aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/Printer.cpp
blob: c2f2bb8f794a5d9abf1e9b46a472ae3577a9bbac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===//
//
// This file contains a printer that converts from our internal representation
// of LLVM code to a nice human readable form that is suitable for debugging.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Function.h"
#include "llvm/Constant.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "Support/Statistic.h"
#include "Support/hash_map"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/DerivedTypes.h"
#include "llvm/SlotCalculator.h"
#include "Support/StringExtras.h"
#include "llvm/Module.h"

namespace {
  std::set<const Value *> MangledGlobals;
  struct Printer : public MachineFunctionPass {
    std::ostream &O;
    typedef std::map<const Value *, unsigned> ValueMapTy;
    ValueMapTy NumberForBB;
    Printer(std::ostream &o) : O(o) {}
    const TargetData *TD;
    std::string CurrentFnName;
    virtual const char *getPassName() const {
      return "X86 Assembly Printer";
    }

    void printMachineInstruction(const MachineInstr *MI, std::ostream &O,
				 const TargetMachine &TM) const;
    void printOp(std::ostream &O, const MachineOperand &MO,
		 const MRegisterInfo &RI, bool elideOffsetKeyword = false) const;
    void printMemReference(std::ostream &O, const MachineInstr *MI,
			   unsigned Op,
			   const MRegisterInfo &RI) const;
    void printConstantPool(MachineConstantPool *MCP);
    bool runOnMachineFunction(MachineFunction &F);    
    std::string ConstantExprToString(const ConstantExpr* CE);
    std::string valToExprString(const Value* V);
    bool doInitialization(Module &M);
    bool doFinalization(Module &M);
    void PrintZeroBytesToPad(int numBytes);
    void printConstantValueOnly(const Constant* CV, int numPadBytesAfter = 0);
    void printSingleConstantValue(const Constant* CV);
  };
} // end of anonymous namespace

/// createX86CodePrinterPass - Print out the specified machine code function to
/// the specified stream.  This function should work regardless of whether or
/// not the function is in SSA form or not.
///
Pass *createX86CodePrinterPass(std::ostream &O) {
  return new Printer(O);
}

// We don't want identifier names with ., space, or - in them, 
// so we replace them with underscores.
static std::string makeNameProper(std::string x) {
  std::string tmp;
  for (std::string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++)
    switch (*sI) {
    case '.': tmp += "d_"; break;
    case ' ': tmp += "s_"; break;
    case '-': tmp += "D_"; break;
    default:  tmp += *sI;
    }
  return tmp;
}

static std::string getValueName(const Value *V) {
  if (V->hasName()) { // Print out the label if it exists...
    // Name mangling occurs as follows:
    // - If V is not a global, mangling always occurs.
    // - Otherwise, mangling occurs when any of the following are true:
    //   1) V has internal linkage
    //   2) V's name would collide if it is not mangled.
    //
    if(const GlobalValue* gv = dyn_cast<GlobalValue>(V)) {
      if(!gv->hasInternalLinkage() && !MangledGlobals.count(gv)) {
        // No internal linkage, name will not collide -> no mangling.
        return makeNameProper(gv->getName());
      }
    }
    // Non-global, or global with internal linkage / colliding name -> mangle.
    return "l" + utostr(V->getType()->getUniqueID()) + "_" +
      makeNameProper(V->getName());      
  }
  static int Count = 0;
  Count++;
  return "ltmp_" + itostr(Count) + "_" + utostr(V->getType()->getUniqueID());
}

// valToExprString - Helper function for ConstantExprToString().
// Appends result to argument string S.
// 
std::string Printer::valToExprString(const Value* V) {
  std::string S;
  bool failed = false;
  if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known
    if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
      S += std::string(CB == ConstantBool::True ? "1" : "0");
    else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
      S += itostr(CI->getValue());
    else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
      S += utostr(CI->getValue());
    else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
      S += ftostr(CFP->getValue());
    else if (isa<ConstantPointerNull>(CV))
      S += "0";
    else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
      S += valToExprString(CPR->getValue());
    else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
      S += ConstantExprToString(CE);
    else
      failed = true;
  } else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
    S += getValueName(GV);
  }
  else
    failed = true;

  if (failed) {
    assert(0 && "Cannot convert value to string");
    S += "<illegal-value>";
  }
  return S;
}

