1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
|
//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
// MCInsts.
// Documentation for the disassembler can be found in X86Disassembler.h.
//
//===----------------------------------------------------------------------===//
#include "X86Disassembler.h"
#include "X86DisassemblerDecoder.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::X86Disassembler;
#define DEBUG_TYPE "x86-disassembler"
#define GET_REGINFO_ENUM
#include "X86GenRegisterInfo.inc"
#define GET_INSTRINFO_ENUM
#include "X86GenInstrInfo.inc"
#define GET_SUBTARGETINFO_ENUM
#include "X86GenSubtargetInfo.inc"
void llvm::X86Disassembler::Debug(const char *file, unsigned line,
const char *s) {
dbgs() << file << ":" << line << ": " << s;
}
const char *llvm::X86Disassembler::GetInstrName(unsigned Opcode,
const void *mii) {
const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
return MII->getName(Opcode);
}
#define debug(s) DEBUG(Debug(__FILE__, __LINE__, s));
namespace llvm {
// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
namespace X86 {
enum {
BX_SI = 500,
BX_DI = 501,
BP_SI = 502,
BP_DI = 503,
sib = 504,
sib64 = 505
};
}
extern Target TheX86_32Target, TheX86_64Target;
}
static bool translateInstruction(MCInst &target,
InternalInstruction &source,
const MCDisassembler *Dis);
X86GenericDisassembler::X86GenericDisassembler(
const MCSubtargetInfo &STI,
MCContext &Ctx,
std::unique_ptr<const MCInstrInfo> MII)
: MCDisassembler(STI, Ctx), MII(std::move(MII)) {
switch (STI.getFeatureBits() &
(X86::Mode16Bit | X86::Mode32Bit | X86::Mode64Bit)) {
case X86::Mode16Bit:
fMode = MODE_16BIT;
break;
case X86::Mode32Bit:
fMode = MODE_32BIT;
break;
case X86::Mode64Bit:
fMode = MODE_64BIT;
break;
default:
llvm_unreachable("Invalid CPU mode");
}
}
struct Region {
ArrayRef<uint8_t> Bytes;
uint64_t Base;
Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
};
/// A callback function that wraps the readByte method from Region.
///
/// @param Arg - The generic callback parameter. In this case, this should
/// be a pointer to a Region.
/// @param Byte - A pointer to the byte to be read.
/// @param Address - The address to be read.
static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
auto *R = static_cast<const Region *>(Arg);
ArrayRef<uint8_t> Bytes = R->Bytes;
unsigned Index = Address - R->Base;
if (Bytes.size() <= Index)
return -1;
*Byte = Bytes[Index];
return 0;
}
/// logger - a callback function that wraps the operator<< method from
/// raw_ostream.
///
/// @param arg - The generic callback parameter. This should be a pointe
/// to a raw_ostream.
/// @param log - A string to be logged. logger() adds a newline.
static void logger(void* arg, const char* log) {
if (!arg)
return;
raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
vStream << log << "\n";
}
//
// Public interface for the disassembler
//
MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &VStream, raw_ostream &CStream) const {
CommentStream = &CStream;
InternalInstruction InternalInstr;
dlog_t LoggerFn = logger;
if (&VStream == &nulls())
LoggerFn = nullptr; // Disable logging completely if it's going to nulls().
Region R(Bytes, Address);
int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
LoggerFn, (void *)&VStream,
(const void *)MII.get(), Address, fMode);
if (Ret) {
Size = InternalInstr.readerCursor - Address;
return Fail;
} else {
Size = InternalInstr.length;
return (!translateInstruction(Instr, InternalInstr, this)) ? Success : Fail;
}
}
//
// Private code that translates from struct InternalInstructions to MCInsts.
//
/// translateRegister - Translates an internal register to the appropriate LLVM
/// register, and appends it as an operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param reg - The Reg to append.
static void translateRegister(MCInst &mcInst, Reg reg) {
#define ENTRY(x) X86::x,
uint8_t llvmRegnums[] = {
ALL_REGS
0
};
#undef ENTRY
uint8_t llvmRegnum = llvmRegnums[reg];
mcInst.addOperand(MCOperand::CreateReg(llvmRegnum));
}
/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
/// immediate Value in the MCInst.
///
/// @param Value - The immediate Value, has had any PC adjustment made by
/// the caller.
