1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
//===-- X86DisassemblerDecoderCommon.h - Disassembler decoder ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains common definitions used by both the disassembler and the table
// generator.
// Documentation for the disassembler can be found in X86Disassembler.h.
//
//===----------------------------------------------------------------------===//
#ifndef X86DISASSEMBLERDECODERCOMMON_H
#define X86DISASSEMBLERDECODERCOMMON_H
#include "llvm/Support/DataTypes.h"
namespace llvm {
namespace X86Disassembler {
#define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers
#define CONTEXTS_SYM x86DisassemblerContexts
#define ONEBYTE_SYM x86DisassemblerOneByteOpcodes
#define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes
#define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes
#define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes
#define XOP8_MAP_SYM x86DisassemblerXOP8Opcodes
#define XOP9_MAP_SYM x86DisassemblerXOP9Opcodes
#define XOPA_MAP_SYM x86DisassemblerXOPAOpcodes
#define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers"
#define CONTEXTS_STR "x86DisassemblerContexts"
#define ONEBYTE_STR "x86DisassemblerOneByteOpcodes"
#define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes"
#define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes"
#define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes"
#define XOP8_MAP_STR "x86DisassemblerXOP8Opcodes"
#define XOP9_MAP_STR "x86DisassemblerXOP9Opcodes"
#define XOPA_MAP_STR "x86DisassemblerXOPAOpcodes"
// Attributes of an instruction that must be known before the opcode can be
// processed correctly. Most of these indicate the presence of particular
// prefixes, but ATTR_64BIT is simply an attribute of the decoding context.
#define ATTRIBUTE_BITS \
ENUM_ENTRY(ATTR_NONE, 0x00) \
ENUM_ENTRY(ATTR_64BIT, (0x1 << 0)) \
ENUM_ENTRY(ATTR_XS, (0x1 << 1)) \
ENUM_ENTRY(ATTR_XD, (0x1 << 2)) \
ENUM_ENTRY(ATTR_REXW, (0x1 << 3)) \
ENUM_ENTRY(ATTR_OPSIZE, (0x1 << 4)) \
ENUM_ENTRY(ATTR_ADSIZE, (0x1 << 5)) \
ENUM_ENTRY(ATTR_VEX, (0x1 << 6)) \
ENUM_ENTRY(ATTR_VEXL, (0x1 << 7)) \
ENUM_ENTRY(ATTR_EVEX, (0x1 << 8)) \
ENUM_ENTRY(ATTR_EVEXL, (0x1 << 9)) \
ENUM_ENTRY(ATTR_EVEXL2, (0x1 << 10)) \
ENUM_ENTRY(ATTR_EVEXK, (0x1 << 11)) \
ENUM_ENTRY(ATTR_EVEXKZ, (0x1 << 12)) \
ENUM_ENTRY(ATTR_EVEXB, (0x1 << 13))
#define ENUM_ENTRY(n, v) n = v,
enum attributeBits {
ATTRIBUTE_BITS
ATTR_max
};
#undef ENUM_ENTRY
// Combinations of the above attributes that are relevant to instruction
// decode. Although other combinations are possible, they can be reduced to
// these without affecting the ultimately decoded instruction.