// ConstantExprToString() - Convert a ConstantExpr to an asm expression
// and return this as a string.
std::string Printer::ConstantExprToString(const ConstantExpr* CE) {
  std::string S;
  switch(CE->getOpcode()) {
  case Instruction::GetElementPtr:
    { // generate a symbolic expression for the byte address
      const Value* ptrVal = CE->getOperand(0);
      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
      S += "(" + valToExprString(ptrVal) + ") + ("
	+ utostr(TD->getIndexedOffset(ptrVal->getType(),idxVec)) + ")";
      break;
    }

  case Instruction::Cast:
    // Support only non-converting casts for now, i.e., a no-op.
    // This assertion is not a complete check.
    assert(TD->getTypeSize(CE->getType()) ==
	   TD->getTypeSize(CE->getOperand(0)->getType()));
    S += "(" + valToExprString(CE->getOperand(0)) + ")";
    break;

  case Instruction::Add:
    S += "(" + valToExprString(CE->getOperand(0)) + ") + ("
      + valToExprString(CE->getOperand(1)) + ")";
    break;

  default:
    assert(0 && "Unsupported operator in ConstantExprToString()");
    break;
  }

  return S;
}

// Print a single constant value.
void
Printer::printSingleConstantValue(const Constant* CV)
{
  assert(CV->getType() != Type::VoidTy &&
         CV->getType() != Type::TypeTy &&
         CV->getType() != Type::LabelTy &&
         "Unexpected type for Constant");
  
  assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
         && "Aggregate types should be handled outside this function");

  const Type *type = CV->getType();
  O << "\t";
  switch(type->getPrimitiveID())
    {
    case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
      O << ".byte";
      break;
    case Type::UShortTyID: case Type::ShortTyID:
      O << ".word";
      break;
    case Type::UIntTyID: case Type::IntTyID: case Type::PointerTyID:
      O << ".long";
      break;
    case Type::ULongTyID: case Type::LongTyID:
      O << ".quad";
      break;
    case Type::FloatTyID:
      O << ".long";
      break;
    case Type::DoubleTyID:
      O << ".quad";
      break;
    case Type::ArrayTyID:
      if ((cast<ArrayType>(type)->getElementType() == Type::UByteTy) ||
	  (cast<ArrayType>(type)->getElementType() == Type::SByteTy))
	O << ".string";
      else
	assert (0 && "Can't handle printing this type of array");
      break;
    default:
      assert (0 && "Can't handle printing this type of thing");
      break;
    }
  O << "\t";
  
  if (type->isPrimitiveType())
    {
      if (type->isFloatingPoint()) {
	// FP Constants are printed as integer constants to avoid losing
	// precision...
	double Val = cast<ConstantFP>(CV)->getValue();
	if (type == Type::FloatTy) {
	  float FVal = (float)Val;
	  char *ProxyPtr = (char*)&FVal;        // Abide by C TBAA rules
	  O << *(unsigned int*)ProxyPtr;            
	} else if (type == Type::DoubleTy) {
	  char *ProxyPtr = (char*)&Val;         // Abide by C TBAA rules
	  O << *(uint64_t*)ProxyPtr;            
	} else {
	  assert(0 && "Unknown floating point type!");
	}
        
	O << "\t# " << type->getDescription() << " value: " << Val << "\n";
      } else {
	WriteAsOperand(O, CV, false, false) << "\n";
      }
    }
  else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV))
    {
      // This is a constant address for a global variable or method.
      // Use the name of the variable or method as the address value.
      O << getValueName(CPR->getValue()) << "\n";
    }
  else if (isa<ConstantPointerNull>(CV))
    {
      // Null pointer value
      O << "0\n";
    }
  else if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
    {
      // Constant expression built from operators, constants, and
      // symbolic addrs
      O << ConstantExprToString(CE) << "\n";
    }
  else
    {
      assert(0 && "Unknown elementary type for constant");
    }
}

