aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
blob: a400d466e3d7fd2c4ad9cf662efcb8a24baa0af7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCMachObjectWriter.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

// Option to allow disabling arithmetic relaxation to workaround PR9807, which
// is useful when running bitwise comparison experiments on Darwin. We should be
// able to remove this once PR9807 is resolved.
static cl::opt<bool>
MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
         cl::desc("Disable relaxation of arithmetic instruction for X86"));

static unsigned getFixupKindLog2Size(unsigned Kind) {
  switch (Kind) {
  default:
    llvm_unreachable("invalid fixup kind!");
  case FK_PCRel_1:
  case FK_SecRel_1:
  case FK_Data_1:
    return 0;
  case FK_PCRel_2:
  case FK_SecRel_2:
  case FK_Data_2:
    return 1;
  case FK_PCRel_4:
  case X86::reloc_riprel_4byte:
  case X86::reloc_riprel_4byte_movq_load:
  case X86::reloc_signed_4byte:
  case X86::reloc_global_offset_table:
  case FK_SecRel_4:
  case FK_Data_4:
    return 2;
  case FK_PCRel_8:
  case FK_SecRel_8:
  case FK_Data_8:
  case X86::reloc_global_offset_table8:
    return 3;
  }
}

namespace {

class X86ELFObjectWriter : public MCELFObjectTargetWriter {
public:
  X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
                     bool HasRelocationAddend, bool foobar)
    : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
};

class X86AsmBackend : public MCAsmBackend {
  const StringRef CPU;
  bool HasNopl;
  const uint64_t MaxNopLength;
public:
  X86AsmBackend(const Target &T, StringRef CPU)
      : MCAsmBackend(), CPU(CPU), MaxNopLength(CPU == "slm" ? 7 : 15) {
    HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
              CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
              CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
              CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
              CPU != "c3" && CPU != "c3-2";
  }

  unsigned getNumFixupKinds() const override {
    return X86::NumTargetFixupKinds;
  }

  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
    const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
      { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
      { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
      { "reloc_signed_4byte", 0, 4 * 8, 0},
      { "reloc_global_offset_table", 0, 4 * 8, 0}
    };

    if (Kind < FirstTargetFixupKind)
      return MCAsmBackend::getFixupKindInfo(Kind);

    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
           "Invalid kind!");
    return Infos[Kind - FirstTargetFixupKind];
  }

  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
                  uint64_t Value, bool IsPCRel) const override {
    unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());

    assert(Fixup.getOffset() + Size <= DataSize &&
           "Invalid fixup offset!");

    // Check that uppper bits are either all zeros or all ones.
    // Specifically ignore overflow/underflow as long as the leakage is
    // limited to the lower bits. This is to remain compatible with
    // other assemblers.
    assert(isIntN(Size * 8 + 1, Value) &&
           "Value does not fit in the Fixup field");

    for (unsigned i = 0; i != Size; ++i)
      Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
  }

  bool mayNeedRelaxation(const MCInst &Inst) const override;

  bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
                            const MCRelaxableFragment *DF,
                            const MCAsmLayout &Layout) const override;

  void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;

  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
};
} // end anonymous namespace

static unsigned getRelaxedOpcodeBranch(unsigned Op) {
  switch (Op) {
  default:
    return Op;

  case X86::JAE_1: return X86::JAE_4;
  case X86::JA_1:  return X86::JA_4;
  case X86::JBE_1: return X86::JBE_4;
  case X86::JB_1:  return X86::JB_4;
  case X86::JE_1:  return X86::JE_4;
  case X86::JGE_1: return X86::JGE_4;
  case X86::JG_1:  return X86::JG_4;
  case X86::JLE_1: return X86::JLE_4;
  case X86::JL_1:  return X86::JL_4;
  case X86::JMP_1: return X86::JMP_4;
  case X86::JNE_1: return X86::JNE_4;
  case X86::JNO_1: return X86::JNO_4;
  case X86::JNP_1: return X86::JNP_4;
  case X86::JNS_1: return X86::JNS_4;
  case X86::JO_1:  return X86::JO_4;
  case X86::JP_1:  return X86::JP_4;
  case X86::JS_1:  return X86::JS_4;
  }
}

static unsigned getRelaxedOpcodeArith(unsigned Op) {
  switch (Op) {
  default:
    return Op;

