1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===//
//
// This file contains a printer that converts from our internal representation
// of LLVM code to a nice human readable form that is suitable for debuggging.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "Support/Statistic.h"
namespace {
struct Printer : public FunctionPass {
TargetMachine &TM;
std::ostream &O;
Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {}
bool runOnFunction(Function &F);
};
}
/// createX86CodePrinterPass - Print out the specified machine code function to
/// the specified stream. This function should work regardless of whether or
/// not the function is in SSA form or not.
///
Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) {
return new Printer(TM, O);
}
/// runOnFunction - This uses the X86InstructionInfo::print method
/// to print assembly for each instruction.
bool Printer::runOnFunction (Function & F)
{
static unsigned bbnumber = 0;
MachineFunction & MF = MachineFunction::get (&F);
const MachineInstrInfo & MII = TM.getInstrInfo ();
// Print out labels for the function.
O << "\t.globl\t" << F.getName () << "\n";
O << "\t.type\t" << F.getName () << ", @function\n";
O << F.getName () << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator bb_i = MF.begin (), bb_e = MF.end ();
bb_i != bb_e; ++bb_i)
{
// Print a label for the basic block.
O << ".BB" << bbnumber++ << ":\n";
for (MachineBasicBlock::const_iterator i_i = bb_i->begin (), i_e =
bb_i->end (); i_i != i_e; ++i_i)
{
// Print the assembly for the instruction.
O << "\t";
MII.print(*i_i, O, TM);
}
}
// We didn't modify anything.
return false;
}
static bool isReg(const MachineOperand &MO) {
return MO.getType() == MachineOperand::MO_VirtualRegister ||
MO.getType() == MachineOperand::MO_MachineRegister;
}
static bool isImmediate(const MachineOperand &MO) {
return MO.getType() == MachineOperand::MO_SignExtendedImmed ||
MO.getType() == MachineOperand::MO_UnextendedImmed;
}
static bool isPCRelativeDisp(const MachineOperand &MO) {
return MO.getType() == MachineOperand::MO_PCRelativeDisp;
}
static bool isScale(const MachineOperand &MO) {
return isImmediate(MO) &&
(MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
}
static bool isMem(const MachineInstr *MI, unsigned Op) {
return Op+4 <= MI->getNumOperands() &&
isReg(MI->getOperand(Op )) && isScale(MI->getOperand(Op+1)) &&
isReg(MI->getOperand(Op+2)) && isImmediate(MI->getOperand(Op+3));
}
static void printOp(std::ostream &O, const MachineOperand &MO,
const MRegisterInfo &RI) {
switch (MO.getType()) {
case MachineOperand::MO_VirtualRegister:
if (Value *V = MO.getVRegValueOrNull()) {
O << "<" << V->getName() << ">";
return;
}
case MachineOperand::MO_MachineRegister:
if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
O << RI.get(MO.getReg()).Name;
else
O << "%reg" << MO.getReg();
return;
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
O << (int)MO.getImmedValue();
return;
case MachineOperand::MO_PCRelativeDisp:
O << "<" << MO.getVRegValue()->getName() << ">";
return;
default:
O << "<unknown op ty>"; return;
}
}
static const std::string sizePtr (const MachineInstrDescriptor &Desc) {
switch (Desc.TSFlags & X86II::ArgMask) {
case X86II::Arg8: return "BYTE PTR";
case X86II::Arg16: return "WORD PTR";
case X86II::Arg32: return "DWORD PTR";
case X86II::Arg64: return "QWORD PTR";
case X86II::Arg80: return "XWORD PTR";
case X86II::Arg128: return "128BIT PTR"; // dunno what the real one is
default: return "<SIZE?> PTR"; // crack being smoked
}
}
static void printMemReference(std::ostream &O, const MachineInstr *MI,
unsigned Op, const MRegisterInfo &RI) {
assert(isMem(MI, Op) && "Invalid memory reference!");
const MachineOperand &BaseReg = MI->getOperand(Op);
const MachineOperand &Scale = MI->getOperand(Op+1);
const MachineOperand &IndexReg = MI->getOperand(Op+2);
const MachineOperand &Disp = MI->getOperand(Op+3);
O << "[";
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOp(O, BaseReg, RI);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (Scale.getImmedValue() != 1)
O << Scale.getImmedValue() << "*";
printOp(O, IndexReg, RI);
NeedPlus = true;
}
if (Disp.getImmedValue()) {
if (NeedPlus) O << " + ";
printOp(O, Disp, RI);
}
O << "]";
}
// print - Print out an x86 instruction in intel syntax
void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O,
const TargetMachine &TM) const {
unsigned Opcode = MI->getOpcode();
const MachineInstrDescriptor &Desc = get(Opcode);
if (Opcode == X86::PHI) {
printOp(O, MI->getOperand(0), RI);
O << " = phi ";
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
if (i != 1) O << ", ";
O << "[";
printOp(O, MI->getOperand(i), RI);
O << ", ";
printOp(O, MI->getOperand(i+1), RI);
O << "]";
}
O << "\n";
return;
}
switch (Desc.TSFlags & X86II::FormMask) {
case X86II::RawFrm:
// The accepted forms of Raw instructions are:
// 1. nop - No operand required
// 2. jmp foo - PC relative displacement operand
//
assert(MI->getNumOperands() == 0 ||
(MI->getNumOperands() == 1 && isPCRelativeDisp(MI->getOperand(0))) &&
"Illegal raw instruction!");
O << getName(MI->getOpCode()) << " ";
if (MI->getNumOperands() == 1) {
printOp(O, MI->getOperand(0), RI);
}
O << "\n";
return;
case X86II::AddRegFrm: {
// There are currently two forms of acceptable AddRegFrm instructions.