/// @param isBranch - If the instruction is a branch instruction
/// @param Address - The starting address of the instruction
/// @param Offset - The byte offset to this immediate in the instruction
/// @param Width - The byte width of this immediate in the instruction
///
/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
/// called then that function is called to get any symbolic information for the
/// immediate in the instruction using the Address, Offset and Width. If that
/// returns non-zero then the symbolic information it returns is used to create
/// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
/// returns zero and isBranch is true then a symbol look up for immediate Value
/// is done and if a symbol is found an MCExpr is created with that, else
/// an MCExpr with the immediate Value is created. This function returns true
/// if it adds an operand to the MCInst and false otherwise.
static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
uint64_t Address, uint64_t Offset,
uint64_t Width, MCInst &MI,
const MCDisassembler *Dis) {
return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
Offset, Width);
}
/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
/// referenced by a load instruction with the base register that is the rip.
/// These can often be addresses in a literal pool. The Address of the
/// instruction and its immediate Value are used to determine the address
/// being referenced in the literal pool entry. The SymbolLookUp call back will
/// return a pointer to a literal 'C' string if the referenced address is an
/// address into a section with 'C' string literals.
static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
const void *Decoder) {
const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
Dis->tryAddingPcLoadReferenceComment(Value, Address);
}
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
0, // SEG_OVERRIDE_NONE
X86::CS,
X86::SS,
X86::DS,
X86::ES,
X86::FS,
X86::GS
};
/// translateSrcIndex - Appends a source index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
unsigned baseRegNo;
if (insn.mode == MODE_64BIT)
baseRegNo = insn.prefixPresent[0x67] ? X86::ESI : X86::RSI;
else if (insn.mode == MODE_32BIT)
baseRegNo = insn.prefixPresent[0x67] ? X86::SI : X86::ESI;
else {
assert(insn.mode == MODE_16BIT);
baseRegNo = insn.prefixPresent[0x67] ? X86::ESI : X86::SI;
}
MCOperand baseReg = MCOperand::CreateReg(baseRegNo);
mcInst.addOperand(baseReg);
MCOperand segmentReg;
segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
mcInst.addOperand(segmentReg);
return false;
}
/// translateDstIndex - Appends a destination index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
unsigned baseRegNo;
if (insn.mode == MODE_64BIT)
baseRegNo = insn.prefixPresent[0x67] ? X86::EDI : X86::RDI;
else if (insn.mode == MODE_32BIT)
baseRegNo = insn.prefixPresent[0x67] ? X86::DI : X86::EDI;
else {
assert(insn.mode == MODE_16BIT);
baseRegNo = insn.prefixPresent[0x67] ? X86::EDI : X86::DI;
}
MCOperand baseReg = MCOperand::CreateReg(baseRegNo);
mcInst.addOperand(baseReg);
return false;
}
/// translateImmediate - Appends an immediate operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param immediate - The immediate value to append.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
static void translateImmediate(MCInst &mcInst, uint64_t immediate,
const OperandSpecifier &operand,
InternalInstruction &insn,
const MCDisassembler *Dis) {
// Sign-extend the immediate if necessary.
OperandType type = (OperandType)operand.type;
bool isBranch = false;
uint64_t pcrel = 0;
if (type == TYPE_RELv) {
isBranch = true;
pcrel = insn.startLocation +
insn.immediateOffset + insn.immediateSize;
switch (insn.displacementSize) {
default:
break;
case 1:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case 2:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case 4:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case 8:
break;
}
}
// By default sign-extend all X86 immediates based on their encoding.
else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 ||
type == TYPE_IMM64 || type == TYPE_IMMv) {
switch (operand.encoding) {
default:
break;
case ENCODING_IB:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case ENCODING_IO:
break;
}
} else if (type == TYPE_IMM3) {
// Check for immediates that printSSECC can't handle.