    // IMUL
  case X86::IMUL16rri8: return X86::IMUL16rri;
  case X86::IMUL16rmi8: return X86::IMUL16rmi;
  case X86::IMUL32rri8: return X86::IMUL32rri;
  case X86::IMUL32rmi8: return X86::IMUL32rmi;
  case X86::IMUL64rri8: return X86::IMUL64rri32;
  case X86::IMUL64rmi8: return X86::IMUL64rmi32;

    // AND
  case X86::AND16ri8: return X86::AND16ri;
  case X86::AND16mi8: return X86::AND16mi;
  case X86::AND32ri8: return X86::AND32ri;
  case X86::AND32mi8: return X86::AND32mi;
  case X86::AND64ri8: return X86::AND64ri32;
  case X86::AND64mi8: return X86::AND64mi32;

    // OR
  case X86::OR16ri8: return X86::OR16ri;
  case X86::OR16mi8: return X86::OR16mi;
  case X86::OR32ri8: return X86::OR32ri;
  case X86::OR32mi8: return X86::OR32mi;
  case X86::OR64ri8: return X86::OR64ri32;
  case X86::OR64mi8: return X86::OR64mi32;

    // XOR
  case X86::XOR16ri8: return X86::XOR16ri;
  case X86::XOR16mi8: return X86::XOR16mi;
  case X86::XOR32ri8: return X86::XOR32ri;
  case X86::XOR32mi8: return X86::XOR32mi;
  case X86::XOR64ri8: return X86::XOR64ri32;
  case X86::XOR64mi8: return X86::XOR64mi32;

    // ADD
  case X86::ADD16ri8: return X86::ADD16ri;
  case X86::ADD16mi8: return X86::ADD16mi;
  case X86::ADD32ri8: return X86::ADD32ri;
  case X86::ADD32mi8: return X86::ADD32mi;
  case X86::ADD64ri8: return X86::ADD64ri32;
  case X86::ADD64mi8: return X86::ADD64mi32;

    // SUB
  case X86::SUB16ri8: return X86::SUB16ri;
  case X86::SUB16mi8: return X86::SUB16mi;
  case X86::SUB32ri8: return X86::SUB32ri;
  case X86::SUB32mi8: return X86::SUB32mi;
  case X86::SUB64ri8: return X86::SUB64ri32;
  case X86::SUB64mi8: return X86::SUB64mi32;

    // CMP
  case X86::CMP16ri8: return X86::CMP16ri;
  case X86::CMP16mi8: return X86::CMP16mi;
  case X86::CMP32ri8: return X86::CMP32ri;
  case X86::CMP32mi8: return X86::CMP32mi;
  case X86::CMP64ri8: return X86::CMP64ri32;
  case X86::CMP64mi8: return X86::CMP64mi32;

    // PUSH
  case X86::PUSH32i8:  return X86::PUSHi32;
  case X86::PUSH16i8:  return X86::PUSHi16;
  case X86::PUSH64i8:  return X86::PUSH64i32;
  case X86::PUSH64i16: return X86::PUSH64i32;
  }
}

static unsigned getRelaxedOpcode(unsigned Op) {
  unsigned R = getRelaxedOpcodeArith(Op);
  if (R != Op)
    return R;
  return getRelaxedOpcodeBranch(Op);
}

bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
  // Branches can always be relaxed.
  if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
    return true;

  if (MCDisableArithRelaxation)
    return false;

  // Check if this instruction is ever relaxable.
  if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
    return false;


