1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
|
//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides X86 specific target descriptions.
//
//===----------------------------------------------------------------------===//
#include "X86MCTargetDesc.h"
#include "X86MCAsmInfo.h"
#include "InstPrinter/X86ATTInstPrinter.h"
#include "InstPrinter/X86IntelInstPrinter.h"
#include "llvm/MC/MachineLocation.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#define GET_REGINFO_MC_DESC
#include "X86GenRegisterInfo.inc"
#define GET_INSTRINFO_MC_DESC
#include "X86GenInstrInfo.inc"
#define GET_SUBTARGETINFO_MC_DESC
#include "X86GenSubtargetInfo.inc"
#if _MSC_VER
#include <intrin.h>
#endif
using namespace llvm;
std::string X86_MC::ParseX86Triple(StringRef TT) {
Triple TheTriple(TT);
std::string FS;
if (TheTriple.getArch() == Triple::x86_64)
FS = "+64bit-mode";
else
FS = "-64bit-mode";
return FS;
}
/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments. If we can't run cpuid on the host, return true.
bool X86_MC::GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
#if defined(__GNUC__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#else
return true;
#endif
#else
return true;
#endif
}
/// GetCpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the
/// 4 values in the specified arguments. If we can't run cpuid on the host,
/// return true.
bool X86_MC::GetCpuIDAndInfoEx(unsigned value, unsigned subleaf, unsigned *rEAX,
unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
#if defined(__GNUC__)
// gcc desn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value),
"c" (subleaf));
return false;
#elif defined(_MSC_VER)
// __cpuidex was added in MSVC++ 9.0 SP1
#if (_MSC_VER > 1500) || (_MSC_VER == 1500 && _MSC_FULL_VER >= 150030729)
int registers[4];
__cpuidex(registers, value, subleaf);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
#else
return true;
#endif
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value),
"c" (subleaf));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
mov ecx,subleaf
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#else
return true;
#endif
#else
return true;
#endif
}
void X86_MC::DetectFamilyModel(unsigned EAX, unsigned &Family,
unsigned &Model) {
Family = (EAX >> 8) & 0xf; // Bits 8 - 11
Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (Family == 6 || Family == 0xf) {
if (Family == 0xf)
// Examine extended family ID if family ID is F.
Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
unsigned X86_MC::getDwarfRegFlavour(StringRef TT, bool isEH) {
Triple TheTriple(TT);
if (TheTriple.getArch() == Triple::x86_64)
return DWARFFlavour::X86_64;
if (TheTriple.isOSDarwin())
return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
if (TheTriple.getOS() == Triple::MinGW32 ||
TheTriple.getOS() == Triple::Cygwin)
// Unsupported by now, just quick fallback
return DWARFFlavour::X86_32_Generic;
return DWARFFlavour::X86_32_Generic;
}
/// getX86RegNum - This function maps LLVM register identifiers to their X86
/// specific numbering, which is used in various places encoding instructions.
unsigned X86_MC::getX86RegNum(unsigned RegNo) {
switch(RegNo) {
case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
return N86::ESP;
case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
return N86::EBP;
case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
return N86::ESI;
case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
return N86::EDI;
case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
return N86::EAX;
case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
return N86::ECX;
case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
return N86::EDX;
case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
return N86::EBX;
case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
return N86::ESP;
case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
return N86::EBP;
case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
return N86::ESI;
case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
return N86::EDI;
case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
return RegNo-X86::ST0;
case X86::XMM0: case X86::XMM8:
case X86::YMM0: case X86::YMM8: case X86::MM0:
return 0;
case X86::XMM1: case X86::XMM9:
case X86::YMM1: case X86::YMM9: case X86::MM1:
return 1;
case X86::XMM2: case X86::XMM10:
case X86::YMM2: case X86::YMM10: case X86::MM2:
return 2;
case X86::XMM3: case X86::XMM11:
case X86::YMM3: case X86::YMM11: case X86::MM3:
return 3;
case X86::XMM4: case X86::XMM12:
case X86::YMM4: case X86::YMM12: case X86::MM4:
return 4;
case X86::XMM5: case X86::XMM13:
case X86::YMM5: case X86::YMM13: case X86::MM5:
return 5;
case X86::XMM6: case X86::XMM14:
case X86::YMM6: case X86::YMM14: case X86::MM6:
return 6;
case X86::XMM7: case X86::XMM15:
case X86::YMM7: case X86::YMM15: case X86::MM7:
return 7;
case X86::ES: return 0;
case X86::CS: return 1;
case X86::SS: return 2;
case X86::DS: return 3;
case X86::FS: return 4;
case X86::GS: return 5;
case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
case X86::CR2: case X86::CR10: case X86::DR2: return 2;
case X86::CR3: case X86::CR11: case X86::DR3: return 3;
case X86::CR4: case X86::CR12: case X86::DR4: return 4;
case X86::CR5: case X86::CR13: case X86::DR5: return 5;
case X86::CR6: case X86::CR14: case X86::DR6: return 6;
case X86::CR7: case X86::CR15: case X86::DR7: return 7;
// Pseudo index registers are equivalent to a "none"
// scaled index (See Intel Manual 2A, table 2-3)
case X86::EIZ:
case X86::RIZ:
return 4;
default:
assert((int(RegNo) > 0) && "Unknown physical register!");
return 0;
}
}
void X86_MC::InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI) {
// FIXME: TableGen these.