if (immediate >= 8) {
unsigned NewOpc;
switch (mcInst.getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case X86::CMPPDrmi: NewOpc = X86::CMPPDrmi_alt; break;
case X86::CMPPDrri: NewOpc = X86::CMPPDrri_alt; break;
case X86::CMPPSrmi: NewOpc = X86::CMPPSrmi_alt; break;
case X86::CMPPSrri: NewOpc = X86::CMPPSrri_alt; break;
case X86::CMPSDrm: NewOpc = X86::CMPSDrm_alt; break;
case X86::CMPSDrr: NewOpc = X86::CMPSDrr_alt; break;
case X86::CMPSSrm: NewOpc = X86::CMPSSrm_alt; break;
case X86::CMPSSrr: NewOpc = X86::CMPSSrr_alt; break;
case X86::VPCOMBri: NewOpc = X86::VPCOMBri_alt; break;
case X86::VPCOMBmi: NewOpc = X86::VPCOMBmi_alt; break;
case X86::VPCOMWri: NewOpc = X86::VPCOMWri_alt; break;
case X86::VPCOMWmi: NewOpc = X86::VPCOMWmi_alt; break;
case X86::VPCOMDri: NewOpc = X86::VPCOMDri_alt; break;
case X86::VPCOMDmi: NewOpc = X86::VPCOMDmi_alt; break;
case X86::VPCOMQri: NewOpc = X86::VPCOMQri_alt; break;
case X86::VPCOMQmi: NewOpc = X86::VPCOMQmi_alt; break;
case X86::VPCOMUBri: NewOpc = X86::VPCOMUBri_alt; break;
case X86::VPCOMUBmi: NewOpc = X86::VPCOMUBmi_alt; break;
case X86::VPCOMUWri: NewOpc = X86::VPCOMUWri_alt; break;
case X86::VPCOMUWmi: NewOpc = X86::VPCOMUWmi_alt; break;
case X86::VPCOMUDri: NewOpc = X86::VPCOMUDri_alt; break;
case X86::VPCOMUDmi: NewOpc = X86::VPCOMUDmi_alt; break;
case X86::VPCOMUQri: NewOpc = X86::VPCOMUQri_alt; break;
case X86::VPCOMUQmi: NewOpc = X86::VPCOMUQmi_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
mcInst.setOpcode(NewOpc);
}
} else if (type == TYPE_IMM5) {
// Check for immediates that printAVXCC can't handle.
if (immediate >= 32) {
unsigned NewOpc;
switch (mcInst.getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case X86::VCMPPDrmi: NewOpc = X86::VCMPPDrmi_alt; break;
case X86::VCMPPDrri: NewOpc = X86::VCMPPDrri_alt; break;
case X86::VCMPPSrmi: NewOpc = X86::VCMPPSrmi_alt; break;
case X86::VCMPPSrri: NewOpc = X86::VCMPPSrri_alt; break;
case X86::VCMPSDrm: NewOpc = X86::VCMPSDrm_alt; break;
case X86::VCMPSDrr: NewOpc = X86::VCMPSDrr_alt; break;
case X86::VCMPSSrm: NewOpc = X86::VCMPSSrm_alt; break;
case X86::VCMPSSrr: NewOpc = X86::VCMPSSrr_alt; break;
case X86::VCMPPDYrmi: NewOpc = X86::VCMPPDYrmi_alt; break;
case X86::VCMPPDYrri: NewOpc = X86::VCMPPDYrri_alt; break;
case X86::VCMPPSYrmi: NewOpc = X86::VCMPPSYrmi_alt; break;
case X86::VCMPPSYrri: NewOpc = X86::VCMPPSYrri_alt; break;
case X86::VCMPPDZrmi: NewOpc = X86::VCMPPDZrmi_alt; break;
case X86::VCMPPDZrri: NewOpc = X86::VCMPPDZrri_alt; break;
case X86::VCMPPSZrmi: NewOpc = X86::VCMPPSZrmi_alt; break;
case X86::VCMPPSZrri: NewOpc = X86::VCMPPSZrri_alt; break;
case X86::VCMPSDZrm: NewOpc = X86::VCMPSDZrmi_alt; break;
case X86::VCMPSDZrr: NewOpc = X86::VCMPSDZrri_alt; break;
case X86::VCMPSSZrm: NewOpc = X86::VCMPSSZrmi_alt; break;
case X86::VCMPSSZrr: NewOpc = X86::VCMPSSZrri_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
mcInst.setOpcode(NewOpc);
}
} else if (type == TYPE_AVX512ICC) {
if (immediate >= 8 || ((immediate & 0x3) == 3)) {
unsigned NewOpc;
switch (mcInst.getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPBZ128rmi_alt; break;
case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPBZ128rmik_alt; break;
case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPBZ128rri_alt; break;
case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPBZ128rrik_alt; break;
case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPBZ256rmi_alt; break;
case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPBZ256rmik_alt; break;
case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPBZ256rri_alt; break;
case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPBZ256rrik_alt; break;
case X86::VPCMPBZrmi: NewOpc = X86::VPCMPBZrmi_alt; break;
case X86::VPCMPBZrmik: NewOpc = X86::VPCMPBZrmik_alt; break;
case X86::VPCMPBZrri: NewOpc = X86::VPCMPBZrri_alt; break;
case X86::VPCMPBZrrik: NewOpc = X86::VPCMPBZrrik_alt; break;
case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPDZ128rmi_alt; break;
case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPDZ128rmib_alt; break;
