1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCMachObjectWriter.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Object/MachOFormat.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// Option to allow disabling arithmetic relaxation to workaround PR9807, which
// is useful when running bitwise comparison experiments on Darwin. We should be
// able to remove this once PR9807 is resolved.
static cl::opt<bool>
MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
cl::desc("Disable relaxation of arithmetic instruction for X86"));
static unsigned getFixupKindLog2Size(unsigned Kind) {
switch (Kind) {
default: llvm_unreachable("invalid fixup kind!");
case FK_PCRel_1:
case FK_SecRel_1:
case FK_Data_1: return 0;
case FK_PCRel_2:
case FK_SecRel_2:
case FK_Data_2: return 1;
case FK_PCRel_4:
case X86::reloc_riprel_4byte:
case X86::reloc_riprel_4byte_movq_load:
case X86::reloc_signed_4byte:
case X86::reloc_global_offset_table:
case FK_SecRel_4:
case FK_Data_4: return 2;
case FK_PCRel_8:
case FK_SecRel_8:
case FK_Data_8: return 3;
}
}
namespace {
class X86ELFObjectWriter : public MCELFObjectTargetWriter {
public:
X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
bool HasRelocationAddend, bool foobar)
: MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
};
class X86AsmBackend : public MCAsmBackend {
StringRef CPU;
public:
X86AsmBackend(const Target &T, StringRef _CPU)
: MCAsmBackend(), CPU(_CPU) {}
unsigned getNumFixupKinds() const {
return X86::NumTargetFixupKinds;
}
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
{ "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
{ "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
{ "reloc_signed_4byte", 0, 4 * 8, 0},
{ "reloc_global_offset_table", 0, 4 * 8, 0}
};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
uint64_t Value) const {
unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
assert(Fixup.getOffset() + Size <= DataSize &&
"Invalid fixup offset!");
// Check that uppper bits are either all zeros or all ones.
// Specifically ignore overflow/underflow as long as the leakage is
// limited to the lower bits. This is to remain compatible with
// other assemblers.
assert(isIntN(Size * 8 + 1, Value) &&
"Value does not fit in the Fixup field");
for (unsigned i = 0; i != Size; ++i)
Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
}
bool mayNeedRelaxation(const MCInst &Inst) const;
bool fixupNeedsRelaxation(const MCFixup &Fixup,
uint64_t Value,
const MCInstFragment *DF,
const MCAsmLayout &Layout) const;
void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
};
} // end anonymous namespace
static unsigned getRelaxedOpcodeBranch(unsigned Op) {
switch (Op) {
default:
return Op;
case X86::JAE_1: return X86::JAE_4;
case X86::JA_1: return X86::JA_4;
case X86::JBE_1: return X86::JBE_4;
case X86::JB_1: return X86::JB_4;
case X86::JE_1: return X86::JE_4;
case X86::JGE_1: return X86::JGE_4;
case X86::JG_1: return X86::JG_4;
case X86::JLE_1: return X86::JLE_4;
case X86::JL_1: return X86::JL_4;
case X86::JMP_1: return X86::JMP_4;
case X86::JNE_1: return X86::JNE_4;
case X86::JNO_1: return X86::JNO_4;
case X86::JNP_1: return X86::JNP_4;
case X86::JNS_1: return X86::JNS_4;
case X86::JO_1: return X86::JO_4;
case X86::JP_1: return X86::JP_4;
case X86::JS_1: return X86::JS_4;
}
}
static unsigned getRelaxedOpcodeArith(unsigned Op) {
switch (Op) {
default:
return Op;
// IMUL
case X86::IMUL16rri8: return X86::IMUL16rri;
case X86::IMUL16rmi8: return X86::IMUL16rmi;
case X86::IMUL32rri8: return X86::IMUL32rri;
case X86::IMUL32rmi8: return X86::IMUL32rmi;
case X86::IMUL64rri8: return X86::IMUL64rri32;
case X86::IMUL64rmi8: return X86::IMUL64rmi32;
// AND
case X86::AND16ri8: return X86::AND16ri;
case X86::AND16mi8: return X86::AND16mi;
case X86::AND32ri8: return X86::AND32ri;
case X86::AND32mi8: return X86::AND32mi;
case X86::AND64ri8: return X86::AND64ri32;
case X86::AND64mi8: return X86::AND64mi32;