// Can we treat the specified array as a string?  Only if it is an array of
// ubytes or non-negative sbytes.
//
static bool isStringCompatible(const ConstantArray *CVA) {
  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
  if (ETy == Type::UByteTy) return true;
  if (ETy != Type::SByteTy) return false;

  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
      return false;

  return true;
}

// toOctal - Convert the low order bits of X into an octal letter
static inline char toOctal(int X) {
  return (X&7)+'0';
}

// getAsCString - Return the specified array as a C compatible string, only if
// the predicate isStringCompatible is true.
//
static std::string getAsCString(const ConstantArray *CVA) {
  assert(isStringCompatible(CVA) && "Array is not string compatible!");

  std::string Result;
  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
  Result = "\"";
  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
    unsigned char C = (ETy == Type::SByteTy) ?
      (unsigned char)cast<ConstantSInt>(CVA->getOperand(i))->getValue() :
      (unsigned char)cast<ConstantUInt>(CVA->getOperand(i))->getValue();

    if (C == '"') {
      Result += "\\\"";
    } else if (C == '\\') {
      Result += "\\\\";
    } else if (isprint(C)) {
      Result += C;
    } else {
      switch(C) {
      case '\a': Result += "\\a"; break;
      case '\b': Result += "\\b"; break;
      case '\f': Result += "\\f"; break;
      case '\n': Result += "\\n"; break;
      case '\r': Result += "\\r"; break;
      case '\t': Result += "\\t"; break;
      case '\v': Result += "\\v"; break;
      default:
        Result += '\\';
        Result += toOctal(C >> 6);
        Result += toOctal(C >> 3);
        Result += toOctal(C >> 0);
        break;
      }
    }
  }
  Result += "\"";
  return Result;
}

// Print a constant value or values (it may be an aggregate).
// Uses printSingleConstantValue() to print each individual value.
void
Printer::printConstantValueOnly(const Constant* CV,
				int numPadBytesAfter /* = 0 */)
{
  const ConstantArray *CVA = dyn_cast<ConstantArray>(CV);

  if (CVA && isStringCompatible(CVA))
    { // print the string alone and return
      O << "\t" << ".string" << "\t" << getAsCString(CVA) << "\n";
    }
  else if (CVA)
    { // Not a string.  Print the values in successive locations
      const std::vector<Use> &constValues = CVA->getValues();
      for (unsigned i=0; i < constValues.size(); i++)
        printConstantValueOnly(cast<Constant>(constValues[i].get()));
    }
  else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
    { // Print the fields in successive locations. Pad to align if needed!
      const StructLayout *cvsLayout =
        TD->getStructLayout(CVS->getType());
      const std::vector<Use>& constValues = CVS->getValues();
      unsigned sizeSoFar = 0;
      for (unsigned i=0, N = constValues.size(); i < N; i++)
        {
          const Constant* field = cast<Constant>(constValues[i].get());

          // Check if padding is needed and insert one or more 0s.
          unsigned fieldSize = TD->getTypeSize(field->getType());
          int padSize = ((i == N-1? cvsLayout->StructSize
			  : cvsLayout->MemberOffsets[i+1])
                         - cvsLayout->MemberOffsets[i]) - fieldSize;
          sizeSoFar += (fieldSize + padSize);

          // Now print the actual field value
          printConstantValueOnly(field, padSize);
        }
      assert(sizeSoFar == cvsLayout->StructSize &&
             "Layout of constant struct may be incorrect!");
    }
  else
    printSingleConstantValue(CV);

  if (numPadBytesAfter) {
    unsigned numBytes = numPadBytesAfter;
    for ( ; numBytes >= 8; numBytes -= 8)
      printSingleConstantValue(Constant::getNullValue(Type::ULongTy));
    if (numBytes >= 4)
      {
	printSingleConstantValue(Constant::getNullValue(Type::UIntTy));
	numBytes -= 4;
      }
    while (numBytes--)
      printSingleConstantValue(Constant::getNullValue(Type::UByteTy));
  }
}