// Class name Rank Rationale for rank assignment
#define INSTRUCTION_CONTEXTS \
ENUM_ENTRY(IC, 0, "says nothing about the instruction") \
ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \
"64-bit mode but no more") \
ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \
"operands change width") \
ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \
"operands change width") \
ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \
"but not the operands") \
ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \
"but not the operands") \
ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \
"operands change width") \
ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \
"operands change width") \
ENUM_ENTRY(IC_64BIT_REXW, 4, "requires a REX.W prefix, so operands "\
"change width; overrides IC_OPSIZE") \
ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \
ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \
ENUM_ENTRY(IC_64BIT_XD, 5, "XD instructions are SSE; REX.W is " \
"secondary") \
ENUM_ENTRY(IC_64BIT_XS, 5, "Just as meaningful as IC_64BIT_XD") \
ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \
ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \
ENUM_ENTRY(IC_64BIT_REXW_XS, 6, "OPSIZE could mean a different " \
"opcode") \
ENUM_ENTRY(IC_64BIT_REXW_XD, 6, "Just as meaningful as " \
"IC_64BIT_REXW_XS") \
ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 7, "The Dynamic Duo! Prefer over all " \
"else because this changes most " \
"operands' meaning") \
ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \
ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \
ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \
ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \
ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \
ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \
ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \
ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \
ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \
ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\
ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\
ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") \
ENUM_ENTRY(IC_VEX_L_W, 4, "requires VEX, L and W") \
ENUM_ENTRY(IC_VEX_L_W_XS, 5, "requires VEX, L, W and XS prefix") \
ENUM_ENTRY(IC_VEX_L_W_XD, 5, "requires VEX, L, W and XD prefix") \
ENUM_ENTRY(IC_VEX_L_W_OPSIZE, 5, "requires VEX, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX, 1, "requires an EVEX prefix") \
ENUM_ENTRY(IC_EVEX_XS, 2, "requires EVEX and the XS prefix") \
ENUM_ENTRY(IC_EVEX_XD, 2, "requires EVEX and the XD prefix") \
ENUM_ENTRY(IC_EVEX_OPSIZE, 2, "requires EVEX and the OpSize prefix") \
ENUM_ENTRY(IC_EVEX_W, 3, "requires EVEX and the W prefix") \
ENUM_ENTRY(IC_EVEX_W_XS, 4, "requires EVEX, W, and XS prefix") \
ENUM_ENTRY(IC_EVEX_W_XD, 4, "requires EVEX, W, and XD prefix") \
ENUM_ENTRY(IC_EVEX_W_OPSIZE, 4, "requires EVEX, W, and OpSize") \
ENUM_ENTRY(IC_EVEX_L, 3, "requires EVEX and the L prefix") \
ENUM_ENTRY(IC_EVEX_L_XS, 4, "requires EVEX and the L and XS prefix")\
ENUM_ENTRY(IC_EVEX_L_XD, 4, "requires EVEX and the L and XD prefix")\
ENUM_ENTRY(IC_EVEX_L_OPSIZE, 4, "requires EVEX, L, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_W, 3, "requires EVEX, L and W") \
ENUM_ENTRY(IC_EVEX_L_W_XS, 4, "requires EVEX, L, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L_W_XD, 4, "requires EVEX, L, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE, 4, "requires EVEX, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX_L2, 3, "requires EVEX and the L2 prefix") \
ENUM_ENTRY(IC_EVEX_L2_XS, 4, "requires EVEX and the L2 and XS prefix")\
ENUM_ENTRY(IC_EVEX_L2_XD, 4, "requires EVEX and the L2 and XD prefix")\
ENUM_ENTRY(IC_EVEX_L2_OPSIZE, 4, "requires EVEX, L2, and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_W, 3, "requires EVEX, L2 and W") \
ENUM_ENTRY(IC_EVEX_L2_W_XS, 4, "requires EVEX, L2, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_XD, 4, "requires EVEX, L2, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE, 4, "requires EVEX, L2, W and OpSize") \