case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPDZ128rmibk_alt; break;
case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPDZ128rmik_alt; break;
case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPDZ128rri_alt; break;
case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPDZ128rrik_alt; break;
case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPDZ256rmi_alt; break;
case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPDZ256rmib_alt; break;
case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPDZ256rmibk_alt; break;
case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPDZ256rmik_alt; break;
case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPDZ256rri_alt; break;
case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPDZ256rrik_alt; break;
case X86::VPCMPDZrmi: NewOpc = X86::VPCMPDZrmi_alt; break;
case X86::VPCMPDZrmib: NewOpc = X86::VPCMPDZrmib_alt; break;
case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPDZrmibk_alt; break;
case X86::VPCMPDZrmik: NewOpc = X86::VPCMPDZrmik_alt; break;
case X86::VPCMPDZrri: NewOpc = X86::VPCMPDZrri_alt; break;
case X86::VPCMPDZrrik: NewOpc = X86::VPCMPDZrrik_alt; break;
case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPQZ128rmi_alt; break;
case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPQZ128rmib_alt; break;
case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPQZ128rmibk_alt; break;
case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPQZ128rmik_alt; break;
case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPQZ128rri_alt; break;
case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPQZ128rrik_alt; break;
case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPQZ256rmi_alt; break;
case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPQZ256rmib_alt; break;
case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPQZ256rmibk_alt; break;
case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPQZ256rmik_alt; break;
case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPQZ256rri_alt; break;
case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPQZ256rrik_alt; break;
case X86::VPCMPQZrmi: NewOpc = X86::VPCMPQZrmi_alt; break;
case X86::VPCMPQZrmib: NewOpc = X86::VPCMPQZrmib_alt; break;
case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPQZrmibk_alt; break;
case X86::VPCMPQZrmik: NewOpc = X86::VPCMPQZrmik_alt; break;
case X86::VPCMPQZrri: NewOpc = X86::VPCMPQZrri_alt; break;
case X86::VPCMPQZrrik: NewOpc = X86::VPCMPQZrrik_alt; break;
case X86::VPCMPUBZ128rmi: NewOpc = X86::VPCMPUBZ128rmi_alt; break;
case X86::VPCMPUBZ128rmik: NewOpc = X86::VPCMPUBZ128rmik_alt; break;
case X86::VPCMPUBZ128rri: NewOpc = X86::VPCMPUBZ128rri_alt; break;
case X86::VPCMPUBZ128rrik: NewOpc = X86::VPCMPUBZ128rrik_alt; break;
case X86::VPCMPUBZ256rmi: NewOpc = X86::VPCMPUBZ256rmi_alt; break;
case X86::VPCMPUBZ256rmik: NewOpc = X86::VPCMPUBZ256rmik_alt; break;
case X86::VPCMPUBZ256rri: NewOpc = X86::VPCMPUBZ256rri_alt; break;
case X86::VPCMPUBZ256rrik: NewOpc = X86::VPCMPUBZ256rrik_alt; break;
case X86::VPCMPUBZrmi: NewOpc = X86::VPCMPUBZrmi_alt; break;
case X86::VPCMPUBZrmik: NewOpc = X86::VPCMPUBZrmik_alt; break;
case X86::VPCMPUBZrri: NewOpc = X86::VPCMPUBZrri_alt; break;
case X86::VPCMPUBZrrik: NewOpc = X86::VPCMPUBZrrik_alt; break;
case X86::VPCMPUDZ128rmi: NewOpc = X86::VPCMPUDZ128rmi_alt; break;
case X86::VPCMPUDZ128rmib: NewOpc = X86::VPCMPUDZ128rmib_alt; break;
case X86::VPCMPUDZ128rmibk: NewOpc = X86::VPCMPUDZ128rmibk_alt; break;
case X86::VPCMPUDZ128rmik: NewOpc = X86::VPCMPUDZ128rmik_alt; break;
case X86::VPCMPUDZ128rri: NewOpc = X86::VPCMPUDZ128rri_alt; break;
case X86::VPCMPUDZ128rrik: NewOpc = X86::VPCMPUDZ128rrik_alt; break;
case X86::VPCMPUDZ256rmi: NewOpc = X86::VPCMPUDZ256rmi_alt; break;
case X86::VPCMPUDZ256rmib: NewOpc = X86::VPCMPUDZ256rmib_alt; break;
case X86::VPCMPUDZ256rmibk: NewOpc = X86::VPCMPUDZ256rmibk_alt; break;
case X86::VPCMPUDZ256rmik: NewOpc = X86::VPCMPUDZ256rmik_alt; break;
case X86::VPCMPUDZ256rri: NewOpc = X86::VPCMPUDZ256rri_alt; break;
