aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/Printer.cpp
blob: 5912778b11c506161d4202bcc3bfc6bc023b4016 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===//
//
// This file contains a printer that converts from our internal representation
// of LLVM code to a nice human readable form that is suitable for debuggging.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "Support/Statistic.h"

namespace {
  struct Printer : public FunctionPass {
    TargetMachine &TM;
    std::ostream &O;

    Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {}

    bool runOnFunction(Function &F);
  };
}

/// createX86CodePrinterPass - Print out the specified machine code function to
/// the specified stream.  This function should work regardless of whether or
/// not the function is in SSA form or not.
///
Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) {
  return new Printer(TM, O);
}


/// runOnFunction - This uses the X86InstructionInfo::print method
/// to print assembly for each instruction.
bool Printer::runOnFunction (Function & F)
{
  static unsigned bbnumber = 0;
  MachineFunction & MF = MachineFunction::get (&F);
  const MachineInstrInfo & MII = TM.getInstrInfo ();

  O << "; x86 printing only sorta implemented so far!\n";

  // Print out labels for the function.
  O << "\t.globl\t" << F.getName () << "\n";
  O << "\t.type\t" << F.getName () << ", @function\n";
  O << F.getName () << ":\n";

  // Print out code for the function.
  for (MachineFunction::const_iterator bb_i = MF.begin (), bb_e = MF.end ();
       bb_i != bb_e; ++bb_i)
    {
      // Print a label for the basic block.
      O << ".BB" << bbnumber++ << ":\n";
      for (MachineBasicBlock::const_iterator i_i = bb_i->begin (), i_e =
	   bb_i->end (); i_i != i_e; ++i_i)
	{
	  // Print the assembly for the instruction.
	  O << "\t";
          MII.print(*i_i, O, TM);
	}
    }

  // We didn't modify anything.
  return false;
}

static bool isReg(const MachineOperand &MO) {
  return MO.getType() == MachineOperand::MO_VirtualRegister ||
         MO.getType() == MachineOperand::MO_MachineRegister;
}

static bool isImmediate(const MachineOperand &MO) {
  return MO.getType() == MachineOperand::MO_SignExtendedImmed ||
         MO.getType() == MachineOperand::MO_UnextendedImmed;
}

static bool isScale(const MachineOperand &MO) {
  return isImmediate(MO) &&
           (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
            MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
}

static bool isMem(const MachineInstr *MI, unsigned Op) {
  return Op+4 <= MI->getNumOperands() &&
         isReg(MI->getOperand(Op  )) && isScale(MI->getOperand(Op+1)) &&
         isReg(MI->getOperand(Op+2)) && isImmediate(MI->getOperand(Op+3));
}

static void printOp(std::ostream &O, const MachineOperand &MO,
                    const MRegisterInfo &RI) {
  switch (MO.getType()) {
  case MachineOperand::MO_VirtualRegister:
  case MachineOperand::MO_MachineRegister:
    if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
      O << RI.get(MO.getReg()).Name;
    else
      O << "%reg" << MO.getReg();
    return;

  case MachineOperand::MO_SignExtendedImmed:
  case MachineOperand::MO_UnextendedImmed:
    O << (int)MO.getImmedValue();
    return;
  default:
    O << "<unknown op ty>"; return;    
  }
}

static void printMemReference(std::ostream &O, const MachineInstr *MI,
                              unsigned Op, const MRegisterInfo &RI) {
  assert(isMem(MI, Op) && "Invalid memory reference!");
  const MachineOperand &BaseReg  = MI->getOperand(Op);
  const MachineOperand &Scale    = MI->getOperand(Op+1);
  const MachineOperand &IndexReg = MI->getOperand(Op+2);
  const MachineOperand &Disp     = MI->getOperand(Op+3);

  O << "[";
  bool NeedPlus = false;
  if (BaseReg.getReg()) {
    printOp(O, BaseReg, RI);
    NeedPlus = true;
  }

  if (IndexReg.getReg()) {
    if (NeedPlus) O << " + ";
    if (IndexReg.getImmedValue() != 1)
      O << IndexReg.getImmedValue() << "*";
    printOp(O, IndexReg, RI);
    NeedPlus = true;
  }

  if (Disp.getImmedValue()) {
    if (NeedPlus) O << " + ";
    printOp(O, Disp, RI);
  }
  O << "]";
}

static inline void toHexDigit(std::ostream &O, unsigned char V) {
  if (V >= 10)
    O << (char)('A'+V-10);
  else
    O << (char)('0'+V);
}

static std::ostream &toHex(std::ostream &O, unsigned char V) {
  toHexDigit(O, V >> 4);
  toHexDigit(O, V & 0xF);
  return O;
}

static std::ostream &emitConstant(std::ostream &O, unsigned Val, unsigned Size){
  // Output the constant in little endian byte order...
  for (unsigned i = 0; i != Size; ++i) {
    toHex(O, Val) << " ";
    Val >>= 8;
  }
  return O;
}

namespace N86 {  // Native X86 Register numbers...
  enum {
    EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
  };
}