ENUM_ENTRY(IC_EVEX_K, 1, "requires an EVEX_K prefix") \
ENUM_ENTRY(IC_EVEX_XS_K, 2, "requires EVEX_K and the XS prefix") \
ENUM_ENTRY(IC_EVEX_XD_K, 2, "requires EVEX_K and the XD prefix") \
ENUM_ENTRY(IC_EVEX_OPSIZE_K, 2, "requires EVEX_K and the OpSize prefix") \
ENUM_ENTRY(IC_EVEX_W_K, 3, "requires EVEX_K and the W prefix") \
ENUM_ENTRY(IC_EVEX_W_XS_K, 4, "requires EVEX_K, W, and XS prefix") \
ENUM_ENTRY(IC_EVEX_W_XD_K, 4, "requires EVEX_K, W, and XD prefix") \
ENUM_ENTRY(IC_EVEX_W_OPSIZE_K, 4, "requires EVEX_K, W, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_K, 3, "requires EVEX_K and the L prefix") \
ENUM_ENTRY(IC_EVEX_L_XS_K, 4, "requires EVEX_K and the L and XS prefix")\
ENUM_ENTRY(IC_EVEX_L_XD_K, 4, "requires EVEX_K and the L and XD prefix")\
ENUM_ENTRY(IC_EVEX_L_OPSIZE_K, 4, "requires EVEX_K, L, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_W_K, 3, "requires EVEX_K, L and W") \
ENUM_ENTRY(IC_EVEX_L_W_XS_K, 4, "requires EVEX_K, L, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L_W_XD_K, 4, "requires EVEX_K, L, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K, 4, "requires EVEX_K, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_K, 3, "requires EVEX_K and the L2 prefix") \
ENUM_ENTRY(IC_EVEX_L2_XS_K, 4, "requires EVEX_K and the L2 and XS prefix")\
ENUM_ENTRY(IC_EVEX_L2_XD_K, 4, "requires EVEX_K and the L2 and XD prefix")\
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K, 4, "requires EVEX_K, L2, and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_W_K, 3, "requires EVEX_K, L2 and W") \
ENUM_ENTRY(IC_EVEX_L2_W_XS_K, 4, "requires EVEX_K, L2, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_XD_K, 4, "requires EVEX_K, L2, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K, 4, "requires EVEX_K, L2, W and OpSize") \
ENUM_ENTRY(IC_EVEX_B, 1, "requires an EVEX_B prefix") \
ENUM_ENTRY(IC_EVEX_XS_B, 2, "requires EVEX_B and the XS prefix") \
ENUM_ENTRY(IC_EVEX_XD_B, 2, "requires EVEX_B and the XD prefix") \
ENUM_ENTRY(IC_EVEX_OPSIZE_B, 2, "requires EVEX_B and the OpSize prefix") \
ENUM_ENTRY(IC_EVEX_W_B, 3, "requires EVEX_B and the W prefix") \
ENUM_ENTRY(IC_EVEX_W_XS_B, 4, "requires EVEX_B, W, and XS prefix") \
ENUM_ENTRY(IC_EVEX_W_XD_B, 4, "requires EVEX_B, W, and XD prefix") \
ENUM_ENTRY(IC_EVEX_W_OPSIZE_B, 4, "requires EVEX_B, W, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_B, 3, "requires EVEX_B and the L prefix") \
ENUM_ENTRY(IC_EVEX_L_XS_B, 4, "requires EVEX_B and the L and XS prefix")\
ENUM_ENTRY(IC_EVEX_L_XD_B, 4, "requires EVEX_B and the L and XD prefix")\
ENUM_ENTRY(IC_EVEX_L_OPSIZE_B, 4, "requires EVEX_B, L, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_W_B, 3, "requires EVEX_B, L and W") \
ENUM_ENTRY(IC_EVEX_L_W_XS_B, 4, "requires EVEX_B, L, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L_W_XD_B, 4, "requires EVEX_B, L, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_B, 4, "requires EVEX_B, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_B, 3, "requires EVEX_B and the L2 prefix") \
ENUM_ENTRY(IC_EVEX_L2_XS_B, 4, "requires EVEX_B and the L2 and XS prefix")\
ENUM_ENTRY(IC_EVEX_L2_XD_B, 4, "requires EVEX_B and the L2 and XD prefix")\
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_B, 4, "requires EVEX_B, L2, and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_W_B, 3, "requires EVEX_B, L2 and W") \
ENUM_ENTRY(IC_EVEX_L2_W_XS_B, 4, "requires EVEX_B, L2, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_XD_B, 4, "requires EVEX_B, L2, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_B, 4, "requires EVEX_B, L2, W and OpSize") \
ENUM_ENTRY(IC_EVEX_K_B, 1, "requires EVEX_B and EVEX_K prefix") \
ENUM_ENTRY(IC_EVEX_XS_K_B, 2, "requires EVEX_B, EVEX_K and the XS prefix") \
ENUM_ENTRY(IC_EVEX_XD_K_B, 2, "requires EVEX_B, EVEX_K and the XD prefix") \
ENUM_ENTRY(IC_EVEX_OPSIZE_K_B, 2, "requires EVEX_B, EVEX_K and the OpSize prefix") \