case X86::VPCMPUDZ256rrik: NewOpc = X86::VPCMPUDZ256rrik_alt; break;
case X86::VPCMPUDZrmi: NewOpc = X86::VPCMPUDZrmi_alt; break;
case X86::VPCMPUDZrmib: NewOpc = X86::VPCMPUDZrmib_alt; break;
case X86::VPCMPUDZrmibk: NewOpc = X86::VPCMPUDZrmibk_alt; break;
case X86::VPCMPUDZrmik: NewOpc = X86::VPCMPUDZrmik_alt; break;
case X86::VPCMPUDZrri: NewOpc = X86::VPCMPUDZrri_alt; break;
case X86::VPCMPUDZrrik: NewOpc = X86::VPCMPUDZrrik_alt; break;
case X86::VPCMPUQZ128rmi: NewOpc = X86::VPCMPUQZ128rmi_alt; break;
case X86::VPCMPUQZ128rmib: NewOpc = X86::VPCMPUQZ128rmib_alt; break;
case X86::VPCMPUQZ128rmibk: NewOpc = X86::VPCMPUQZ128rmibk_alt; break;
case X86::VPCMPUQZ128rmik: NewOpc = X86::VPCMPUQZ128rmik_alt; break;
case X86::VPCMPUQZ128rri: NewOpc = X86::VPCMPUQZ128rri_alt; break;
case X86::VPCMPUQZ128rrik: NewOpc = X86::VPCMPUQZ128rrik_alt; break;
case X86::VPCMPUQZ256rmi: NewOpc = X86::VPCMPUQZ256rmi_alt; break;
case X86::VPCMPUQZ256rmib: NewOpc = X86::VPCMPUQZ256rmib_alt; break;
case X86::VPCMPUQZ256rmibk: NewOpc = X86::VPCMPUQZ256rmibk_alt; break;
case X86::VPCMPUQZ256rmik: NewOpc = X86::VPCMPUQZ256rmik_alt; break;
case X86::VPCMPUQZ256rri: NewOpc = X86::VPCMPUQZ256rri_alt; break;
case X86::VPCMPUQZ256rrik: NewOpc = X86::VPCMPUQZ256rrik_alt; break;
case X86::VPCMPUQZrmi: NewOpc = X86::VPCMPUQZrmi_alt; break;
case X86::VPCMPUQZrmib: NewOpc = X86::VPCMPUQZrmib_alt; break;
case X86::VPCMPUQZrmibk: NewOpc = X86::VPCMPUQZrmibk_alt; break;
case X86::VPCMPUQZrmik: NewOpc = X86::VPCMPUQZrmik_alt; break;
case X86::VPCMPUQZrri: NewOpc = X86::VPCMPUQZrri_alt; break;
case X86::VPCMPUQZrrik: NewOpc = X86::VPCMPUQZrrik_alt; break;
case X86::VPCMPUWZ128rmi: NewOpc = X86::VPCMPUWZ128rmi_alt; break;
case X86::VPCMPUWZ128rmik: NewOpc = X86::VPCMPUWZ128rmik_alt; break;
case X86::VPCMPUWZ128rri: NewOpc = X86::VPCMPUWZ128rri_alt; break;
case X86::VPCMPUWZ128rrik: NewOpc = X86::VPCMPUWZ128rrik_alt; break;
case X86::VPCMPUWZ256rmi: NewOpc = X86::VPCMPUWZ256rmi_alt; break;
case X86::VPCMPUWZ256rmik: NewOpc = X86::VPCMPUWZ256rmik_alt; break;
case X86::VPCMPUWZ256rri: NewOpc = X86::VPCMPUWZ256rri_alt; break;
case X86::VPCMPUWZ256rrik: NewOpc = X86::VPCMPUWZ256rrik_alt; break;
case X86::VPCMPUWZrmi: NewOpc = X86::VPCMPUWZrmi_alt; break;
case X86::VPCMPUWZrmik: NewOpc = X86::VPCMPUWZrmik_alt; break;
case X86::VPCMPUWZrri: NewOpc = X86::VPCMPUWZrri_alt; break;
case X86::VPCMPUWZrrik: NewOpc = X86::VPCMPUWZrrik_alt; break;
case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPWZ128rmi_alt; break;
case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPWZ128rmik_alt; break;
case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPWZ128rri_alt; break;
case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPWZ128rrik_alt; break;
case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPWZ256rmi_alt; break;
case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPWZ256rmik_alt; break;
case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPWZ256rri_alt; break;
case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPWZ256rrik_alt; break;
case X86::VPCMPWZrmi: NewOpc = X86::VPCMPWZrmi_alt; break;
case X86::VPCMPWZrmik: NewOpc = X86::VPCMPWZrmik_alt; break;
case X86::VPCMPWZrri: NewOpc = X86::VPCMPWZrri_alt; break;
case X86::VPCMPWZrrik: NewOpc = X86::VPCMPWZrrik_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
mcInst.setOpcode(NewOpc);
}
}
switch (type) {
case TYPE_XMM32:
case TYPE_XMM64:
case TYPE_XMM128:
mcInst.addOperand(MCOperand::CreateReg(X86::XMM0 + (immediate >> 4)));
return;
case TYPE_XMM256:
mcInst.addOperand(MCOperand::CreateReg(X86::YMM0 + (immediate >> 4)));
return;
case TYPE_XMM512:
mcInst.addOperand(MCOperand::CreateReg(X86::ZMM0 + (immediate >> 4)));
return;
case TYPE_REL8:
isBranch = true;
pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case TYPE_REL32:
case TYPE_REL64:
isBranch = true;
pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize;
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
default:
// operand is 64 bits wide. Do nothing.
