aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/InstSelectSimple.cpp
blob: a8ed6f69c0e6d74e329d4d51a954a47ab38ce472 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
//
// This file defines a simple peephole instruction selector for the x86 platform
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "X86InstrBuilder.h"
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/iOperators.h"
#include "llvm/iOther.h"
#include "llvm/iPHINode.h"
#include "llvm/iMemory.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Target/MRegisterInfo.h"
#include <map>

using namespace MOTy;  // Get Use, Def, UseAndDef


/// BMI - A special BuildMI variant that takes an iterator to insert the
/// instruction at as well as a basic block.
/// this is the version for when you have a destination register in mind.
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator &I,
                                      MachineOpCode Opcode,
                                      unsigned NumOperands,
                                      unsigned DestReg) {
  MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
  I = ++MBB->insert(I, MI);
  return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
}

/// BMI - A special BuildMI variant that takes an iterator to insert the
/// instruction at as well as a basic block.
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator &I,
                                      MachineOpCode Opcode,
                                      unsigned NumOperands) {
  MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
  I = ++MBB->insert(I, MI);
  return MachineInstrBuilder(MI);
}


namespace {
  struct ISel : public FunctionPass, InstVisitor<ISel> {
    TargetMachine &TM;
    MachineFunction *F;                    // The function we are compiling into
    MachineBasicBlock *BB;                 // The current MBB we are compiling

    unsigned CurReg;
    std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs

    // MBBMap - Mapping between LLVM BB -> Machine BB
    std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;

    ISel(TargetMachine &tm)
      : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}

    /// runOnFunction - Top level implementation of instruction selection for
    /// the entire function.
    ///
    bool runOnFunction(Function &Fn) {
      F = &MachineFunction::construct(&Fn, TM);

      for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
        F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));

      // Instruction select everything except PHI nodes
      visit(Fn);

      // Select the PHI nodes
      SelectPHINodes();

      RegMap.clear();
      MBBMap.clear();
      CurReg = MRegisterInfo::FirstVirtualRegister;
      F = 0;
      return false;  // We never modify the LLVM itself.
    }

    /// visitBasicBlock - This method is called when we are visiting a new basic
    /// block.  This simply creates a new MachineBasicBlock to emit code into
    /// and adds it to the current MachineFunction.  Subsequent visit* for
    /// instructions will be invoked for all instructions in the basic block.
    ///
    void visitBasicBlock(BasicBlock &LLVM_BB) {
      BB = MBBMap[&LLVM_BB];
    }


    /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
    /// because we have to generate our sources into the source basic blocks,
    /// not the current one.
    ///
    void SelectPHINodes();

    // Visitation methods for various instructions.  These methods simply emit
    // fixed X86 code for each instruction.
    //

    // Control flow operators
    void visitReturnInst(ReturnInst &RI);
    void visitBranchInst(BranchInst &BI);
    void visitCallInst(CallInst &I);

    // Arithmetic operators
    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
    void doMultiply(unsigned destReg, const Type *resultType,
		    unsigned op0Reg, unsigned op1Reg,
                    MachineBasicBlock *MBB,
                    MachineBasicBlock::iterator &MBBI);
    void visitMul(BinaryOperator &B);

    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
    void visitRem(BinaryOperator &B) { visitDivRem(B); }
    void visitDivRem(BinaryOperator &B);

    // Bitwise operators
    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }

    // Binary comparison operators
    void visitSetCCInst(SetCondInst &I, unsigned OpNum);
    void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
    void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
    void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
    void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
    void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
    void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }

    // Memory Instructions
    void visitLoadInst(LoadInst &I);
    void visitStoreInst(StoreInst &I);
    void visitGetElementPtrInst(GetElementPtrInst &I);
    void visitMallocInst(MallocInst &I);
    void visitFreeInst(FreeInst &I);
    void visitAllocaInst(AllocaInst &I);
    
    // Other operators
    void visitShiftInst(ShiftInst &I);
    void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
    void visitCastInst(CastInst &I);

    void visitInstruction(Instruction &I) {
      std::cerr << "Cannot instruction select: " << I;
      abort();
    }

    /// promote32 - Make a value 32-bits wide, and put it somewhere.
    void promote32 (const unsigned targetReg, Value *v);
    