// OR
case X86::OR16ri8: return X86::OR16ri;
case X86::OR16mi8: return X86::OR16mi;
case X86::OR32ri8: return X86::OR32ri;
case X86::OR32mi8: return X86::OR32mi;
case X86::OR64ri8: return X86::OR64ri32;
case X86::OR64mi8: return X86::OR64mi32;
// XOR
case X86::XOR16ri8: return X86::XOR16ri;
case X86::XOR16mi8: return X86::XOR16mi;
case X86::XOR32ri8: return X86::XOR32ri;
case X86::XOR32mi8: return X86::XOR32mi;
case X86::XOR64ri8: return X86::XOR64ri32;
case X86::XOR64mi8: return X86::XOR64mi32;
// ADD
case X86::ADD16ri8: return X86::ADD16ri;
case X86::ADD16mi8: return X86::ADD16mi;
case X86::ADD32ri8: return X86::ADD32ri;
case X86::ADD32mi8: return X86::ADD32mi;
case X86::ADD64ri8: return X86::ADD64ri32;
case X86::ADD64mi8: return X86::ADD64mi32;
// SUB
case X86::SUB16ri8: return X86::SUB16ri;
case X86::SUB16mi8: return X86::SUB16mi;
case X86::SUB32ri8: return X86::SUB32ri;
case X86::SUB32mi8: return X86::SUB32mi;
case X86::SUB64ri8: return X86::SUB64ri32;
case X86::SUB64mi8: return X86::SUB64mi32;
// CMP
case X86::CMP16ri8: return X86::CMP16ri;
case X86::CMP16mi8: return X86::CMP16mi;
case X86::CMP32ri8: return X86::CMP32ri;
case X86::CMP32mi8: return X86::CMP32mi;
case X86::CMP64ri8: return X86::CMP64ri32;
case X86::CMP64mi8: return X86::CMP64mi32;
// PUSH
case X86::PUSHi8: return X86::PUSHi32;
case X86::PUSHi16: return X86::PUSHi32;
case X86::PUSH64i8: return X86::PUSH64i32;
case X86::PUSH64i16: return X86::PUSH64i32;
}
}
static unsigned getRelaxedOpcode(unsigned Op) {
unsigned R = getRelaxedOpcodeArith(Op);
if (R != Op)
return R;
return getRelaxedOpcodeBranch(Op);
}
bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
// Branches can always be relaxed.
if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
return true;
if (MCDisableArithRelaxation)
return false;
// Check if this instruction is ever relaxable.
if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
return false;
// Check if it has an expression and is not RIP relative.
bool hasExp = false;
bool hasRIP = false;
for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
const MCOperand &Op = Inst.getOperand(i);
if (Op.isExpr())
hasExp = true;
if (Op.isReg() && Op.getReg() == X86::RIP)
hasRIP = true;
}
// FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
// how we do relaxations?
return hasExp && !hasRIP;
}
bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
uint64_t Value,
const MCInstFragment *DF,
const MCAsmLayout &Layout) const {
// Relax if the value is too big for a (signed) i8.
return int64_t(Value) != int64_t(int8_t(Value));
}
// FIXME: Can tblgen help at all here to verify there aren't other instructions
// we can relax?
void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
// The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
if (RelaxedOp == Inst.getOpcode()) {
SmallString<256> Tmp;
raw_svector_ostream OS(Tmp);
Inst.dump_pretty(OS);
OS << "\n";
report_fatal_error("unexpected instruction to relax: " + OS.str());
}
Res = Inst;
Res.setOpcode(RelaxedOp);
}
/// writeNopData - Write optimal nops to the output file for the \p Count
/// bytes. This returns the number of bytes written. It may return 0 if
/// the \p Count is more than the maximum optimal nops.
bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
static const uint8_t Nops[10][10] = {
// nop
{0x90},
// xchg %ax,%ax
{0x66, 0x90},
// nopl (%[re]ax)
{0x0f, 0x1f, 0x00},
// nopl 0(%[re]ax)
{0x0f, 0x1f, 0x40, 0x00},
// nopl 0(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x44, 0x00, 0x00},
// nopw 0(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
// nopl 0L(%[re]ax)
{0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
// nopl 0L(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
// nopw 0L(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
// nopw %cs:0L(%[re]ax,%[re]ax,1)
{0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
};
// This CPU doesnt support long nops. If needed add more.