// getX86RegNum - This function maps LLVM register identifiers to their X86
// specific numbering, which is used in various places encoding instructions.
//
static unsigned getX86RegNum(unsigned RegNo) {
  switch(RegNo) {
  case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
  case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
  case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
  case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
  case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
  case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
  case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
  case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
  default:
    assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
           "Unknown physical register!");
    DEBUG(std::cerr << "Register allocator hasn't allocated " << RegNo
                    << " correctly yet!\n");
    return 0;
  }
}

inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
                                      unsigned RM) {
  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
  return RM | (RegOpcode << 3) | (Mod << 6);
}

static void emitRegModRMByte(std::ostream &O, unsigned ModRMReg,
                             unsigned RegOpcodeField) {
  toHex(O, ModRMByte(3, RegOpcodeField, getX86RegNum(ModRMReg))) << " ";
}

inline static void emitSIBByte(std::ostream &O, unsigned SS, unsigned Index,
                               unsigned Base) {
  // SIB byte is in the same format as the ModRMByte...
  toHex(O, ModRMByte(SS, Index, Base));
}

static bool isDisp8(int Value) {
  return Value == (signed char)Value;
}

static void emitMemModRMByte(std::ostream &O, const MachineInstr *MI,
                             unsigned Op, unsigned RegOpcodeField) {
  assert(isMem(MI, Op) && "Invalid memory reference!");
  const MachineOperand &BaseReg  = MI->getOperand(Op);
  const MachineOperand &Scale    = MI->getOperand(Op+1);
  const MachineOperand &IndexReg = MI->getOperand(Op+2);
  const MachineOperand &Disp     = MI->getOperand(Op+3);

  // Is a SIB byte needed?
  if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
    if (BaseReg.getReg() == 0) {  // Just a displacement?
      // Emit special case [disp32] encoding
      toHex(O, ModRMByte(0, RegOpcodeField, 5));
      emitConstant(O, Disp.getImmedValue(), 4);
    } else {
      unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
      if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
        // Emit simple indirect register encoding... [EAX] f.e.
        toHex(O, ModRMByte(0, RegOpcodeField, BaseRegNo));
      } else if (isDisp8(Disp.getImmedValue())) {
        // Emit the disp8 encoding... [REG+disp8]
        toHex(O, ModRMByte(1, RegOpcodeField, BaseRegNo));
        emitConstant(O, Disp.getImmedValue(), 1);
      } else {
        // Emit the most general non-SIB encoding: [REG+disp32]
        toHex(O, ModRMByte(1, RegOpcodeField, BaseRegNo));
        emitConstant(O, Disp.getImmedValue(), 4);
      }
    }

  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
    assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");

    bool ForceDisp32 = false;
    if (BaseReg.getReg() == 0) {
      // If there is no base register, we emit the special case SIB byte with
      // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
      toHex(O, ModRMByte(0, RegOpcodeField, 4));
      ForceDisp32 = true;
    } else if (Disp.getImmedValue() == 0) {
      // Emit no displacement ModR/M byte
      toHex(O, ModRMByte(0, RegOpcodeField, 4));
    } else if (isDisp8(Disp.getImmedValue())) {
      // Emit the disp8 encoding...
      toHex(O, ModRMByte(1, RegOpcodeField, 4));
    } else {
      // Emit the normal disp32 encoding...
      toHex(O, ModRMByte(2, RegOpcodeField, 4));
    }

    // Calculate what the SS field value should be...
    static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
    unsigned SS = SSTable[Scale.getImmedValue()];

    if (BaseReg.getReg() == 0) {
      // Handle the SIB byte for the case where there is no base.  The
      // displacement has already been output.
      assert(IndexReg.getReg() && "Index register must be specified!");
      emitSIBByte(O, SS, getX86RegNum(IndexReg.getReg()), 5);
    } else {
      unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
      unsigned IndexRegNo = getX86RegNum(IndexReg.getReg());
      emitSIBByte(O, SS, IndexRegNo, BaseRegNo);
    }