    // emitGEPOperation - Common code shared between visitGetElementPtrInst and
    // constant expression GEP support.
    //
    void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
                          Value *Src, User::op_iterator IdxBegin,
                          User::op_iterator IdxEnd, unsigned TargetReg);

    /// copyConstantToRegister - Output the instructions required to put the
    /// specified constant into the specified register.
    ///
    void copyConstantToRegister(Constant *C, unsigned Reg,
                                MachineBasicBlock *MBB,
                                MachineBasicBlock::iterator &MBBI);

    /// makeAnotherReg - This method returns the next register number
    /// we haven't yet used.
    unsigned makeAnotherReg(const Type *Ty) {
      // Add the mapping of regnumber => reg class to MachineFunction
      F->addRegMap(CurReg, TM.getRegisterInfo()->getRegClassForType(Ty));
      return CurReg++;
    }

    /// getReg - This method turns an LLVM value into a register number.  This
    /// is guaranteed to produce the same register number for a particular value
    /// every time it is queried.
    ///
    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
    unsigned getReg(Value *V) {
      // Just append to the end of the current bb.
      MachineBasicBlock::iterator It = BB->end();
      return getReg(V, BB, It);
    }
    unsigned getReg(Value *V, MachineBasicBlock *MBB,
                    MachineBasicBlock::iterator &IPt) {
      unsigned &Reg = RegMap[V];
      if (Reg == 0) {
        Reg = makeAnotherReg(V->getType());
        RegMap[V] = Reg;
      }

      // If this operand is a constant, emit the code to copy the constant into
      // the register here...
      //
      if (Constant *C = dyn_cast<Constant>(V)) {
        copyConstantToRegister(C, Reg, BB, IPt);
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
        // Move the address of the global into the register
        BMI(MBB, IPt, X86::MOVir32, 1, Reg).addReg(GV);
      } else if (Argument *A = dyn_cast<Argument>(V)) {
	// Find the position of the argument in the argument list.
	const Function *f = F->getFunction ();
	// The function's arguments look like this:
	// [EBP]     -- copy of old EBP
	// [EBP + 4] -- return address
	// [EBP + 8] -- first argument (leftmost lexically)
	// So we want to start with counter = 2.
	int counter = 2, argPos = -1;
	for (Function::const_aiterator ai = f->abegin (), ae = f->aend ();
	     ai != ae; ++ai) {
	  if (&(*ai) == A) {
	    argPos = counter;
	    break; // Only need to find it once. ;-)
	  }
	  ++counter;
	}
	assert (argPos != -1
		&& "Argument not found in current function's argument list");
	// Load it out of the stack frame at EBP + 4*argPos.
	addRegOffset(BMI(MBB, IPt, X86::MOVmr32, 4, Reg), X86::EBP, 4*argPos);
      }

      return Reg;
    }
  };
}

/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
/// Representation.
///
enum TypeClass {
  cByte, cShort, cInt, cLong, cFloat, cDouble
};

/// getClass - Turn a primitive type into a "class" number which is based on the
/// size of the type, and whether or not it is floating point.
///
static inline TypeClass getClass(const Type *Ty) {
  switch (Ty->getPrimitiveID()) {
  case Type::SByteTyID:
  case Type::UByteTyID:   return cByte;      // Byte operands are class #0
  case Type::ShortTyID:
  case Type::UShortTyID:  return cShort;     // Short operands are class #1
  case Type::IntTyID:
  case Type::UIntTyID:
  case Type::PointerTyID: return cInt;       // Int's and pointers are class #2

  case Type::LongTyID:
  case Type::ULongTyID:   //return cLong;      // Longs are class #3
    return cInt;          // FIXME: LONGS ARE TREATED AS INTS!

  case Type::FloatTyID:   return cFloat;     // Float is class #4
  case Type::DoubleTyID:  return cDouble;    // Doubles are class #5
  default:
    assert(0 && "Invalid type to getClass!");
    return cByte;  // not reached
  }
}