ENUM_ENTRY(IC_EVEX_W_K_B, 3, "requires EVEX_B, EVEX_K and the W prefix") \
ENUM_ENTRY(IC_EVEX_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, W, and XS prefix") \
ENUM_ENTRY(IC_EVEX_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, W, and XD prefix") \
ENUM_ENTRY(IC_EVEX_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, W, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_K_B, 3, "requires EVEX_B, EVEX_K and the L prefix") \
ENUM_ENTRY(IC_EVEX_L_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L and XS prefix")\
ENUM_ENTRY(IC_EVEX_L_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L and XD prefix")\
ENUM_ENTRY(IC_EVEX_L_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_W_K_B, 3, "requires EVEX_B, EVEX_K, L and W") \
ENUM_ENTRY(IC_EVEX_L_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_K_B, 3, "requires EVEX_B, EVEX_K and the L2 prefix") \
ENUM_ENTRY(IC_EVEX_L2_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XS prefix")\
ENUM_ENTRY(IC_EVEX_L2_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XD prefix")\
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L2, and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_W_K_B, 3, "requires EVEX_B, EVEX_K, L2 and W") \
ENUM_ENTRY(IC_EVEX_L2_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L2, W and OpSize") \
ENUM_ENTRY(IC_EVEX_KZ_B, 1, "requires EVEX_B and EVEX_KZ prefix") \
ENUM_ENTRY(IC_EVEX_XS_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XS prefix") \
ENUM_ENTRY(IC_EVEX_XD_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XD prefix") \
ENUM_ENTRY(IC_EVEX_OPSIZE_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the OpSize prefix") \
ENUM_ENTRY(IC_EVEX_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the W prefix") \
ENUM_ENTRY(IC_EVEX_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XS prefix") \
ENUM_ENTRY(IC_EVEX_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XD prefix") \
ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L prefix") \
ENUM_ENTRY(IC_EVEX_L_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XS prefix")\
ENUM_ENTRY(IC_EVEX_L_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XD prefix")\
ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L and W") \
ENUM_ENTRY(IC_EVEX_L_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L2 prefix") \
ENUM_ENTRY(IC_EVEX_L2_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XS prefix")\
ENUM_ENTRY(IC_EVEX_L2_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XD prefix")\
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L2 and W") \
ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and OpSize") \
ENUM_ENTRY(IC_EVEX_KZ, 1, "requires an EVEX_KZ prefix") \
ENUM_ENTRY(IC_EVEX_XS_KZ, 2, "requires EVEX_KZ and the XS prefix") \
ENUM_ENTRY(IC_EVEX_XD_KZ, 2, "requires EVEX_KZ and the XD prefix") \
ENUM_ENTRY(IC_EVEX_OPSIZE_KZ, 2, "requires EVEX_KZ and the OpSize prefix") \
ENUM_ENTRY(IC_EVEX_W_KZ, 3, "requires EVEX_KZ and the W prefix") \
ENUM_ENTRY(IC_EVEX_W_XS_KZ, 4, "requires EVEX_KZ, W, and XS prefix") \
ENUM_ENTRY(IC_EVEX_W_XD_KZ, 4, "requires EVEX_KZ, W, and XD prefix") \
ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ, 4, "requires EVEX_KZ, W, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_KZ, 3, "requires EVEX_KZ and the L prefix") \
ENUM_ENTRY(IC_EVEX_L_XS_KZ, 4, "requires EVEX_KZ and the L and XS prefix")\
ENUM_ENTRY(IC_EVEX_L_XD_KZ, 4, "requires EVEX_KZ and the L and XD prefix")\
ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ, 4, "requires EVEX_KZ, L, and OpSize") \
ENUM_ENTRY(IC_EVEX_L_W_KZ, 3, "requires EVEX_KZ, L and W") \
ENUM_ENTRY(IC_EVEX_L_W_XS_KZ, 4, "requires EVEX_KZ, L, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L_W_XD_KZ, 4, "requires EVEX_KZ, L, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L, W and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_KZ, 3, "requires EVEX_KZ and the L2 prefix") \
ENUM_ENTRY(IC_EVEX_L2_XS_KZ, 4, "requires EVEX_KZ and the L2 and XS prefix")\