// printConstantPool - Print out any constants which have been spilled to
// memory...
void Printer::printConstantPool(MachineConstantPool *MCP){
  const std::vector<Constant*> &CP = MCP->getConstants();
  if (CP.empty()) return;

  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
    O << "\t.section .rodata\n";
    O << "\t.align " << (unsigned)TD->getTypeAlignment(CP[i]->getType())
      << "\n";
    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
      << *CP[i] << "\n";
    printConstantValueOnly (CP[i]);
  }
}

/// runOnMachineFunction - This uses the X86InstructionInfo::print method
/// to print assembly for each instruction.
bool Printer::runOnMachineFunction(MachineFunction &MF) {
  static unsigned BBNumber = 0;
  const TargetMachine &TM = MF.getTarget();
  const TargetInstrInfo &TII = TM.getInstrInfo();
  TD = &TM.getTargetData();

  // What's my mangled name?
  CurrentFnName = getValueName(MF.getFunction());

  // Print out constants referenced by the function
  printConstantPool(MF.getConstantPool());

  // Print out labels for the function.
  O << "\t.text\n";
  O << "\t.align 16\n";
  O << "\t.globl\t" << CurrentFnName << "\n";
  O << "\t.type\t" << CurrentFnName << ", @function\n";
  O << CurrentFnName << ":\n";

  // Number each basic block so that we can consistently refer to them
  // in PC-relative references.
  NumberForBB.clear();
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    NumberForBB[I->getBasicBlock()] = BBNumber++;
  }

  // Print out code for the function.
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    // Print a label for the basic block.
    O << ".BB" << NumberForBB[I->getBasicBlock()] << ":\t# "
      << I->getBasicBlock()->getName() << "\n";
    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
	 II != E; ++II) {
      // Print the assembly for the instruction.
      O << "\t";
      printMachineInstruction(*II, O, TM);
    }
  }

  // We didn't modify anything.
  return false;
}

static bool isScale(const MachineOperand &MO) {
  return MO.isImmediate() &&
    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
}

static bool isMem(const MachineInstr *MI, unsigned Op) {
  if (MI->getOperand(Op).isFrameIndex()) return true;
  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
  return Op+4 <= MI->getNumOperands() &&
    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
}

void Printer::printOp(std::ostream &O, const MachineOperand &MO,
		      const MRegisterInfo &RI,
		      bool elideOffsetKeyword /* = false */) const {
  switch (MO.getType()) {
  case MachineOperand::MO_VirtualRegister:
    if (Value *V = MO.getVRegValueOrNull()) {
      O << "<" << V->getName() << ">";
      return;
    }
    // FALLTHROUGH
  case MachineOperand::MO_MachineRegister:
    if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
      O << RI.get(MO.getReg()).Name;
    else
      O << "%reg" << MO.getReg();
    return;

  case MachineOperand::MO_SignExtendedImmed:
  case MachineOperand::MO_UnextendedImmed:
    O << (int)MO.getImmedValue();
    return;
  case MachineOperand::MO_PCRelativeDisp:
    {
      ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
      assert (i != NumberForBB.end()
	      && "Could not find a BB I previously put in the NumberForBB map!");
      O << ".BB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
    }
    return;
  case MachineOperand::MO_GlobalAddress:
    if (!elideOffsetKeyword) O << "OFFSET "; O << getValueName(MO.getGlobal());
    return;
  case MachineOperand::MO_ExternalSymbol:
    O << MO.getSymbolName();
    return;
  default:
    O << "<unknown operand type>"; return;    
  }
}

static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
  switch (Desc.TSFlags & X86II::ArgMask) {
  default: assert(0 && "Unknown arg size!");
  case X86II::Arg8:   return "BYTE PTR"; 
  case X86II::Arg16:  return "WORD PTR"; 
  case X86II::Arg32:  return "DWORD PTR"; 
  case X86II::Arg64:  return "QWORD PTR"; 
  case X86II::ArgF32:  return "DWORD PTR"; 
  case X86II::ArgF64:  return "QWORD PTR"; 
  case X86II::ArgF80:  return "XWORD PTR"; 
  }
}