/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void ISel::copyConstantToRegister(Constant *C, unsigned R,
                                  MachineBasicBlock *MBB,
                                  MachineBasicBlock::iterator &IP) {
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    if (CE->getOpcode() == Instruction::GetElementPtr) {
      emitGEPOperation(BB, IP, CE->getOperand(0),
                       CE->op_begin()+1, CE->op_end(), R);
      return;
    }

    std::cerr << "Offending expr: " << C << "\n";
    assert (0 && "Constant expressions not yet handled!\n");
  }

  if (C->getType()->isIntegral()) {
    unsigned Class = getClass(C->getType());
    assert(Class != 3 && "Type not handled yet!");

    static const unsigned IntegralOpcodeTab[] = {
      X86::MOVir8, X86::MOVir16, X86::MOVir32
    };

    if (C->getType()->isSigned()) {
      ConstantSInt *CSI = cast<ConstantSInt>(C);
      BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
    } else {
      ConstantUInt *CUI = cast<ConstantUInt>(C);
      BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
    }
  } else if (isa<ConstantPointerNull>(C)) {
    // Copy zero (null pointer) to the register.
    BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
  } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
    unsigned SrcReg = getReg(CPR->getValue(), BB, IP);
    BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
  } else {
    std::cerr << "Offending constant: " << C << "\n";
    assert(0 && "Type not handled yet!");
  }
}

/// SelectPHINodes - Insert machine code to generate phis.  This is tricky
/// because we have to generate our sources into the source basic blocks, not
/// the current one.
///
void ISel::SelectPHINodes() {
  const Function &LF = *F->getFunction();  // The LLVM function...
  for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
    const BasicBlock *BB = I;
    MachineBasicBlock *MBB = MBBMap[I];

    // Loop over all of the PHI nodes in the LLVM basic block...
    unsigned NumPHIs = 0;
    for (BasicBlock::const_iterator I = BB->begin();
         PHINode *PN = (PHINode*)dyn_cast<PHINode>(&*I); ++I) {
      // Create a new machine instr PHI node, and insert it.
      MachineInstr *MI = BuildMI(X86::PHI, PN->getNumOperands(), getReg(*PN));
      MBB->insert(MBB->begin()+NumPHIs++, MI); // Insert it at the top of the BB

      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];

        // Get the incoming value into a virtual register.  If it is not already
        // available in a virtual register, insert the computation code into
        // PredMBB
        MachineBasicBlock::iterator PI = PredMBB->end()-1;
        MI->addRegOperand(getReg(PN->getIncomingValue(i), PredMBB, PI));
                                 

        // FIXME: Pass in the MachineBasicBlocks instead of the basic blocks...
        MI->addPCDispOperand(PN->getIncomingBlock(i));  // PredMBB
      }
    }
  }
}



/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
/// register, then move it to wherever the result should be. 
/// We handle FP setcc instructions by pushing them, doing a
/// compare-and-pop-twice, and then copying the concodes to the main
/// processor's concodes (I didn't make this up, it's in the Intel manual)
///
void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
  // The arguments are already supposed to be of the same type.
  const Type *CompTy = I.getOperand(0)->getType();
  unsigned reg1 = getReg(I.getOperand(0));
  unsigned reg2 = getReg(I.getOperand(1));

  unsigned Class = getClass(CompTy);
  switch (Class) {
    // Emit: cmp <var1>, <var2> (do the comparison).  We can
    // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
    // 32-bit.
  case cByte:
    BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
    break;
  case cShort:
    BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
    break;
  case cInt:
    BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
    break;

    // Push the variables on the stack with fldl opcodes.
    // FIXME: assuming var1, var2 are in memory, if not, spill to
    // stack first
  case cFloat:  // Floats
    BuildMI (BB, X86::FLDr32, 1).addReg (reg1);
    BuildMI (BB, X86::FLDr32, 1).addReg (reg2);
    break;
  case cDouble:  // Doubles
    BuildMI (BB, X86::FLDr64, 1).addReg (reg1);
    BuildMI (BB, X86::FLDr64, 1).addReg (reg2);
    break;
  case cLong:
  default:
    visitInstruction(I);
  }

  if (CompTy->isFloatingPoint()) {
    // (Non-trapping) compare and pop twice.
    BuildMI (BB, X86::FUCOMPP, 0);
    // Move fp status word (concodes) to ax.
    BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
    // Load real concodes from ax.
    BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
  }

  // Emit setOp instruction (extract concode; clobbers ax),
  // using the following mapping:
  // LLVM  -> X86 signed  X86 unsigned
  // -----    -----       -----
  // seteq -> sete        sete
  // setne -> setne       setne
  // setlt -> setl        setb
  // setgt -> setg        seta
  // setle -> setle       setbe
  // setge -> setge       setae

  static const unsigned OpcodeTab[2][6] = {
    {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
    {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
  };

  BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL);
  
  // Put it in the result using a move.
  BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL);
}

/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
/// operand, in the specified target register.
void
ISel::promote32 (unsigned targetReg, Value *v)
{
  unsigned vReg = getReg (v);
  unsigned Class = getClass (v->getType ());
  bool isUnsigned = v->getType ()->isUnsigned ();
  assert (((Class == cByte) || (Class == cShort) || (Class == cInt))
	  && "Unpromotable operand class in promote32");
  switch (Class)
    {
    case cByte:
      // Extend value into target register (8->32)
      if (isUnsigned)
	BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg);
      else
	BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg);
      break;
    case cShort:
      // Extend value into target register (16->32)
      if (isUnsigned)
	BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg);
      else
	BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg);
      break;
    case cInt:
      // Move value into target register (32->32)
      BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg);
      break;
    }
}

/// 'ret' instruction - Here we are interested in meeting the x86 ABI.  As such,
/// we have the following possibilities:
///
///   ret void: No return value, simply emit a 'ret' instruction
///   ret sbyte, ubyte : Extend value into EAX and return
///   ret short, ushort: Extend value into EAX and return
///   ret int, uint    : Move value into EAX and return
///   ret pointer      : Move value into EAX and return
///   ret long, ulong  : Move value into EAX/EDX and return
///   ret float/double : Top of FP stack
///
void
ISel::visitReturnInst (ReturnInst &I)
{
  if (I.getNumOperands () == 0)
    {
      // Emit a 'ret' instruction
      BuildMI (BB, X86::RET, 0);
      return;
    }
  Value *rv = I.getOperand (0);
  unsigned Class = getClass (rv->getType ());
  switch (Class)
    {
      // integral return values: extend or move into EAX and return. 
    case cByte:
    case cShort:
    case cInt:
      promote32 (X86::EAX, rv);
      break;
      // ret float/double: top of FP stack
      // FLD <val>
    case cFloat:		// Floats
      BuildMI (BB, X86::FLDr32, 1).addReg (getReg (rv));
      break;
    case cDouble:		// Doubles
      BuildMI (BB, X86::FLDr64, 1).addReg (getReg (rv));
      break;
    case cLong:
      // ret long: use EAX(least significant 32 bits)/EDX (most
      // significant 32)...uh, I think so Brain, but how do i call
      // up the two parts of the value from inside this mouse
      // cage? *zort*
    default:
      visitInstruction (I);
    }
  // Emit a 'ret' instruction
  BuildMI (BB, X86::RET, 0);
}

/// visitBranchInst - Handle conditional and unconditional branches here.  Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
/// just make a fall-through. (but we don't currently).
///
void
ISel::visitBranchInst (BranchInst & BI)
{
  if (BI.isConditional ())
    {
      BasicBlock *ifTrue = BI.getSuccessor (0);
      BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious 

      // simplest thing I can think of: compare condition with zero,
      // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
      // ifTrue
      unsigned int condReg = getReg (BI.getCondition ());
      BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
      BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
      BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
    }
  else // unconditional branch
    {
      BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
    }
}

/// visitCallInst - Push args on stack and do a procedure call instruction.
void
ISel::visitCallInst (CallInst & CI)
{
  // keep a counter of how many bytes we pushed on the stack
  unsigned bytesPushed = 0;

  // Push the arguments on the stack in reverse order, as specified by
  // the ABI.
  for (unsigned i = CI.getNumOperands()-1; i >= 1; --i)
    {
      Value *v = CI.getOperand (i);
      switch (getClass (v->getType ()))
	{
	case cByte:
	case cShort:
	  // Promote V to 32 bits wide, and move the result into EAX,
	  // then push EAX.
	  promote32 (X86::EAX, v);
	  BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX);
          bytesPushed += 4;
	  break;
	case cInt:
	case cFloat: {
          unsigned Reg = getReg(v);
          BuildMI (BB, X86::PUSHr32, 1).addReg(Reg);
          bytesPushed += 4;
	  break;
        }
	default:
	  // FIXME: long/ulong/double args not handled.
	  visitInstruction (CI);
	  break;
	}
    }
  // Emit a CALL instruction with PC-relative displacement.
  BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ());