break;
}
if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
insn.immediateOffset, insn.immediateSize,
mcInst, Dis))
mcInst.addOperand(MCOperand::CreateImm(immediate));
if (type == TYPE_MOFFS8 || type == TYPE_MOFFS16 ||
type == TYPE_MOFFS32 || type == TYPE_MOFFS64) {
MCOperand segmentReg;
segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
mcInst.addOperand(segmentReg);
}
}
/// translateRMRegister - Translates a register stored in the R/M field of the
/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction to extract the R/M field
/// from.
/// @return - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst &mcInst,
InternalInstruction &insn) {
if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
debug("A R/M register operand may not have a SIB byte");
return true;
}
switch (insn.eaBase) {
default:
debug("Unexpected EA base register");
return true;
case EA_BASE_NONE:
debug("EA_BASE_NONE for ModR/M base");
return true;
#define ENTRY(x) case EA_BASE_##x:
ALL_EA_BASES
#undef ENTRY
debug("A R/M register operand may not have a base; "
"the operand must be a register.");
return true;
#define ENTRY(x) \
case EA_REG_##x: \
mcInst.addOperand(MCOperand::CreateReg(X86::x)); break;
ALL_REGS
#undef ENTRY
}
return false;
}
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
/// fields of an internal instruction (and possibly its SIB byte) to a memory
/// operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
const MCDisassembler *Dis) {
// Addresses in an MCInst are represented as five operands:
// 1. basereg (register) The R/M base, or (if there is a SIB) the
// SIB base
// 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
// scale amount
// 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
// the index (which is multiplied by the
// scale amount)
// 4. displacement (immediate) 0, or the displacement if there is one
// 5. segmentreg (register) x86_registerNONE for now, but could be set
// if we have segment overrides
MCOperand baseReg;
MCOperand scaleAmount;
MCOperand indexReg;
MCOperand displacement;
MCOperand segmentReg;
uint64_t pcrel = 0;
if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
if (insn.sibBase != SIB_BASE_NONE) {
switch (insn.sibBase) {
default:
debug("Unexpected sibBase");
return true;
#define ENTRY(x) \
case SIB_BASE_##x: \
baseReg = MCOperand::CreateReg(X86::x); break;
ALL_SIB_BASES
#undef ENTRY
}
} else {
baseReg = MCOperand::CreateReg(0);
}
// Check whether we are handling VSIB addressing mode for GATHER.
// If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and
// we should use SIB_INDEX_XMM4|YMM4 for VSIB.
// I don't see a way to get the correct IndexReg in readSIB:
// We can tell whether it is VSIB or SIB after instruction ID is decoded,
// but instruction ID may not be decoded yet when calling readSIB.