// FIXME: Can we get this from the subtarget somehow?
if (CPU == "generic" || CPU == "i386" || CPU == "i486" || CPU == "i586" ||
CPU == "pentium" || CPU == "pentium-mmx" || CPU == "geode") {
for (uint64_t i = 0; i < Count; ++i)
OW->Write8(0x90);
return true;
}
// Write an optimal sequence for the first 15 bytes.
const uint64_t OptimalCount = (Count < 16) ? Count : 15;
const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
for (uint64_t i = 0, e = Prefixes; i != e; i++)
OW->Write8(0x66);
const uint64_t Rest = OptimalCount - Prefixes;
for (uint64_t i = 0, e = Rest; i != e; i++)
OW->Write8(Nops[Rest - 1][i]);
// Finish with single byte nops.
for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
OW->Write8(0x90);
return true;
}
/* *** */
namespace {
class ELFX86AsmBackend : public X86AsmBackend {
public:
uint8_t OSABI;
ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
: X86AsmBackend(T, CPU), OSABI(_OSABI) {
HasReliableSymbolDifference = true;
}
virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
return ES.getFlags() & ELF::SHF_MERGE;
}
};
class ELFX86_32AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
: ELFX86AsmBackend(T, OSABI, CPU) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86ELFObjectWriter(OS, /*Is64Bit*/ false, OSABI);
}
};
class ELFX86_64AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
: ELFX86AsmBackend(T, OSABI, CPU) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86ELFObjectWriter(OS, /*Is64Bit*/ true, OSABI);
}
};
class WindowsX86AsmBackend : public X86AsmBackend {
bool Is64Bit;
public:
WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
: X86AsmBackend(T, CPU)
, Is64Bit(is64Bit) {
}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86WinCOFFObjectWriter(OS, Is64Bit);
}
};
class DarwinX86AsmBackend : public X86AsmBackend {
public:
DarwinX86AsmBackend(const Target &T, StringRef CPU)
: X86AsmBackend(T, CPU) { }
};
class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
public:
DarwinX86_32AsmBackend(const Target &T, StringRef CPU)
: DarwinX86AsmBackend(T, CPU) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
object::mach::CTM_i386,
object::mach::CSX86_ALL);
}
};
class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
public:
DarwinX86_64AsmBackend(const Target &T, StringRef CPU)
: DarwinX86AsmBackend(T, CPU) {
HasReliableSymbolDifference = true;
}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
object::mach::CTM_x86_64,
object::mach::CSX86_ALL);
}
virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
// Temporary labels in the string literals sections require symbols. The
// issue is that the x86_64 relocation format does not allow symbol +
// offset, and so the linker does not have enough information to resolve the
// access to the appropriate atom unless an external relocation is used. For
// non-cstring sections, we expect the compiler to use a non-temporary label
// for anything that could have an addend pointing outside the symbol.
//
// See <rdar://problem/4765733>.
const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
}
virtual bool isSectionAtomizable(const MCSection &Section) const {
const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
// Fixed sized data sections are uniqued, they cannot be diced into atoms.
switch (SMO.getType()) {
default:
return true;
case MCSectionMachO::S_4BYTE_LITERALS:
case MCSectionMachO::S_8BYTE_LITERALS:
case MCSectionMachO::S_16BYTE_LITERALS:
case MCSectionMachO::S_LITERAL_POINTERS:
case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
case MCSectionMachO::S_INTERPOSING:
return false;
}
}
};
} // end anonymous namespace
MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT, StringRef CPU) {
Triple TheTriple(TT);
if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
return new DarwinX86_32AsmBackend(T, CPU);
if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
return new WindowsX86AsmBackend(T, false, CPU);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
return new ELFX86_32AsmBackend(T, OSABI, CPU);
}
MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT, StringRef CPU) {
Triple TheTriple(TT);
if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
return new DarwinX86_64AsmBackend(T, CPU);
if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
return new WindowsX86AsmBackend(T, true, CPU);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
return new ELFX86_64AsmBackend(T, OSABI, CPU);
}
|