  // Adjust the stack by `bytesPushed' amount if non-zero
  if (bytesPushed > 0)
    BuildMI (BB, X86::ADDri32, 2).addReg(X86::ESP).addZImm(bytesPushed);

  // If there is a return value, scavenge the result from the location the call
  // leaves it in...
  //
  if (CI.getType() != Type::VoidTy) {
    unsigned resultTypeClass = getClass (CI.getType ());
    switch (resultTypeClass) {
    case cByte:
    case cShort:
    case cInt: {
      // Integral results are in %eax, or the appropriate portion
      // thereof.
      static const unsigned regRegMove[] = {
	X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
      };
      static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
      BuildMI (BB, regRegMove[resultTypeClass], 1,
	       getReg (CI)).addReg (AReg[resultTypeClass]);
      break;
    }
    case cFloat:
      // Floating-point return values live in %st(0) (i.e., the top of
      // the FP stack.) The general way to approach this is to do a
      // FSTP to save the top of the FP stack on the real stack, then
      // do a MOV to load the top of the real stack into the target
      // register.
      visitInstruction (CI); // FIXME: add the right args for the calls below
      // BuildMI (BB, X86::FSTPm32, 0);
      // BuildMI (BB, X86::MOVmr32, 0);
      break;
    default:
      std::cerr << "Cannot get return value for call of type '"
                << *CI.getType() << "'\n";
      visitInstruction(CI);
    }
  }
}

/// visitSimpleBinary - Implement simple binary operators for integral types...
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
/// 4 for Xor.
///
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
  if (B.getType() == Type::BoolTy)  // FIXME: Handle bools for logicals
    visitInstruction(B);

  unsigned Class = getClass(B.getType());
  if (Class > 2)  // FIXME: Handle longs
    visitInstruction(B);

  static const unsigned OpcodeTab[][4] = {
    // Arithmetic operators
    { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 },  // ADD
    { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 },  // SUB

    // Bitwise operators
    { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 },  // AND
    { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 },  // OR
    { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 },  // XOR
  };
  
  unsigned Opcode = OpcodeTab[OperatorClass][Class];
  unsigned Op0r = getReg(B.getOperand(0));
  unsigned Op1r = getReg(B.getOperand(1));
  BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
}

/// doMultiply - Emit appropriate instructions to multiply together
/// the registers op0Reg and op1Reg, and put the result in destReg.
/// The type of the result should be given as resultType.
void
ISel::doMultiply(unsigned destReg, const Type *resultType,
		 unsigned op0Reg, unsigned op1Reg,
                 MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI)
{
  unsigned Class = getClass (resultType);

  // FIXME:
  assert (Class <= 2 && "Someday, we will learn how to multiply"
	  "longs and floating-point numbers. This is not that day.");
 
  static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
  static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
  static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
  unsigned Reg     = Regs[Class];

  // Emit a MOV to put the first operand into the appropriately-sized
  // subreg of EAX.
  BMI(MBB, MBBI, MovOpcode[Class], 1, Reg).addReg (op0Reg);
  
  // Emit the appropriate multiply instruction.
  BMI(MBB, MBBI, MulOpcode[Class], 1).addReg (op1Reg);

  // Emit another MOV to put the result into the destination register.
  BMI(MBB, MBBI, MovOpcode[Class], 1, destReg).addReg (Reg);
}

/// visitMul - Multiplies are not simple binary operators because they must deal
/// with the EAX register explicitly.
///
void ISel::visitMul(BinaryOperator &I) {
  MachineBasicBlock::iterator MBBI = BB->end();
  doMultiply (getReg (I), I.getType (),
	      getReg (I.getOperand (0)), getReg (I.getOperand (1)),
              BB, MBBI);
}


/// visitDivRem - Handle division and remainder instructions... these
/// instruction both require the same instructions to be generated, they just
/// select the result from a different register.  Note that both of these
/// instructions work differently for signed and unsigned operands.
///
void ISel::visitDivRem(BinaryOperator &I) {
  unsigned Class = getClass(I.getType());
  if (Class > 2)  // FIXME: Handle longs
    visitInstruction(I);

  static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
  static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
  static const unsigned ExtOpcode[]={ X86::CBW   , X86::CWD    , X86::CDQ     };
  static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
  static const unsigned ExtRegs[]  ={ X86::AH    , X86::DX     , X86::EDX     };

  static const unsigned DivOpcode[][4] = {
    { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 },  // Unsigned division
    { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 },  // Signed division
  };

  bool isSigned   = I.getType()->isSigned();
  unsigned Reg    = Regs[Class];
  unsigned ExtReg = ExtRegs[Class];
  unsigned Op0Reg = getReg(I.getOperand(0));
  unsigned Op1Reg = getReg(I.getOperand(1));