for (unsigned Reg = X86::NoRegister+1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
int SEH = X86_MC::getX86RegNum(Reg);
switch (Reg) {
case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
SEH += 8;
break;
}
MRI->mapLLVMRegToSEHReg(Reg, SEH);
}
}
MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(StringRef TT, StringRef CPU,
StringRef FS) {
std::string ArchFS = X86_MC::ParseX86Triple(TT);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = ArchFS + "," + FS.str();
else
ArchFS = FS;
}
std::string CPUName = CPU;
if (CPUName.empty()) {
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
CPUName = sys::getHostCPUName();
#else
CPUName = "generic";
#endif
}
MCSubtargetInfo *X = new MCSubtargetInfo();
InitX86MCSubtargetInfo(X, TT, CPUName, ArchFS);
return X;
}
static MCInstrInfo *createX86MCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitX86MCInstrInfo(X);
return X;
}
static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) {
Triple TheTriple(TT);
unsigned RA = (TheTriple.getArch() == Triple::x86_64)
? X86::RIP // Should have dwarf #16.
: X86::EIP; // Should have dwarf #8.
MCRegisterInfo *X = new MCRegisterInfo();
InitX86MCRegisterInfo(X, RA,
X86_MC::getDwarfRegFlavour(TT, false),
X86_MC::getDwarfRegFlavour(TT, true));
X86_MC::InitLLVM2SEHRegisterMapping(X);
return X;
}
static MCAsmInfo *createX86MCAsmInfo(const Target &T, StringRef TT) {
Triple TheTriple(TT);
bool is64Bit = TheTriple.getArch() == Triple::x86_64;
MCAsmInfo *MAI;
if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
if (is64Bit)
MAI = new X86_64MCAsmInfoDarwin(TheTriple);
else
MAI = new X86MCAsmInfoDarwin(TheTriple);
} else if (TheTriple.getOS() == Triple::Win32) {
MAI = new X86MCAsmInfoMicrosoft(TheTriple);
} else if (TheTriple.getOS() == Triple::MinGW32 || TheTriple.getOS() == Triple::Cygwin) {
MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
} else {
MAI = new X86ELFMCAsmInfo(TheTriple);
}
// Initialize initial frame state.
// Calculate amount of bytes used for return address storing
int stackGrowth = is64Bit ? -8 : -4;
// Initial state of the frame pointer is esp+stackGrowth.
MachineLocation Dst(MachineLocation::VirtualFP);
MachineLocation Src(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
MAI->addInitialFrameState(0, Dst, Src);
// Add return address to move list
MachineLocation CSDst(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
MachineLocation CSSrc(is64Bit ? X86::RIP : X86::EIP);
MAI->addInitialFrameState(0, CSDst, CSSrc);
return MAI;
}
static MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
MCCodeGenInfo *X = new MCCodeGenInfo();
Triple T(TT);
bool is64Bit = T.getArch() == Triple::x86_64;
if (RM == Reloc::Default) {
// Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
// Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
// use static relocation model by default.
if (T.isOSDarwin()) {
if (is64Bit)
RM = Reloc::PIC_;
else
RM = Reloc::DynamicNoPIC;
} else if (T.isOSWindows() && is64Bit)
RM = Reloc::PIC_;
else
RM = Reloc::Static;
}
// ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
// is defined as a model for code which may be used in static or dynamic
// executables but not necessarily a shared library. On X86-32 we just
// compile in -static mode, in x86-64 we use PIC.