uint32_t Opcode = mcInst.getOpcode();
bool IndexIs128 = (Opcode == X86::VGATHERDPDrm ||
Opcode == X86::VGATHERDPDYrm ||
Opcode == X86::VGATHERQPDrm ||
Opcode == X86::VGATHERDPSrm ||
Opcode == X86::VGATHERQPSrm ||
Opcode == X86::VPGATHERDQrm ||
Opcode == X86::VPGATHERDQYrm ||
Opcode == X86::VPGATHERQQrm ||
Opcode == X86::VPGATHERDDrm ||
Opcode == X86::VPGATHERQDrm);
bool IndexIs256 = (Opcode == X86::VGATHERQPDYrm ||
Opcode == X86::VGATHERDPSYrm ||
Opcode == X86::VGATHERQPSYrm ||
Opcode == X86::VGATHERDPDZrm ||
Opcode == X86::VPGATHERDQZrm ||
Opcode == X86::VPGATHERQQYrm ||
Opcode == X86::VPGATHERDDYrm ||
Opcode == X86::VPGATHERQDYrm);
bool IndexIs512 = (Opcode == X86::VGATHERQPDZrm ||
Opcode == X86::VGATHERDPSZrm ||
Opcode == X86::VGATHERQPSZrm ||
Opcode == X86::VPGATHERQQZrm ||
Opcode == X86::VPGATHERDDZrm ||
Opcode == X86::VPGATHERQDZrm);
if (IndexIs128 || IndexIs256 || IndexIs512) {
unsigned IndexOffset = insn.sibIndex -
(insn.addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX);
SIBIndex IndexBase = IndexIs512 ? SIB_INDEX_ZMM0 :
IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0;
insn.sibIndex = (SIBIndex)(IndexBase +
(insn.sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset));
}
if (insn.sibIndex != SIB_INDEX_NONE) {
switch (insn.sibIndex) {
default:
debug("Unexpected sibIndex");
return true;
#define ENTRY(x) \
case SIB_INDEX_##x: \
indexReg = MCOperand::CreateReg(X86::x); break;
EA_BASES_32BIT
EA_BASES_64BIT
REGS_XMM
REGS_YMM
REGS_ZMM
#undef ENTRY
}
} else {
indexReg = MCOperand::CreateReg(0);
}
scaleAmount = MCOperand::CreateImm(insn.sibScale);
} else {
switch (insn.eaBase) {
case EA_BASE_NONE:
if (insn.eaDisplacement == EA_DISP_NONE) {
debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
return true;
}
if (insn.mode == MODE_64BIT){
pcrel = insn.startLocation +
insn.displacementOffset + insn.displacementSize;
tryAddingPcLoadReferenceComment(insn.startLocation +
insn.displacementOffset,
insn.displacement + pcrel, Dis);
baseReg = MCOperand::CreateReg(X86::RIP); // Section 2.2.1.6
}
else
baseReg = MCOperand::CreateReg(0);
indexReg = MCOperand::CreateReg(0);
break;
case EA_BASE_BX_SI:
baseReg = MCOperand::CreateReg(X86::BX);
indexReg = MCOperand::CreateReg(X86::SI);
break;
case EA_BASE_BX_DI:
baseReg = MCOperand::CreateReg(X86::BX);
indexReg = MCOperand::CreateReg(X86::DI);
break;
case EA_BASE_BP_SI:
baseReg = MCOperand::CreateReg(X86::BP);
indexReg = MCOperand::CreateReg(X86::SI);
break;
case EA_BASE_BP_DI:
baseReg = MCOperand::CreateReg(X86::BP);
indexReg = MCOperand::CreateReg(X86::DI);
break;
default:
indexReg = MCOperand::CreateReg(0);
switch (insn.eaBase) {
default:
debug("Unexpected eaBase");
return true;
// Here, we will use the fill-ins defined above. However,
// BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
// sib and sib64 were handled in the top-level if, so they're only
// placeholders to keep the compiler happy.
#define ENTRY(x) \
case EA_BASE_##x: \
baseReg = MCOperand::CreateReg(X86::x); break;
ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
ALL_REGS
#undef ENTRY
debug("A R/M memory operand may not be a register; "
"the base field must be a base.");
return true;
}
}
scaleAmount = MCOperand::CreateImm(1);
}
displacement = MCOperand::CreateImm(insn.displacement);
segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]);
mcInst.addOperand(baseReg);
mcInst.addOperand(scaleAmount);
mcInst.addOperand(indexReg);
if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
insn.startLocation, insn.displacementOffset,
insn.displacementSize, mcInst, Dis))
mcInst.addOperand(displacement);
mcInst.addOperand(segmentReg);
return false;
}
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
/// byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
InternalInstruction &insn, const MCDisassembler *Dis) {
switch (operand.type) {
default:
debug("Unexpected type for a R/M operand");
return true;
case TYPE_R8:
case TYPE_R16:
case TYPE_R32:
case TYPE_R64:
case TYPE_Rv:
case TYPE_MM64:
case TYPE_XMM:
case TYPE_XMM32:
case TYPE_XMM64:
case TYPE_XMM128:
case TYPE_XMM256:
case TYPE_XMM512:
case TYPE_VK1:
case TYPE_VK8:
case TYPE_VK16:
case TYPE_DEBUGREG:
case TYPE_CONTROLREG:
return translateRMRegister(mcInst, insn);
case TYPE_M:
case TYPE_M8:
case TYPE_M16:
case TYPE_M32:
case TYPE_M64:
case TYPE_M128:
case TYPE_M256:
case TYPE_M512:
case TYPE_Mv:
case TYPE_M32FP:
case TYPE_M64FP:
case TYPE_M80FP:
case TYPE_M1616:
case TYPE_M1632:
case TYPE_M1664:
case TYPE_LEA:
return translateRMMemory(mcInst, insn, Dis);
}
}
/// translateFPRegister - Translates a stack position on the FPU stack to its
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param stackPos - The stack position to translate.