  // Put the first operand into one of the A registers...
  BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);

  if (isSigned) {
    // Emit a sign extension instruction...
    BuildMI(BB, ExtOpcode[Class], 0);
  } else {
    // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
    BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
  }

  // Emit the appropriate divide or remainder instruction...
  BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);

  // Figure out which register we want to pick the result out of...
  unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
  
  // Put the result into the destination register...
  BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
}


/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
/// for constant immediate shift values, and for constant immediate
/// shift values equal to 1. Even the general case is sort of special,
/// because the shift amount has to be in CL, not just any old register.
///
void ISel::visitShiftInst (ShiftInst &I) {
  unsigned Op0r = getReg (I.getOperand(0));
  unsigned DestReg = getReg(I);
  bool isLeftShift = I.getOpcode() == Instruction::Shl;
  bool isOperandSigned = I.getType()->isUnsigned();
  unsigned OperandClass = getClass(I.getType());

  if (OperandClass > 2)
    visitInstruction(I); // Can't handle longs yet!

  if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
    {
      // The shift amount is constant, guaranteed to be a ubyte. Get its value.
      assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
      unsigned char shAmt = CUI->getValue();

      static const unsigned ConstantOperand[][4] = {
        { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 },  // SHR
        { X86::SARir8, X86::SARir16, X86::SARir32, 0 },  // SAR
        { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 },  // SHL
        { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 },  // SAL = SHL
      };

      const unsigned *OpTab = // Figure out the operand table to use
        ConstantOperand[isLeftShift*2+isOperandSigned];

      // Emit: <insn> reg, shamt  (shift-by-immediate opcode "ir" form.)
      BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
    }
  else
    {
      // The shift amount is non-constant.
      //
      // In fact, you can only shift with a variable shift amount if
      // that amount is already in the CL register, so we have to put it
      // there first.
      //

      // Emit: move cl, shiftAmount (put the shift amount in CL.)
      BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));

      // This is a shift right (SHR).
      static const unsigned NonConstantOperand[][4] = {
        { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 },  // SHR
        { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 },  // SAR
        { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 },  // SHL
        { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 },  // SAL = SHL
      };

      const unsigned *OpTab = // Figure out the operand table to use
        NonConstantOperand[isLeftShift*2+isOperandSigned];

      BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
    }
}


/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
/// instruction.
///
void ISel::visitLoadInst(LoadInst &I) {
  unsigned Class = getClass(I.getType());
  if (Class > 2)  // FIXME: Handle longs and others...
    visitInstruction(I);

  static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };

  unsigned AddressReg = getReg(I.getOperand(0));
  addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
}


/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
/// instruction.
///
void ISel::visitStoreInst(StoreInst &I) {
  unsigned Class = getClass(I.getOperand(0)->getType());
  if (Class > 2)  // FIXME: Handle longs and others...
    visitInstruction(I);

  static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };

  unsigned ValReg = getReg(I.getOperand(0));
  unsigned AddressReg = getReg(I.getOperand(1));
  addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
}


/// visitCastInst - Here we have various kinds of copying with or without
/// sign extension going on.
void
ISel::visitCastInst (CastInst &CI)
{
  const Type *targetType = CI.getType ();
  Value *operand = CI.getOperand (0);
  unsigned int operandReg = getReg (operand);
  const Type *sourceType = operand->getType ();
  unsigned int destReg = getReg (CI);
  //
  // Currently we handle:
  //
  // 1) cast * to bool
  //
  // 2) cast {sbyte, ubyte} to {sbyte, ubyte}
  //    cast {short, ushort} to {ushort, short}
  //    cast {int, uint, ptr} to {int, uint, ptr}
  //
  // 3) cast {sbyte, ubyte} to {ushort, short}
  //    cast {sbyte, ubyte} to {int, uint, ptr}
  //    cast {short, ushort} to {int, uint, ptr}
  //
  // 4) cast {int, uint, ptr} to {short, ushort}
  //    cast {int, uint, ptr} to {sbyte, ubyte}
  //    cast {short, ushort} to {sbyte, ubyte}