  // Check if it has an expression and is not RIP relative.
  bool hasExp = false;
  bool hasRIP = false;
  for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
    const MCOperand &Op = Inst.getOperand(i);
    if (Op.isExpr())
      hasExp = true;

    if (Op.isReg() && Op.getReg() == X86::RIP)
      hasRIP = true;
  }

  // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
  // how we do relaxations?
  return hasExp && !hasRIP;
}

bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
                                         uint64_t Value,
                                         const MCRelaxableFragment *DF,
                                         const MCAsmLayout &Layout) const {
  // Relax if the value is too big for a (signed) i8.
  return int64_t(Value) != int64_t(int8_t(Value));
}

// FIXME: Can tblgen help at all here to verify there aren't other instructions
// we can relax?
void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
  // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());

  if (RelaxedOp == Inst.getOpcode()) {
    SmallString<256> Tmp;
    raw_svector_ostream OS(Tmp);
    Inst.dump_pretty(OS);
    OS << "\n";
    report_fatal_error("unexpected instruction to relax: " + OS.str());
  }

  Res = Inst;
  Res.setOpcode(RelaxedOp);
}

/// \brief Write a sequence of optimal nops to the output, covering \p Count
/// bytes.
/// \return - true on success, false on failure
bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
  static const uint8_t Nops[10][10] = {
    // nop
    {0x90},
    // xchg %ax,%ax
    {0x66, 0x90},
    // nopl (%[re]ax)
    {0x0f, 0x1f, 0x00},
    // nopl 0(%[re]ax)
    {0x0f, 0x1f, 0x40, 0x00},
    // nopl 0(%[re]ax,%[re]ax,1)
    {0x0f, 0x1f, 0x44, 0x00, 0x00},
    // nopw 0(%[re]ax,%[re]ax,1)
    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
    // nopl 0L(%[re]ax)
    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
    // nopl 0L(%[re]ax,%[re]ax,1)
    {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    // nopw 0L(%[re]ax,%[re]ax,1)
    {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
    // nopw %cs:0L(%[re]ax,%[re]ax,1)
    {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
  };

  // This CPU doesn't support long nops. If needed add more.
  // FIXME: Can we get this from the subtarget somehow?
  // FIXME: We could generated something better than plain 0x90.
  if (!HasNopl) {
    for (uint64_t i = 0; i < Count; ++i)
      OW->Write8(0x90);
    return true;
  }

  // 15 is the longest single nop instruction.  Emit as many 15-byte nops as
  // needed, then emit a nop of the remaining length.
  do {
    const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
    const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
    for (uint8_t i = 0; i < Prefixes; i++)
      OW->Write8(0x66);
    const uint8_t Rest = ThisNopLength - Prefixes;
    for (uint8_t i = 0; i < Rest; i++)
      OW->Write8(Nops[Rest - 1][i]);
    Count -= ThisNopLength;
  } while (Count != 0);

  return true;
}

/* *** */

namespace {

class ELFX86AsmBackend : public X86AsmBackend {
public:
  uint8_t OSABI;
  ELFX86AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
      : X86AsmBackend(T, CPU), OSABI(OSABI) {}
};

class ELFX86_32AsmBackend : public ELFX86AsmBackend {
public:
  ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    : ELFX86AsmBackend(T, OSABI, CPU) {}

  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
  }
};

class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
public:
  ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
      : ELFX86AsmBackend(T, OSABI, CPU) {}

  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
                                    ELF::EM_X86_64);
  }
};

class ELFX86_64AsmBackend : public ELFX86AsmBackend {
public:
  ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
    : ELFX86AsmBackend(T, OSABI, CPU) {}

  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
  }
};

class WindowsX86AsmBackend : public X86AsmBackend {
  bool Is64Bit;

public:
  WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
    : X86AsmBackend(T, CPU)
    , Is64Bit(is64Bit) {
  }