static void translateFPRegister(MCInst &mcInst,
uint8_t stackPos) {
mcInst.addOperand(MCOperand::CreateReg(X86::ST0 + stackPos));
}
/// translateMaskRegister - Translates a 3-bit mask register number to
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param maskRegNum - Number of mask register from 0 to 7.
/// @return - false on success; true otherwise.
static bool translateMaskRegister(MCInst &mcInst,
uint8_t maskRegNum) {
if (maskRegNum >= 8) {
debug("Invalid mask register number");
return true;
}
mcInst.addOperand(MCOperand::CreateReg(X86::K0 + maskRegNum));
return false;
}
/// translateOperand - Translates an operand stored in an internal instruction
/// to LLVM's format and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
InternalInstruction &insn,
const MCDisassembler *Dis) {
switch (operand.encoding) {
default:
debug("Unhandled operand encoding during translation");
return true;
case ENCODING_REG:
translateRegister(mcInst, insn.reg);
return false;
case ENCODING_WRITEMASK:
return translateMaskRegister(mcInst, insn.writemask);
CASE_ENCODING_RM:
return translateRM(mcInst, operand, insn, Dis);
case ENCODING_CB:
case ENCODING_CW:
case ENCODING_CD:
case ENCODING_CP:
case ENCODING_CO:
case ENCODING_CT:
debug("Translation of code offsets isn't supported.");
return true;
case ENCODING_IB:
case ENCODING_IW:
case ENCODING_ID:
case ENCODING_IO:
case ENCODING_Iv:
case ENCODING_Ia:
translateImmediate(mcInst,
insn.immediates[insn.numImmediatesTranslated++],
operand,
insn,
Dis);
return false;
case ENCODING_SI:
return translateSrcIndex(mcInst, insn);
case ENCODING_DI:
return translateDstIndex(mcInst, insn);
case ENCODING_RB:
case ENCODING_RW:
case ENCODING_RD:
case ENCODING_RO:
case ENCODING_Rv:
translateRegister(mcInst, insn.opcodeRegister);
return false;
case ENCODING_FP:
translateFPRegister(mcInst, insn.modRM & 7);
return false;
case ENCODING_VVVV:
translateRegister(mcInst, insn.vvvv);
return false;
case ENCODING_DUP:
return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
insn, Dis);
}
}
/// translateInstruction - Translates an internal instruction and all its
/// operands to an MCInst.
///
/// @param mcInst - The MCInst to populate with the instruction's data.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateInstruction(MCInst &mcInst,
InternalInstruction &insn,
const MCDisassembler *Dis) {
if (!insn.spec) {
debug("Instruction has no specification");
return true;
}
mcInst.setOpcode(insn.instructionID);
// If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
// prefix bytes should be disassembled as xrelease and xacquire then set the
// opcode to those instead of the rep and repne opcodes.
if (insn.xAcquireRelease) {
if(mcInst.getOpcode() == X86::REP_PREFIX)
mcInst.setOpcode(X86::XRELEASE_PREFIX);
else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
mcInst.setOpcode(X86::XACQUIRE_PREFIX);
}
insn.numImmediatesTranslated = 0;
for (const auto &Op : insn.operands) {
if (Op.encoding != ENCODING_NONE) {
if (translateOperand(mcInst, Op, insn, Dis)) {
return true;
}
}
}
return false;
}
static MCDisassembler *createX86Disassembler(const Target &T,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
return new X86Disassembler::X86GenericDisassembler(STI, Ctx, std::move(MII));
}
extern "C" void LLVMInitializeX86Disassembler() {
// Register the disassembler.
TargetRegistry::RegisterMCDisassembler(TheX86_32Target,
createX86Disassembler);
TargetRegistry::RegisterMCDisassembler(TheX86_64Target,
createX86Disassembler);
}
|