void Printer::printMemReference(std::ostream &O, const MachineInstr *MI,
				unsigned Op,
				const MRegisterInfo &RI) const {
  assert(isMem(MI, Op) && "Invalid memory reference!");

  if (MI->getOperand(Op).isFrameIndex()) {
    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
    if (MI->getOperand(Op+3).getImmedValue())
      O << " + " << MI->getOperand(Op+3).getImmedValue();
    O << "]";
    return;
  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
    O << "[.CPI" << CurrentFnName << "_"
      << MI->getOperand(Op).getConstantPoolIndex();
    if (MI->getOperand(Op+3).getImmedValue())
      O << " + " << MI->getOperand(Op+3).getImmedValue();
    O << "]";
    return;
  }

  const MachineOperand &BaseReg  = MI->getOperand(Op);
  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
  const MachineOperand &IndexReg = MI->getOperand(Op+2);
  int DispVal                    = MI->getOperand(Op+3).getImmedValue();

  O << "[";
  bool NeedPlus = false;
  if (BaseReg.getReg()) {
    printOp(O, BaseReg, RI);
    NeedPlus = true;
  }

  if (IndexReg.getReg()) {
    if (NeedPlus) O << " + ";
    if (ScaleVal != 1)
      O << ScaleVal << "*";
    printOp(O, IndexReg, RI);
    NeedPlus = true;
  }

  if (DispVal) {
    if (NeedPlus)
      if (DispVal > 0)
	O << " + ";
      else {
	O << " - ";
	DispVal = -DispVal;
      }
    O << DispVal;
  }
  O << "]";
}

/// printMachineInstruction -- Print out an x86 instruction in intel syntax
///
void Printer::printMachineInstruction(const MachineInstr *MI, std::ostream &O,
				      const TargetMachine &TM) const {
  unsigned Opcode = MI->getOpcode();
  const TargetInstrInfo &TII = TM.getInstrInfo();
  const TargetInstrDescriptor &Desc = TII.get(Opcode);
  const MRegisterInfo &RI = *TM.getRegisterInfo();

  switch (Desc.TSFlags & X86II::FormMask) {
  case X86II::Pseudo:
    // Print pseudo-instructions as comments; either they should have been
    // turned into real instructions by now, or they don't need to be
    // seen by the assembler (e.g., IMPLICIT_USEs.)
    O << "# ";
    if (Opcode == X86::PHI) {
      printOp(O, MI->getOperand(0), RI);
      O << " = phi ";
      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
	if (i != 1) O << ", ";
	O << "[";
	printOp(O, MI->getOperand(i), RI);
	O << ", ";
	printOp(O, MI->getOperand(i+1), RI);
	O << "]";
      }
    } else {
      unsigned i = 0;
      if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() || 
                                   MI->getOperand(0).opIsDefAndUse())) {
	printOp(O, MI->getOperand(0), RI);
	O << " = ";
	++i;
      }
      O << TII.getName(MI->getOpcode());

      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
	O << " ";
	if (MI->getOperand(i).opIsDefOnly() || 
            MI->getOperand(i).opIsDefAndUse()) O << "*";
	printOp(O, MI->getOperand(i), RI);
	if (MI->getOperand(i).opIsDefOnly() || 
            MI->getOperand(i).opIsDefAndUse()) O << "*";
      }
    }
    O << "\n";
    return;

  case X86II::RawFrm:
    // The accepted forms of Raw instructions are:
    //   1. nop     - No operand required
    //   2. jmp foo - PC relative displacement operand
    //   3. call bar - GlobalAddress Operand or External Symbol Operand
    //
    assert(MI->getNumOperands() == 0 ||
           (MI->getNumOperands() == 1 &&
	    (MI->getOperand(0).isPCRelativeDisp() ||
	     MI->getOperand(0).isGlobalAddress() ||
	     MI->getOperand(0).isExternalSymbol())) &&
           "Illegal raw instruction!");
    O << TII.getName(MI->getOpcode()) << " ";

    if (MI->getNumOperands() == 1) {
      printOp(O, MI->getOperand(0), RI, true); // Don't print "OFFSET"...
    }
    O << "\n";
    return;