  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    return createX86WinCOFFObjectWriter(OS, Is64Bit);
  }
};

namespace CU {

  /// Compact unwind encoding values.
  enum CompactUnwindEncodings {
    /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
    /// the return address, then [RE]SP is moved to [RE]BP.
    UNWIND_MODE_BP_FRAME                   = 0x01000000,

    /// A frameless function with a small constant stack size.
    UNWIND_MODE_STACK_IMMD                 = 0x02000000,

    /// A frameless function with a large constant stack size.
    UNWIND_MODE_STACK_IND                  = 0x03000000,

    /// No compact unwind encoding is available.
    UNWIND_MODE_DWARF                      = 0x04000000,

    /// Mask for encoding the frame registers.
    UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,

    /// Mask for encoding the frameless registers.
    UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
  };

} // end CU namespace

class DarwinX86AsmBackend : public X86AsmBackend {
  const MCRegisterInfo &MRI;

  /// \brief Number of registers that can be saved in a compact unwind encoding.
  enum { CU_NUM_SAVED_REGS = 6 };

  mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
  bool Is64Bit;

  unsigned OffsetSize;                   ///< Offset of a "push" instruction.
  unsigned MoveInstrSize;                ///< Size of a "move" instruction.
  unsigned StackDivide;                  ///< Amount to adjust stack size by.
protected:
  /// \brief Size of a "push" instruction for the given register.
  unsigned PushInstrSize(unsigned Reg) const {
    switch (Reg) {
      case X86::EBX:
      case X86::ECX:
      case X86::EDX:
      case X86::EDI:
      case X86::ESI:
      case X86::EBP:
      case X86::RBX:
      case X86::RBP:
        return 1;
      case X86::R12:
      case X86::R13:
      case X86::R14:
      case X86::R15:
        return 2;
    }
    return 1;
  }

  /// \brief Implementation of algorithm to generate the compact unwind encoding
  /// for the CFI instructions.
  uint32_t
  generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
    if (Instrs.empty()) return 0;

    // Reset the saved registers.
    unsigned SavedRegIdx = 0;
    memset(SavedRegs, 0, sizeof(SavedRegs));

    bool HasFP = false;

    // Encode that we are using EBP/RBP as the frame pointer.
    uint32_t CompactUnwindEncoding = 0;

    unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
    unsigned InstrOffset = 0;
    unsigned StackAdjust = 0;
    unsigned StackSize = 0;
    unsigned PrevStackSize = 0;
    unsigned NumDefCFAOffsets = 0;

    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
      const MCCFIInstruction &Inst = Instrs[i];

      switch (Inst.getOperation()) {
      default:
        // Any other CFI directives indicate a frame that we aren't prepared
        // to represent via compact unwind, so just bail out.
        return 0;
      case MCCFIInstruction::OpDefCfaRegister: {
        // Defines a frame pointer. E.g.
        //
        //     movq %rsp, %rbp
        //  L0:
        //     .cfi_def_cfa_register %rbp
        //
        HasFP = true;
        assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
               (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");

        // Reset the counts.
        memset(SavedRegs, 0, sizeof(SavedRegs));
        StackAdjust = 0;
        SavedRegIdx = 0;
        InstrOffset += MoveInstrSize;
        break;
      }
      case MCCFIInstruction::OpDefCfaOffset: {
        // Defines a new offset for the CFA. E.g.
        //
        //  With frame:
        //
        //     pushq %rbp
        //  L0:
        //     .cfi_def_cfa_offset 16
        //
        //  Without frame:
        //
        //     subq $72, %rsp
        //  L0:
        //     .cfi_def_cfa_offset 80
        //
        PrevStackSize = StackSize;
        StackSize = std::abs(Inst.getOffset()) / StackDivide;
        ++NumDefCFAOffsets;
        break;
      }
      case MCCFIInstruction::OpOffset: {
        // Defines a "push" of a callee-saved register. E.g.
        //
        //     pushq %r15
        //     pushq %r14
        //     pushq %rbx
        //  L0:
        //     subq $120, %rsp
        //  L1:
        //     .cfi_offset %rbx, -40
        //     .cfi_offset %r14, -32
        //     .cfi_offset %r15, -24
        //
        if (SavedRegIdx == CU_NUM_SAVED_REGS)
          // If there are too many saved registers, we cannot use a compact
          // unwind encoding.
          return CU::UNWIND_MODE_DWARF;

        unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
        SavedRegs[SavedRegIdx++] = Reg;
        StackAdjust += OffsetSize;
        InstrOffset += PushInstrSize(Reg);
        break;
      }
      }
    }