// Either the instruction JUST takes a single register (like inc, dec, etc),
// or it takes a register and an immediate of the same size as the register
// (move immediate f.e.). Note that this immediate value might be stored as
// an LLVM value, to represent, for example, loading the address of a global
// into a register.
//
assert(isReg(MI->getOperand(0)) &&
(MI->getNumOperands() == 1 ||
(MI->getNumOperands() == 2 &&
(MI->getOperand(1).getVRegValueOrNull() ||
isImmediate(MI->getOperand(1))))) &&
"Illegal form for AddRegFrm instruction!");
unsigned Reg = MI->getOperand(0).getReg();
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
if (MI->getNumOperands() == 2) {
O << ", ";
printOp(O, MI->getOperand(1), RI);
}
O << "\n";
return;
}
case X86II::MRMDestReg: {
// There are two acceptable forms of MRMDestReg instructions, those with 3
// and 2 operands:
//
// 3 Operands: in this form, the first two registers (the destination, and
// the first operand) should be the same, post register allocation. The 3rd
// operand is an additional input. This should be for things like add
// instructions.
//
// 2 Operands: this is for things like mov that do not read a second input
//
assert(isReg(MI->getOperand(0)) &&
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 && isReg(MI->getOperand(1)))) &&
isReg(MI->getOperand(MI->getNumOperands()-1))
&& "Bad format for MRMDestReg!");
if (MI->getNumOperands() == 3 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
O << ", ";
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
O << "\n";
return;
}
case X86II::MRMDestMem: {
// These instructions are the same as MRMDestReg, but instead of having a
// register reference for the mod/rm field, it's a memory reference.
//
assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
isReg(MI->getOperand(4)) && "Bad format for MRMDestMem!");
O << getName(MI->getOpCode()) << " " << sizePtr (Desc) << " ";
printMemReference(O, MI, 0, RI);
O << ", ";
printOp(O, MI->getOperand(4), RI);
O << "\n";
return;
}
case X86II::MRMSrcReg: {
// There is a two forms that are acceptable for MRMSrcReg instructions,
// those with 3 and 2 operands:
//
// 3 Operands: in this form, the last register (the second input) is the
// ModR/M input. The first two operands should be the same, post register
// allocation. This is for things like: add r32, r/m32
//
// 2 Operands: this is for things like mov that do not read a second input
//
assert(isReg(MI->getOperand(0)) &&
isReg(MI->getOperand(1)) &&
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 && isReg(MI->getOperand(2))))
&& "Bad format for MRMDestReg!");
if (MI->getNumOperands() == 3 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
O << ", ";
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
O << "\n";
return;
}
case X86II::MRMSrcMem: {
// These instructions are the same as MRMSrcReg, but instead of having a
// register reference for the mod/rm field, it's a memory reference.
//
assert(isReg(MI->getOperand(0)) &&
(MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
(MI->getNumOperands() == 2+4 && isReg(MI->getOperand(1)) &&
isMem(MI, 2))
&& "Bad format for MRMDestReg!");
if (MI->getNumOperands() == 2+4 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
O << ", " << sizePtr (Desc) << " ";
printMemReference(O, MI, MI->getNumOperands()-4, RI);
O << "\n";
return;
}
case X86II::MRMS0r: case X86II::MRMS1r:
case X86II::MRMS2r: case X86II::MRMS3r:
case X86II::MRMS4r: case X86II::MRMS5r:
case X86II::MRMS6r: case X86II::MRMS7r: {
// In this form, the following are valid formats:
// 1. sete r
// 2. cmp reg, immediate
// 2. shl rdest, rinput <implicit CL or 1>
// 3. sbb rdest, rinput, immediate [rdest = rinput]
//
assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
isReg(MI->getOperand(0)) && "Bad MRMSxR format!");
assert((MI->getNumOperands() != 2 ||
isReg(MI->getOperand(1)) || isImmediate(MI->getOperand(1))) &&
"Bad MRMSxR format!");
assert((MI->getNumOperands() < 3 ||
(isReg(MI->getOperand(1)) && isImmediate(MI->getOperand(2)))) &&
"Bad MRMSxR format!");
if (MI->getNumOperands() > 1 && isReg(MI->getOperand(1)) &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
if (isImmediate(MI->getOperand(MI->getNumOperands()-1))) {
O << ", ";
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
}
O << "\n";
return;
}
default:
O << "\t\t\t-"; MI->print(O, TM); break;
}
}
|