    // Do we need to output a displacement?
    if (Disp.getImmedValue() != 0 || ForceDisp32) {
      if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
        emitConstant(O, Disp.getImmedValue(), 1);
      else
        emitConstant(O, Disp.getImmedValue(), 4);
    }
  }
}


// print - Print out an x86 instruction in intel syntax
void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O,
                         const TargetMachine &TM) const {
  unsigned Opcode = MI->getOpcode();
  const MachineInstrDescriptor &Desc = get(Opcode);

  // Print instruction prefixes if neccesary
  if (Desc.TSFlags & X86II::OpSize) O << "66 "; // Operand size...
  if (Desc.TSFlags & X86II::TB) O << "0F ";     // Two-byte opcode prefix

  switch (Desc.TSFlags & X86II::FormMask) {
  case X86II::OtherFrm:
    O << "\t\t\t";
    O << "-"; MI->print(O, TM);
    break;

  case X86II::RawFrm:
    toHex(O, getBaseOpcodeFor(Opcode));
    O << "\n\t\t\t\t";
    O << getName(MI->getOpCode()) << " ";

    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      if (i) O << ", ";
      printOp(O, MI->getOperand(i), RI);
    }
    O << "\n";
    return;

  case X86II::AddRegFrm: {
    // There are currently two forms of acceptable AddRegFrm instructions.
    // Either the instruction JUST takes a single register (like inc, dec, etc),
    // or it takes a register and an immediate of the same size as the register
    // (move immediate f.e.).
    //
    assert(isReg(MI->getOperand(0)) &&
           (MI->getNumOperands() == 1 || 
            (MI->getNumOperands() == 2 && isImmediate(MI->getOperand(1)))) &&
           "Illegal form for AddRegFrm instruction!");

    unsigned Reg = MI->getOperand(0).getReg();
    toHex(O, getBaseOpcodeFor(Opcode) + getX86RegNum(Reg)) << " ";

    if (MI->getNumOperands() == 2) {
      unsigned Size = 4;
      emitConstant(O, MI->getOperand(1).getImmedValue(), Size);
    }
    
    O << "\n\t\t\t\t";
    O << getName(MI->getOpCode()) << " ";
    printOp(O, MI->getOperand(0), RI);
    if (MI->getNumOperands() == 2) {
      O << ", ";
      printOp(O, MI->getOperand(1), RI);
    }
    O << "\n";
    return;
  }
  case X86II::MRMDestReg: {
    // There are two acceptable forms of MRMDestReg instructions, those with 3
    // and 2 operands:
    //
    // 3 Operands: in this form, the first two registers (the destination, and
    // the first operand) should be the same, post register allocation.  The 3rd
    // operand is an additional input.  This should be for things like add
    // instructions.
    //
    // 2 Operands: this is for things like mov that do not read a second input
    //
    assert(isReg(MI->getOperand(0)) &&
           (MI->getNumOperands() == 2 || 
            (MI->getNumOperands() == 3 && isReg(MI->getOperand(1)))) &&
           isReg(MI->getOperand(MI->getNumOperands()-1))
           && "Bad format for MRMDestReg!");
    if (MI->getNumOperands() == 3 &&
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
      O << "**";

    toHex(O, getBaseOpcodeFor(Opcode)) << " ";
    unsigned ModRMReg = MI->getOperand(0).getReg();
    unsigned ExtraReg = MI->getOperand(MI->getNumOperands()-1).getReg();
    emitRegModRMByte(O, ModRMReg, getX86RegNum(ExtraReg));

    O << "\n\t\t\t\t";
    O << getName(MI->getOpCode()) << " ";
    printOp(O, MI->getOperand(0), RI);
    O << ", ";
    printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
    O << "\n";
    return;
  }

  case X86II::MRMDestMem: {
    // These instructions are the same as MRMDestReg, but instead of having a
    // register reference for the mod/rm field, it's a memory reference.
    //
    assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
           isReg(MI->getOperand(4)) && "Bad format for MRMDestMem!");
    toHex(O, getBaseOpcodeFor(Opcode)) << " ";
    emitMemModRMByte(O, MI, 0, getX86RegNum(MI->getOperand(4).getReg()));