    StackAdjust /= StackDivide;

    if (HasFP) {
      if ((StackAdjust & 0xFF) != StackAdjust)
        // Offset was too big for a compact unwind encoding.
        return CU::UNWIND_MODE_DWARF;

      // Get the encoding of the saved registers when we have a frame pointer.
      uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;

      CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
      CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
      CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
    } else {
      // If the amount of the stack allocation is the size of a register, then
      // we "push" the RAX/EAX register onto the stack instead of adjusting the
      // stack pointer with a SUB instruction. We don't support the push of the
      // RAX/EAX register with compact unwind. So we check for that situation
      // here.
      if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
           StackSize - PrevStackSize == 1) ||
          (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
        return CU::UNWIND_MODE_DWARF;

      SubtractInstrIdx += InstrOffset;
      ++StackAdjust;

      if ((StackSize & 0xFF) == StackSize) {
        // Frameless stack with a small stack size.
        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;

        // Encode the stack size.
        CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
      } else {
        if ((StackAdjust & 0x7) != StackAdjust)
          // The extra stack adjustments are too big for us to handle.
          return CU::UNWIND_MODE_DWARF;

        // Frameless stack with an offset too large for us to encode compactly.
        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;

        // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
        // instruction.
        CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;

        // Encode any extra stack stack adjustments (done via push
        // instructions).
        CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
      }

      // Encode the number of registers saved. (Reverse the list first.)
      std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
      CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;

      // Get the encoding of the saved registers when we don't have a frame
      // pointer.
      uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;

      // Encode the register encoding.
      CompactUnwindEncoding |=
        RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
    }

    return CompactUnwindEncoding;
  }

private:
  /// \brief Get the compact unwind number for a given register. The number
  /// corresponds to the enum lists in compact_unwind_encoding.h.
  int getCompactUnwindRegNum(unsigned Reg) const {
    static const uint16_t CU32BitRegs[7] = {
      X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    };
    static const uint16_t CU64BitRegs[] = {
      X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    };
    const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
    for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
      if (*CURegs == Reg)
        return Idx;

    return -1;
  }

  /// \brief Return the registers encoded for a compact encoding with a frame
  /// pointer.
  uint32_t encodeCompactUnwindRegistersWithFrame() const {
    // Encode the registers in the order they were saved --- 3-bits per
    // register. The list of saved registers is assumed to be in reverse
    // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
    uint32_t RegEnc = 0;
    for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
      unsigned Reg = SavedRegs[i];
      if (Reg == 0) break;

      int CURegNum = getCompactUnwindRegNum(Reg);
      if (CURegNum == -1) return ~0U;

      // Encode the 3-bit register number in order, skipping over 3-bits for
      // each register.
      RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
    }

    assert((RegEnc & 0x3FFFF) == RegEnc &&
           "Invalid compact register encoding!");
    return RegEnc;
  }

  /// \brief Create the permutation encoding used with frameless stacks. It is
  /// passed the number of registers to be saved and an array of the registers
  /// saved.
  uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
    // The saved registers are numbered from 1 to 6. In order to encode the
    // order in which they were saved, we re-number them according to their
    // place in the register order. The re-numbering is relative to the last
    // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
    // that order:
    //
    //    Orig  Re-Num
    //    ----  ------
    //     6       6
    //     2       2
    //     4       3
    //     5       3
    //
    for (unsigned i = 0; i < RegCount; ++i) {
      int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
      if (CUReg == -1) return ~0U;
      SavedRegs[i] = CUReg;
    }

