges =
          MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
      return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
                   Ranges, MatchingInlineAsm);
    }

    // Recover location info for the operand if we know which was the problem.
    if (ErrorInfo != ~0U) {
      if (ErrorInfo >= Operands.size())
        return Error(IDLoc, "too few operands for instruction",
                     EmptyRanges, MatchingInlineAsm);

      X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
      if (Operand.getStartLoc().isValid()) {
        SMRange OperandRange = Operand.getLocRange();
        return Error(Operand.getStartLoc(), "invalid operand for instruction",
                     OperandRange, MatchingInlineAsm);
      }
    }

    return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
                 MatchingInlineAsm);
  }

  // If one instruction matched with a missing feature, report this as a
  // missing feature.
  if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
      (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
    std::string Msg = "instruction requires:";
    unsigned Mask = 1;
    for (unsigned i = 0; i < (sizeof(ErrorInfoMissingFeature)*8-1); ++i) {
      if (ErrorInfoMissingFeature & Mask) {
        Msg += " ";
        Msg += getSubtargetFeatureName(ErrorInfoMissingFeature & Mask);
      }
      Mask <<= 1;
    }
    return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
  }

  // If one instruction matched with an invalid operand, report this as an
  // operand failure.
  if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
      (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
    Error(IDLoc, "invalid operand for instruction", EmptyRanges,
          MatchingInlineAsm);
    return true;
  }

  // If all of these were an outright failure, report it in a useless way.
  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
        EmptyRanges, MatchingInlineAsm);
  return true;
}


bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
  StringRef IDVal = DirectiveID.getIdentifier();
  if (IDVal == ".word")
    return ParseDirectiveWord(2, DirectiveID.getLoc());
  else if (IDVal.startswith(".code"))
    return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
  else if (IDVal.startswith(".att_syntax")) {
    getParser().setAssemblerDialect(0);
    return false;
  } else if (IDVal.startswith(".intel_syntax")) {
    getParser().setAssemblerDialect(1);
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
      // FIXME: Handle noprefix
      if (Parser.getTok().getString() == "noprefix")
        Parser.Lex();
    }
    return false;
  }
  return true;
}

/// ParseDirectiveWord
///  ::= .word [ expression (, expression)* ]
bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
  if (getLexer().isNot(AsmToken::EndOfStatement)) {
    for (;;) {
      const MCExpr *Value;
      if (getParser().parseExpression(Value))
        return false;

      getParser().getStreamer().EmitValue(Value, Size);

      if (getLexer().is(AsmToken::EndOfStatement))
        break;

      // FIXME: Improve diagnostic.
      if (getLexer().isNot(AsmToken::Comma)) {
        Error(L, "unexpected token in directive");
        return false;
      }
      Parser.Lex();
    }
  }

  Parser.Lex();
  return false;
}

/// ParseDirectiveCode
///  ::= .code16 | .code32 | .code64
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
  if (IDVal == ".code16") {
    Parser.Lex();
    if (!is16BitMode()) {
      SwitchMode(X86::Mode16Bit);
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
    }
  } else if (IDVal == ".code32") {
    Parser.Lex();
    if (!is32BitMode()) {
      SwitchMode(X86::Mode32Bit);
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
    }
  } else if (IDVal == ".code64") {
    Parser.Lex();
    if (!is64BitMode()) {
      SwitchMode(X86::Mode64Bit);
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
    }
  } else {
    Error(L, "unknown directive " + IDVal);
    return false;
  }

  return false;
}

// Force static initialization.
extern "C" void LLVMInitializeX86AsmParser() {
  RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
  RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
}

#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#define GET_SUBTARGET_FEATURE_NAME
#include "X86GenAsmMatcher.inc"