ENUM_ENTRY(IC_EVEX_L2_XD_KZ, 4, "requires EVEX_KZ and the L2 and XD prefix")\
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, and OpSize") \
ENUM_ENTRY(IC_EVEX_L2_W_KZ, 3, "requires EVEX_KZ, L2 and W") \
ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ, 4, "requires EVEX_KZ, L2, W and XS prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ, 4, "requires EVEX_KZ, L2, W and XD prefix") \
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, W and OpSize")
#define ENUM_ENTRY(n, r, d) n,
enum InstructionContext {
INSTRUCTION_CONTEXTS
IC_max
};
#undef ENUM_ENTRY
// Opcode types, which determine which decode table to use, both in the Intel
// manual and also for the decoder.
enum OpcodeType {
ONEBYTE = 0,
TWOBYTE = 1,
THREEBYTE_38 = 2,
THREEBYTE_3A = 3,
XOP8_MAP = 4,
XOP9_MAP = 5,
XOPA_MAP = 6
};
// The following structs are used for the hierarchical decode table. After
// determining the instruction's class (i.e., which IC_* constant applies to
// it), the decoder reads the opcode. Some instructions require specific
// values of the ModR/M byte, so the ModR/M byte indexes into the final table.
//
// If a ModR/M byte is not required, "required" is left unset, and the values
// for each instructionID are identical.
typedef uint16_t InstrUID;
// ModRMDecisionType - describes the type of ModR/M decision, allowing the
// consumer to determine the number of entries in it.
//
// MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded
// instruction is the same.
// MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode
// corresponds to one instruction; otherwise, it corresponds to
// a different instruction.
// MODRM_SPLITMISC- If the ModR/M byte is between 0x00 and 0xbf, ModR/M byte
// divided by 8 is used to select instruction; otherwise, each
// value of the ModR/M byte could correspond to a different
// instruction.
// MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This
// corresponds to instructions that use reg field as opcode
// MODRM_FULL - Potentially, each value of the ModR/M byte could correspond
// to a different instruction.
#define MODRMTYPES \
ENUM_ENTRY(MODRM_ONEENTRY) \
ENUM_ENTRY(MODRM_SPLITRM) \
ENUM_ENTRY(MODRM_SPLITMISC) \
ENUM_ENTRY(MODRM_SPLITREG) \
ENUM_ENTRY(MODRM_FULL)
#define ENUM_ENTRY(n) n,
enum ModRMDecisionType {
MODRMTYPES
MODRM_max
};
#undef ENUM_ENTRY
// Physical encodings of instruction operands.
#define ENCODINGS \
ENUM_ENTRY(ENCODING_NONE, "") \
ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \
ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \
ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \
ENUM_ENTRY(ENCODING_WRITEMASK, "Register operand in EVEX.aaa byte.") \
ENUM_ENTRY(ENCODING_CB, "1-byte code offset (possible new CS value)") \
ENUM_ENTRY(ENCODING_CW, "2-byte") \
ENUM_ENTRY(ENCODING_CD, "4-byte") \
ENUM_ENTRY(ENCODING_CP, "6-byte") \
ENUM_ENTRY(ENCODING_CO, "8-byte") \
ENUM_ENTRY(ENCODING_CT, "10-byte") \
ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \
ENUM_ENTRY(ENCODING_IW, "2-byte") \
ENUM_ENTRY(ENCODING_ID, "4-byte") \
ENUM_ENTRY(ENCODING_IO, "8-byte") \
ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8L..R15L) Register code added to " \
"the opcode byte") \
ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \
ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \
ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \
ENUM_ENTRY(ENCODING_FP, "Position on floating-point stack in ModR/M " \
"byte.") \
\
ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \
ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \
ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \
"opcode byte") \
ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \
"in type") \
ENUM_ENTRY(ENCODING_SI, "Source index; encoded in OpSize/Adsize prefix") \
ENUM_ENTRY(ENCODING_DI, "Destination index; encoded in prefixes")
#define ENUM_ENTRY(n, d) n,
enum OperandEncoding {
ENCODINGS
ENCODING_max
};
#undef ENUM_ENTRY
// Semantic interpretations of instruction operands.