    // Reverse the list.
    std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);

    uint32_t RenumRegs[CU_NUM_SAVED_REGS];
    for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
      unsigned Countless = 0;
      for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
        if (SavedRegs[j] < SavedRegs[i])
          ++Countless;

      RenumRegs[i] = SavedRegs[i] - Countless - 1;
    }

    // Take the renumbered values and encode them into a 10-bit number.
    uint32_t permutationEncoding = 0;
    switch (RegCount) {
    case 6:
      permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
                             + 6 * RenumRegs[2] +  2 * RenumRegs[3]
                             +     RenumRegs[4];
      break;
    case 5:
      permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
                             + 6 * RenumRegs[3] +  2 * RenumRegs[4]
                             +     RenumRegs[5];
      break;
    case 4:
      permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
                             + 3 * RenumRegs[4] +      RenumRegs[5];
      break;
    case 3:
      permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
                             +     RenumRegs[5];
      break;
    case 2:
      permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
      break;
    case 1:
      permutationEncoding |=       RenumRegs[5];
      break;
    }

    assert((permutationEncoding & 0x3FF) == permutationEncoding &&
           "Invalid compact register encoding!");
    return permutationEncoding;
  }

public:
  DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
                      bool Is64Bit)
    : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
    memset(SavedRegs, 0, sizeof(SavedRegs));
    OffsetSize = Is64Bit ? 8 : 4;
    MoveInstrSize = Is64Bit ? 3 : 2;
    StackDivide = Is64Bit ? 8 : 4;
  }
};

class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
public:
  DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
                         StringRef CPU)
      : DarwinX86AsmBackend(T, MRI, CPU, false) {}

  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
                                     MachO::CPU_TYPE_I386,
                                     MachO::CPU_SUBTYPE_I386_ALL);
  }

  /// \brief Generate the compact unwind encoding for the CFI instructions.
  uint32_t generateCompactUnwindEncoding(
                             ArrayRef<MCCFIInstruction> Instrs) const override {
    return generateCompactUnwindEncodingImpl(Instrs);
  }
};

class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
  const MachO::CPUSubTypeX86 Subtype;
public:
  DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
                         StringRef CPU, MachO::CPUSubTypeX86 st)
      : DarwinX86AsmBackend(T, MRI, CPU, true), Subtype(st) {}

  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
    return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
                                     MachO::CPU_TYPE_X86_64, Subtype);
  }

  /// \brief Generate the compact unwind encoding for the CFI instructions.
  uint32_t generateCompactUnwindEncoding(
                             ArrayRef<MCCFIInstruction> Instrs) const override {
    return generateCompactUnwindEncodingImpl(Instrs);
  }
};

} // end anonymous namespace

MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
                                           const MCRegisterInfo &MRI,
                                           StringRef TT,
                                           StringRef CPU) {
  Triple TheTriple(TT);

  if (TheTriple.isOSBinFormatMachO())
    return new DarwinX86_32AsmBackend(T, MRI, CPU);

  if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
    return new WindowsX86AsmBackend(T, false, CPU);

  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
  return new ELFX86_32AsmBackend(T, OSABI, CPU);
}

MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
                                           const MCRegisterInfo &MRI,
                                           StringRef TT,
                                           StringRef CPU) {
  Triple TheTriple(TT);

  if (TheTriple.isOSBinFormatMachO()) {
    MachO::CPUSubTypeX86 CS =
        StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
            .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
            .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
    return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
  }

  if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
    return new WindowsX86AsmBackend(T, true, CPU);

  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());

  if (TheTriple.getEnvironment() == Triple::GNUX32)
    return new ELFX86_X32AsmBackend(T, OSABI, CPU);
  return new ELFX86_64AsmBackend(T, OSABI, CPU);
}