  case X86II::AddRegFrm: {
    // There are currently two forms of acceptable AddRegFrm instructions.
    // Either the instruction JUST takes a single register (like inc, dec, etc),
    // or it takes a register and an immediate of the same size as the register
    // (move immediate f.e.).  Note that this immediate value might be stored as
    // an LLVM value, to represent, for example, loading the address of a global
    // into a register.  The initial register might be duplicated if this is a
    // M_2_ADDR_REG instruction
    //
    assert(MI->getOperand(0).isRegister() &&
           (MI->getNumOperands() == 1 || 
            (MI->getNumOperands() == 2 &&
             (MI->getOperand(1).getVRegValueOrNull() ||
              MI->getOperand(1).isImmediate() ||
	      MI->getOperand(1).isRegister() ||
	      MI->getOperand(1).isGlobalAddress() ||
	      MI->getOperand(1).isExternalSymbol()))) &&
           "Illegal form for AddRegFrm instruction!");

    unsigned Reg = MI->getOperand(0).getReg();
    
    O << TII.getName(MI->getOpCode()) << " ";
    printOp(O, MI->getOperand(0), RI);
    if (MI->getNumOperands() == 2 &&
	(!MI->getOperand(1).isRegister() ||
	 MI->getOperand(1).getVRegValueOrNull() ||
	 MI->getOperand(1).isGlobalAddress() ||
	 MI->getOperand(1).isExternalSymbol())) {
      O << ", ";
      printOp(O, MI->getOperand(1), RI);
    }
    if (Desc.TSFlags & X86II::PrintImplUses) {
      for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
	O << ", " << RI.get(*p).Name;
      }
    }
    O << "\n";
    return;
  }
  case X86II::MRMDestReg: {
    // There are two acceptable forms of MRMDestReg instructions, those with 2,
    // 3 and 4 operands:
    //
    // 2 Operands: this is for things like mov that do not read a second input
    //
    // 3 Operands: in this form, the first two registers (the destination, and
    // the first operand) should be the same, post register allocation.  The 3rd
    // operand is an additional input.  This should be for things like add
    // instructions.
    //
    // 4 Operands: This form is for instructions which are 3 operands forms, but
    // have a constant argument as well.
    //
    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
    assert(MI->getOperand(0).isRegister() &&
           (MI->getNumOperands() == 2 ||
	    (isTwoAddr && MI->getOperand(1).isRegister() &&
	     MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
	     (MI->getNumOperands() == 3 ||
	      (MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
           && "Bad format for MRMDestReg!");

    O << TII.getName(MI->getOpCode()) << " ";
    printOp(O, MI->getOperand(0), RI);
    O << ", ";
    printOp(O, MI->getOperand(1+isTwoAddr), RI);
    if (MI->getNumOperands() == 4) {
      O << ", ";
      printOp(O, MI->getOperand(3), RI);
    }
    O << "\n";
    return;
  }

  case X86II::MRMDestMem: {
    // These instructions are the same as MRMDestReg, but instead of having a
    // register reference for the mod/rm field, it's a memory reference.
    //
    assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
           MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");

    O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " ";
    printMemReference(O, MI, 0, RI);
    O << ", ";
    printOp(O, MI->getOperand(4), RI);
    O << "\n";
    return;
  }

  case X86II::MRMSrcReg: {
    // There is a two forms that are acceptable for MRMSrcReg instructions,
    // those with 3 and 2 operands:
    //
    // 3 Operands: in this form, the last register (the second input) is the
    // ModR/M input.  The first two operands should be the same, post register
    // allocation.  This is for things like: add r32, r/m32
    //
    // 2 Operands: this is for things like mov that do not read a second input
    //
    assert(MI->getOperand(0).isRegister() &&
           MI->getOperand(1).isRegister() &&
           (MI->getNumOperands() == 2 || 
            (MI->getNumOperands() == 3 && MI->getOperand(2).isRegister()))
           && "Bad format for MRMSrcReg!");
    if (MI->getNumOperands() == 3 &&
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
      O << "**";