  // 1) Implement casts to bool by using compare on the operand followed
  // by set if not zero on the result.
  if (targetType == Type::BoolTy)
    {
      BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0);
      BuildMI (BB, X86::SETNEr, 1, destReg);
      return;
    }

  // 2) Implement casts between values of the same type class (as determined
  // by getClass) by using a register-to-register move.
  unsigned srcClass = sourceType == Type::BoolTy ? cByte : getClass(sourceType);
  unsigned targClass = getClass (targetType);
  static const unsigned regRegMove[] = {
    X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
  };
  if ((srcClass < 3) && (targClass < 3) && (srcClass == targClass))
    {
      BuildMI (BB, regRegMove[srcClass], 1, destReg).addReg (operandReg);
      return;
    }
  // 3) Handle cast of SMALLER int to LARGER int using a move with sign
  // extension or zero extension, depending on whether the source type
  // was signed.
  if ((srcClass < 3) && (targClass < 3) && (srcClass < targClass))
    {
      static const unsigned ops[] = {
	X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16,
	X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16
      };
      unsigned srcSigned = sourceType->isSigned ();
      BuildMI (BB, ops[3 * srcSigned + srcClass + targClass - 1], 1,
	       destReg).addReg (operandReg);
      return;
    }
  // 4) Handle cast of LARGER int to SMALLER int using a move to EAX
  // followed by a move out of AX or AL.
  if ((srcClass < 3) && (targClass < 3) && (srcClass > targClass))
    {
      static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
      BuildMI (BB, regRegMove[srcClass], 1,
	       AReg[srcClass]).addReg (operandReg);
      BuildMI (BB, regRegMove[targClass], 1, destReg).addReg (AReg[srcClass]);
      return;
    }
  // Anything we haven't handled already, we can't (yet) handle at all.
  //
  // FP to integral casts can be handled with FISTP to store onto the
  // stack while converting to integer, followed by a MOV to load from
  // the stack into the result register. Integral to FP casts can be
  // handled with MOV to store onto the stack, followed by a FILD to
  // load from the stack while converting to FP. For the moment, I
  // can't quite get straight in my head how to borrow myself some
  // stack space and write on it. Otherwise, this would be trivial.
  visitInstruction (CI);
}

/// visitGetElementPtrInst - I don't know, most programs don't have
/// getelementptr instructions, right? That means we can put off
/// implementing this, right? Right. This method emits machine
/// instructions to perform type-safe pointer arithmetic. I am
/// guessing this could be cleaned up somewhat to use fewer temporary
/// registers.
void
ISel::visitGetElementPtrInst (GetElementPtrInst &I)
{
  MachineBasicBlock::iterator MI = BB->end();
  emitGEPOperation(BB, MI, I.getOperand(0),
                   I.op_begin()+1, I.op_end(), getReg(I));
}

void ISel::emitGEPOperation(MachineBasicBlock *MBB,
                            MachineBasicBlock::iterator &IP,
                            Value *Src, User::op_iterator IdxBegin,
                            User::op_iterator IdxEnd, unsigned TargetReg) {
  const TargetData &TD = TM.getTargetData();
  const Type *Ty = Src->getType();
  unsigned basePtrReg = getReg(Src, BB, IP);