if (RM == Reloc::DynamicNoPIC) {
if (is64Bit)
RM = Reloc::PIC_;
else if (!T.isOSDarwin())
RM = Reloc::Static;
}
// If we are on Darwin, disallow static relocation model in X86-64 mode, since
// the Mach-O file format doesn't support it.
if (RM == Reloc::Static && T.isOSDarwin() && is64Bit)
RM = Reloc::PIC_;
// For static codegen, if we're not already set, use Small codegen.
if (CM == CodeModel::Default)
CM = CodeModel::Small;
else if (CM == CodeModel::JITDefault)
// 64-bit JIT places everything in the same buffer except external funcs.
CM = is64Bit ? CodeModel::Large : CodeModel::Small;
X->InitMCCodeGenInfo(RM, CM, OL);
return X;
}
static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Ctx, MCAsmBackend &MAB,
raw_ostream &_OS,
MCCodeEmitter *_Emitter,
bool RelaxAll,
bool NoExecStack) {
Triple TheTriple(TT);
if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
return createMachOStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll);
if (TheTriple.isOSWindows())
return createWinCOFFStreamer(Ctx, MAB, *_Emitter, _OS, RelaxAll);
return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
}
static MCInstPrinter *createX86MCInstPrinter(const Target &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI) {
if (SyntaxVariant == 0)
return new X86ATTInstPrinter(MAI, MRI);
if (SyntaxVariant == 1)
return new X86IntelInstPrinter(MAI, MRI);
return 0;
}
static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
return new MCInstrAnalysis(Info);
}
// Force static initialization.
extern "C" void LLVMInitializeX86TargetMC() {
// Register the MC asm info.
RegisterMCAsmInfoFn A(TheX86_32Target, createX86MCAsmInfo);
RegisterMCAsmInfoFn B(TheX86_64Target, createX86MCAsmInfo);
// Register the MC codegen info.
RegisterMCCodeGenInfoFn C(TheX86_32Target, createX86MCCodeGenInfo);
RegisterMCCodeGenInfoFn D(TheX86_64Target, createX86MCCodeGenInfo);
// Register the MC instruction info.
TargetRegistry::RegisterMCInstrInfo(TheX86_32Target, createX86MCInstrInfo);
TargetRegistry::RegisterMCInstrInfo(TheX86_64Target, createX86MCInstrInfo);
// Register the MC register info.
TargetRegistry::RegisterMCRegInfo(TheX86_32Target, createX86MCRegisterInfo);
TargetRegistry::RegisterMCRegInfo(TheX86_64Target, createX86MCRegisterInfo);
// Register the MC subtarget info.
TargetRegistry::RegisterMCSubtargetInfo(TheX86_32Target,
X86_MC::createX86MCSubtargetInfo);
TargetRegistry::RegisterMCSubtargetInfo(TheX86_64Target,
X86_MC::createX86MCSubtargetInfo);
// Register the MC instruction analyzer.
TargetRegistry::RegisterMCInstrAnalysis(TheX86_32Target,
createX86MCInstrAnalysis);
TargetRegistry::RegisterMCInstrAnalysis(TheX86_64Target,
createX86MCInstrAnalysis);
// Register the code emitter.
TargetRegistry::RegisterMCCodeEmitter(TheX86_32Target,
createX86MCCodeEmitter);
TargetRegistry::RegisterMCCodeEmitter(TheX86_64Target,
createX86MCCodeEmitter);
// Register the asm backend.
TargetRegistry::RegisterMCAsmBackend(TheX86_32Target,
createX86_32AsmBackend);
TargetRegistry::RegisterMCAsmBackend(TheX86_64Target,
createX86_64AsmBackend);
// Register the object streamer.
TargetRegistry::RegisterMCObjectStreamer(TheX86_32Target,
createMCStreamer);
TargetRegistry::RegisterMCObjectStreamer(TheX86_64Target,
createMCStreamer);
// Register the MCInstPrinter.
TargetRegistry::RegisterMCInstPrinter(TheX86_32Target,
createX86MCInstPrinter);
TargetRegistry::RegisterMCInstPrinter(TheX86_64Target,
createX86MCInstPrinter);
}
|