#define TYPES \
ENUM_ENTRY(TYPE_NONE, "") \
ENUM_ENTRY(TYPE_REL8, "1-byte immediate address") \
ENUM_ENTRY(TYPE_REL16, "2-byte") \
ENUM_ENTRY(TYPE_REL32, "4-byte") \
ENUM_ENTRY(TYPE_REL64, "8-byte") \
ENUM_ENTRY(TYPE_PTR1616, "2+2-byte segment+offset address") \
ENUM_ENTRY(TYPE_PTR1632, "2+4-byte") \
ENUM_ENTRY(TYPE_PTR1664, "2+8-byte") \
ENUM_ENTRY(TYPE_R8, "1-byte register operand") \
ENUM_ENTRY(TYPE_R16, "2-byte") \
ENUM_ENTRY(TYPE_R32, "4-byte") \
ENUM_ENTRY(TYPE_R64, "8-byte") \
ENUM_ENTRY(TYPE_IMM8, "1-byte immediate operand") \
ENUM_ENTRY(TYPE_IMM16, "2-byte") \
ENUM_ENTRY(TYPE_IMM32, "4-byte") \
ENUM_ENTRY(TYPE_IMM64, "8-byte") \
ENUM_ENTRY(TYPE_IMM3, "1-byte immediate operand between 0 and 7") \
ENUM_ENTRY(TYPE_IMM5, "1-byte immediate operand between 0 and 31") \
ENUM_ENTRY(TYPE_RM8, "1-byte register or memory operand") \
ENUM_ENTRY(TYPE_RM16, "2-byte") \
ENUM_ENTRY(TYPE_RM32, "4-byte") \
ENUM_ENTRY(TYPE_RM64, "8-byte") \
ENUM_ENTRY(TYPE_M, "Memory operand") \
ENUM_ENTRY(TYPE_M8, "1-byte") \
ENUM_ENTRY(TYPE_M16, "2-byte") \
ENUM_ENTRY(TYPE_M32, "4-byte") \
ENUM_ENTRY(TYPE_M64, "8-byte") \
ENUM_ENTRY(TYPE_LEA, "Effective address") \
ENUM_ENTRY(TYPE_M128, "16-byte (SSE/SSE2)") \
ENUM_ENTRY(TYPE_M256, "256-byte (AVX)") \
ENUM_ENTRY(TYPE_M1616, "2+2-byte segment+offset address") \
ENUM_ENTRY(TYPE_M1632, "2+4-byte") \
ENUM_ENTRY(TYPE_M1664, "2+8-byte") \
ENUM_ENTRY(TYPE_M16_32, "2+4-byte two-part memory operand (LIDT, LGDT)") \
ENUM_ENTRY(TYPE_M16_16, "2+2-byte (BOUND)") \
ENUM_ENTRY(TYPE_M32_32, "4+4-byte (BOUND)") \
ENUM_ENTRY(TYPE_M16_64, "2+8-byte (LIDT, LGDT)") \
ENUM_ENTRY(TYPE_SRCIDX8, "1-byte memory at source index") \
ENUM_ENTRY(TYPE_SRCIDX16, "2-byte memory at source index") \
ENUM_ENTRY(TYPE_SRCIDX32, "4-byte memory at source index") \
ENUM_ENTRY(TYPE_SRCIDX64, "8-byte memory at source index") \
ENUM_ENTRY(TYPE_DSTIDX8, "1-byte memory at destination index") \
ENUM_ENTRY(TYPE_DSTIDX16, "2-byte memory at destination index") \
ENUM_ENTRY(TYPE_DSTIDX32, "4-byte memory at destination index") \
ENUM_ENTRY(TYPE_DSTIDX64, "8-byte memory at destination index") \
ENUM_ENTRY(TYPE_MOFFS8, "1-byte memory offset (relative to segment " \
"base)") \
ENUM_ENTRY(TYPE_MOFFS16, "2-byte") \
ENUM_ENTRY(TYPE_MOFFS32, "4-byte") \
ENUM_ENTRY(TYPE_MOFFS64, "8-byte") \
ENUM_ENTRY(TYPE_SREG, "Byte with single bit set: 0 = ES, 1 = CS, " \
"2 = SS, 3 = DS, 4 = FS, 5 = GS") \