    O << "\n\t\t\t\t";
    O << getName(MI->getOpCode()) << " <SIZE> PTR ";
    printMemReference(O, MI, 0, RI);
    O << ", ";
    printOp(O, MI->getOperand(4), RI);
    O << "\n";
    return;
  }

  case X86II::MRMSrcReg: {
    // There is a two forms that are acceptable for MRMSrcReg instructions,
    // those with 3 and 2 operands:
    //
    // 3 Operands: in this form, the last register (the second input) is the
    // ModR/M input.  The first two operands should be the same, post register
    // allocation.  This is for things like: add r32, r/m32
    //
    // 2 Operands: this is for things like mov that do not read a second input
    //
    assert(isReg(MI->getOperand(0)) &&
           isReg(MI->getOperand(1)) &&
           (MI->getNumOperands() == 2 || 
            (MI->getNumOperands() == 3 && isReg(MI->getOperand(2))))
           && "Bad format for MRMDestReg!");
    if (MI->getNumOperands() == 3 &&
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
      O << "**";

    toHex(O, getBaseOpcodeFor(Opcode)) << " ";
    unsigned ModRMReg = MI->getOperand(MI->getNumOperands()-1).getReg();
    unsigned ExtraReg = MI->getOperand(0).getReg();
    emitRegModRMByte(O, ModRMReg, getX86RegNum(ExtraReg));

    O << "\n\t\t\t\t";
    O << getName(MI->getOpCode()) << " ";
    printOp(O, MI->getOperand(0), RI);
    O << ", ";
    printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
    O << "\n";
    return;
  }

  case X86II::MRMSrcMem: {
    // These instructions are the same as MRMSrcReg, but instead of having a
    // register reference for the mod/rm field, it's a memory reference.
    //
    assert(isReg(MI->getOperand(0)) &&
           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || 
           (MI->getNumOperands() == 2+4 && isReg(MI->getOperand(1)) && 
            isMem(MI, 2))
           && "Bad format for MRMDestReg!");
    if (MI->getNumOperands() == 2+4 &&
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
      O << "**";

    toHex(O, getBaseOpcodeFor(Opcode)) << " ";
    unsigned ExtraReg = MI->getOperand(0).getReg();
    emitMemModRMByte(O, MI, MI->getNumOperands()-4, getX86RegNum(ExtraReg));

    O << "\n\t\t\t\t";
    O << getName(MI->getOpCode()) << " ";
    printOp(O, MI->getOperand(0), RI);
    O << ", <SIZE> PTR ";
    printMemReference(O, MI, MI->getNumOperands()-4, RI);
    O << "\n";
    return;
  }

  case X86II::MRMS0r: case X86II::MRMS1r:
  case X86II::MRMS2r: case X86II::MRMS3r:
  case X86II::MRMS4r: case X86II::MRMS5r:
  case X86II::MRMS6r: case X86II::MRMS7r: {
    // In this form, the following are valid formats:
    //  1. sete r
    //  2. cmp reg, immediate
    //  2. shl rdest, rinput  <implicit CL or 1>
    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
    //    
    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
           isReg(MI->getOperand(0)) && "Bad MRMSxR format!");
    assert((MI->getNumOperands() != 2 ||
            isReg(MI->getOperand(1)) || isImmediate(MI->getOperand(1))) &&
           "Bad MRMSxR format!");
    assert((MI->getNumOperands() < 3 ||
            (isReg(MI->getOperand(1)) && isImmediate(MI->getOperand(2)))) &&
           "Bad MRMSxR format!");

    if (MI->getNumOperands() > 1 && isReg(MI->getOperand(1)) && 
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
      O << "**";

    toHex(O, getBaseOpcodeFor(Opcode)) << " ";
    unsigned ExtraField = (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r;
    emitRegModRMByte(O, MI->getOperand(0).getReg(), ExtraField);

    if (isImmediate(MI->getOperand(MI->getNumOperands()-1))) {
      unsigned Size = 4;
      emitConstant(O, MI->getOperand(MI->getNumOperands()-1).getImmedValue(),
                   Size);
    }

    O << "\n\t\t\t\t";
    O << getName(MI->getOpCode()) << " ";
    printOp(O, MI->getOperand(0), RI);
    if (isImmediate(MI->getOperand(MI->getNumOperands()-1))) {
      O << ", ";
      printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
    }
    O << "\n";

    return;
  }

  default:
    O << "\t\t\t-"; MI->print(O, TM); break;
  }
}