  // GEPs have zero or more indices; we must perform a struct access
  // or array access for each one.
  for (GetElementPtrInst::op_iterator oi = IdxBegin,
         oe = IdxEnd; oi != oe; ++oi) {
    Value *idx = *oi;
    unsigned nextBasePtrReg = makeAnotherReg(Type::UIntTy);
    if (const StructType *StTy = dyn_cast <StructType> (Ty)) {
      // It's a struct access.  idx is the index into the structure,
      // which names the field. This index must have ubyte type.
      const ConstantUInt *CUI = cast <ConstantUInt> (idx);
      assert (CUI->getType () == Type::UByteTy
	      && "Funny-looking structure index in GEP");
      // Use the TargetData structure to pick out what the layout of
      // the structure is in memory.  Since the structure index must
      // be constant, we can get its value and use it to find the
      // right byte offset from the StructLayout class's list of
      // structure member offsets.
      unsigned idxValue = CUI->getValue ();
      unsigned memberOffset =
	TD.getStructLayout (StTy)->MemberOffsets[idxValue];
      // Emit an ADD to add memberOffset to the basePtr.
      BMI(MBB, IP, X86::ADDri32, 2,
          nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset);
      // The next type is the member of the structure selected by the
      // index.
      Ty = StTy->getElementTypes ()[idxValue];
    } else if (const SequentialType *SqTy = cast <SequentialType> (Ty)) {
      // It's an array or pointer access: [ArraySize x ElementType].
      const Type *typeOfSequentialTypeIndex = SqTy->getIndexType ();
      // idx is the index into the array.  Unlike with structure
      // indices, we may not know its actual value at code-generation
      // time.
      assert (idx->getType () == typeOfSequentialTypeIndex
	      && "Funny-looking array index in GEP");
      // We want to add basePtrReg to (idxReg * sizeof
      // ElementType). First, we must find the size of the pointed-to
      // type.  (Not coincidentally, the next type is the type of the
      // elements in the array.)
      Ty = SqTy->getElementType ();
      unsigned elementSize = TD.getTypeSize (Ty);
      unsigned elementSizeReg = makeAnotherReg(typeOfSequentialTypeIndex);
      copyConstantToRegister(ConstantSInt::get(typeOfSequentialTypeIndex,
                                              elementSize), elementSizeReg,
                             BB, IP);
                             
      unsigned idxReg = getReg(idx, BB, IP);
      // Emit a MUL to multiply the register holding the index by
      // elementSize, putting the result in memberOffsetReg.
      unsigned memberOffsetReg = makeAnotherReg(Type::UIntTy);
      doMultiply (memberOffsetReg, typeOfSequentialTypeIndex,
		  elementSizeReg, idxReg, BB, IP);
      // Emit an ADD to add memberOffsetReg to the basePtr.
      BMI(MBB, IP, X86::ADDrr32, 2,
          nextBasePtrReg).addReg (basePtrReg).addReg (memberOffsetReg);
    }
    // Now that we are here, further indices refer to subtypes of this
    // one, so we don't need to worry about basePtrReg itself, anymore.
    basePtrReg = nextBasePtrReg;
  }
  // After we have processed all the indices, the result is left in
  // basePtrReg.  Move it to the register where we were expected to
  // put the answer.  A 32-bit move should do it, because we are in
  // ILP32 land.
  BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg (basePtrReg);
}


/// visitMallocInst - I know that personally, whenever I want to remember
/// something, I have to clear off some space in my brain.
void
ISel::visitMallocInst (MallocInst &I)
{
  // We assume that by this point, malloc instructions have been
  // lowered to calls, and dlsym will magically find malloc for us.
  // So we do not want to see malloc instructions here.
  visitInstruction (I);
}


/// visitFreeInst - same story as MallocInst
void
ISel::visitFreeInst (FreeInst &I)
{
  // We assume that by this point, free instructions have been
  // lowered to calls, and dlsym will magically find free for us.
  // So we do not want to see free instructions here.
  visitInstruction (I);
}


/// visitAllocaInst - I want some stack space. Come on, man, I said I
/// want some freakin' stack space.
void
ISel::visitAllocaInst (AllocaInst &I)
{
  // Find the data size of the alloca inst's getAllocatedType.
  const Type *allocatedType = I.getAllocatedType ();
  const TargetData &TD = TM.DataLayout;
  unsigned allocatedTypeSize = TD.getTypeSize (allocatedType);
  // Keep stack 32-bit aligned.
  unsigned int allocatedTypeWords = allocatedTypeSize / 4;
  if (allocatedTypeSize % 4 != 0) { allocatedTypeWords++; }
  // Subtract size from stack pointer, thereby allocating some space.
  BuildMI (BB, X86::SUBri32, 1, X86::ESP).addZImm (allocatedTypeWords * 4);
  // Put a pointer to the space into the result register, by copying
  // the stack pointer.
  BuildMI (BB, X86::MOVrr32, 1, getReg (I)).addReg (X86::ESP);
}
    

/// createSimpleX86InstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion.  The
/// generated code sucks but the implementation is nice and simple.
///
Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
  return new ISel(TM);
}