ENUM_ENTRY(TYPE_M32FP, "32-bit IEE754 memory floating-point operand") \
ENUM_ENTRY(TYPE_M64FP, "64-bit") \
ENUM_ENTRY(TYPE_M80FP, "80-bit extended") \
ENUM_ENTRY(TYPE_M16INT, "2-byte memory integer operand for use in " \
"floating-point instructions") \
ENUM_ENTRY(TYPE_M32INT, "4-byte") \
ENUM_ENTRY(TYPE_M64INT, "8-byte") \
ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \
ENUM_ENTRY(TYPE_MM, "MMX register operand") \
ENUM_ENTRY(TYPE_MM32, "4-byte MMX register or memory operand") \
ENUM_ENTRY(TYPE_MM64, "8-byte") \
ENUM_ENTRY(TYPE_XMM, "XMM register operand") \
ENUM_ENTRY(TYPE_XMM32, "4-byte XMM register or memory operand") \
ENUM_ENTRY(TYPE_XMM64, "8-byte") \
ENUM_ENTRY(TYPE_XMM128, "16-byte") \
ENUM_ENTRY(TYPE_XMM256, "32-byte") \
ENUM_ENTRY(TYPE_XMM512, "64-byte") \
ENUM_ENTRY(TYPE_VK1, "1-bit") \
ENUM_ENTRY(TYPE_VK8, "8-bit") \
ENUM_ENTRY(TYPE_VK16, "16-bit") \
ENUM_ENTRY(TYPE_XMM0, "Implicit use of XMM0") \
ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \
ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \
ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \
\
ENUM_ENTRY(TYPE_Mv, "Memory operand of operand size") \
ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \
ENUM_ENTRY(TYPE_IMMv, "Immediate operand of operand size") \
ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \
ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \
ENUM_ENTRY(TYPE_DUP1, "operand 1") \
ENUM_ENTRY(TYPE_DUP2, "operand 2") \
ENUM_ENTRY(TYPE_DUP3, "operand 3") \
ENUM_ENTRY(TYPE_DUP4, "operand 4") \
ENUM_ENTRY(TYPE_M512, "512-bit FPU/MMX/XMM/MXCSR state")
#define ENUM_ENTRY(n, d) n,
enum OperandType {
TYPES
TYPE_max
};
#undef ENUM_ENTRY
/// \brief The specification for how to extract and interpret one operand.
struct OperandSpecifier {
uint8_t encoding;
uint8_t type;
};
// Indicates where the opcode modifier (if any) is to be found. Extended
// opcodes with AddRegFrm have the opcode modifier in the ModR/M byte.
#define MODIFIER_TYPES \
ENUM_ENTRY(MODIFIER_NONE)
#define ENUM_ENTRY(n) n,
enum ModifierType {
MODIFIER_TYPES
MODIFIER_max
};
#undef ENUM_ENTRY
static const unsigned X86_MAX_OPERANDS = 5;
/// Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode
/// are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode,
/// respectively.
enum DisassemblerMode {
MODE_16BIT,
MODE_32BIT,
MODE_64BIT
};
} // namespace X86Disassembler
} // namespace llvm
#endif
|