    O << TII.getName(MI->getOpCode()) << " ";
    printOp(O, MI->getOperand(0), RI);
    O << ", ";
    printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
    O << "\n";
    return;
  }

  case X86II::MRMSrcMem: {
    // These instructions are the same as MRMSrcReg, but instead of having a
    // register reference for the mod/rm field, it's a memory reference.
    //
    assert(MI->getOperand(0).isRegister() &&
           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || 
           (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() && 
            isMem(MI, 2))
           && "Bad format for MRMDestReg!");
    if (MI->getNumOperands() == 2+4 &&
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
      O << "**";

    O << TII.getName(MI->getOpCode()) << " ";
    printOp(O, MI->getOperand(0), RI);
    O << ", " << sizePtr(Desc) << " ";
    printMemReference(O, MI, MI->getNumOperands()-4, RI);
    O << "\n";
    return;
  }

  case X86II::MRMS0r: case X86II::MRMS1r:
  case X86II::MRMS2r: case X86II::MRMS3r:
  case X86II::MRMS4r: case X86II::MRMS5r:
  case X86II::MRMS6r: case X86II::MRMS7r: {
    // In this form, the following are valid formats:
    //  1. sete r
    //  2. cmp reg, immediate
    //  2. shl rdest, rinput  <implicit CL or 1>
    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
    //    
    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
    assert((MI->getNumOperands() != 2 ||
            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
           "Bad MRMSxR format!");
    assert((MI->getNumOperands() < 3 ||
	    (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
           "Bad MRMSxR format!");

    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && 
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
      O << "**";

    O << TII.getName(MI->getOpCode()) << " ";
    printOp(O, MI->getOperand(0), RI);
    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
      O << ", ";
      printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
    }
    if (Desc.TSFlags & X86II::PrintImplUses) {
      for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
	O << ", " << RI.get(*p).Name;
      }
    }
    O << "\n";

    return;
  }

  case X86II::MRMS0m: case X86II::MRMS1m:
  case X86II::MRMS2m: case X86II::MRMS3m:
  case X86II::MRMS4m: case X86II::MRMS5m:
  case X86II::MRMS6m: case X86II::MRMS7m: {
    // In this form, the following are valid formats:
    //  1. sete [m]
    //  2. cmp [m], immediate
    //  2. shl [m], rinput  <implicit CL or 1>
    //  3. sbb [m], immediate
    //    
    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
           isMem(MI, 0) && "Bad MRMSxM format!");
    assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) &&
           "Bad MRMSxM format!");
    // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
    // is misassembled by gas in intel_syntax mode as its 32-bit
    // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
    // opcode bytes instead of the instruction.
    if (MI->getOpCode() == X86::FSTPr80) {
      if ((MI->getOperand(0).getReg() == X86::ESP)
	  && (MI->getOperand(1).getImmedValue() == 1)) {
	int DispVal = MI->getOperand(3).getImmedValue();
	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
          unsigned int val = (unsigned int) DispVal;
          O << ".byte 0xdb, 0xbc, 0x24\n\t";
          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
	} else { // 1 byte disp.
          unsigned char val = (unsigned char) DispVal;
          O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << (unsigned) val
            << std::dec << "\t# ";
	}
      }
    }
    // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is
    // misassembled by gas in intel_syntax mode as its 32-bit
    // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
    // opcode bytes instead of the instruction.
    if (MI->getOpCode() == X86::FLDr80) {
      if ((MI->getOperand(0).getReg() == X86::ESP)
          && (MI->getOperand(1).getImmedValue() == 1)) {
	int DispVal = MI->getOperand(3).getImmedValue();
	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
          unsigned int val = (unsigned int) DispVal;
          O << ".byte 0xdb, 0xac, 0x24\n\t";
          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
	} else { // 1 byte disp.
          unsigned char val = (unsigned char) DispVal;
          O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
            << std::dec << "\t# ";
	}
      }
    }
    // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an
    // invalid opcode, saying "64 bit operations are only supported in
    // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
    // [...]", which is wrong. Workaround: Output the raw opcode bytes
    // instead of the instruction.
    if (MI->getOpCode() == X86::FILDr64) {
      if ((MI->getOperand(0).getReg() == X86::ESP)
          && (MI->getOperand(1).getImmedValue() == 1)) {
	int DispVal = MI->getOperand(3).getImmedValue();
	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
          unsigned int val = (unsigned int) DispVal;
          O << ".byte 0xdf, 0xac, 0x24\n\t";
          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
	} else { // 1 byte disp.
          unsigned char val = (unsigned char) DispVal;
          O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
            << std::dec << "\t# ";
	}
      }
    }
    // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as
    // an invalid opcode, saying "64 bit operations are only
    // supported in 64 bit modes." libopcodes disassembles it as
    // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output
    // "fistpll DWORD PTR " instead, which is what libopcodes is
    // expecting to see.
    if (MI->getOpCode() == X86::FISTPr64) {
      O << "fistpll DWORD PTR ";
      printMemReference(O, MI, 0, RI);
      if (MI->getNumOperands() == 5) {
	O << ", ";
	printOp(O, MI->getOperand(4), RI);
      }
      O << "\t# ";
    }
    
    O << TII.getName(MI->getOpCode()) << " ";
    O << sizePtr(Desc) << " ";
    printMemReference(O, MI, 0, RI);
    if (MI->getNumOperands() == 5) {
      O << ", ";
      printOp(O, MI->getOperand(4), RI);
    }
    O << "\n";
    return;
  }

  default:
    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
  }
}

bool Printer::doInitialization(Module &M)
{
  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly,
  // with no % decorations on register names.
  O << "\t.intel_syntax noprefix\n";

  // Ripped from CWriter:
  // Calculate which global values have names that will collide when we throw
  // away type information.
  {  // Scope to delete the FoundNames set when we are done with it...
    std::set<std::string> FoundNames;
    for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
      if (I->hasName())                      // If the global has a name...
        if (FoundNames.count(I->getName()))  // And the name is already used
          MangledGlobals.insert(I);          // Mangle the name
        else
          FoundNames.insert(I->getName());   // Otherwise, keep track of name

    for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
      if (I->hasName())                      // If the global has a name...
        if (FoundNames.count(I->getName()))  // And the name is already used
          MangledGlobals.insert(I);          // Mangle the name
        else
          FoundNames.insert(I->getName());   // Otherwise, keep track of name
  }

  return false; // success
}

static const Function *isConstantFunctionPointerRef (const Constant *C) {
  const ConstantPointerRef *R = dyn_cast<ConstantPointerRef>(C);
  if (R) {
    const Function *F = dyn_cast<Function>(R->getValue());
    if (F) {
      return F;
    }
  }
  return NULL;
}

bool Printer::doFinalization(Module &M)
{
  // Print out module-level global variables here.
  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
    std::string name(getValueName(I));
    if (I->hasInitializer()) {
      Constant *C = I->getInitializer();
      O << "\t.data\n";
      O << "\t.globl " << name << "\n";
      O << "\t.type " << name << ",@object\n";
      O << "\t.size " << name << ","
	<< (unsigned)TD->getTypeSize(I->getType()) << "\n";
      O << "\t.align " << (unsigned)TD->getTypeAlignment(C->getType()) << "\n";
      O << name << ":\t\t\t\t\t#";
      // If this is a constant function pointer, we only print out the
      // name of the function in the comment (because printing the
      // function means calling AsmWriter to print the whole LLVM
      // assembly, which would corrupt the X86 assembly output.)
      // Otherwise we print out the whole llvm value as a comment.
      if (const Function *F = isConstantFunctionPointerRef (C)) {
	O << " %" << F->getName() << "()\n";
      } else {
	O << *C << "\n";
      }
      printConstantValueOnly (C);
    } else {
      O << "\t.globl " << name << "\n";
      O << "\t.comm " << name << ", "
        << (unsigned)TD->getTypeSize(I->getType()) << ", "
        << (unsigned)TD->getTypeAlignment(I->getType()) << "\n";
    }
  }
  MangledGlobals.clear();
  return false; // success
}